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Preface 


Due to advances in VLSI technology, programmable DSP devices are becom­
ing increasingly available and affordable. These devices have, therefore, be­
come popular in the industry for the design of products. Consequently, a large 
number of undergraduate senior projects and graduate projects are planned 
and implemented using these devices. Many students attempt these projects 
based on a first-level course on digital signal processing. The books that ar~ 
used in these classes do not, however, cover the topics from the implementa­
tion point of view. There is generally a wide gap in students' understanding of 
DSP algorithms and how to use programmable DSP devices to implement 
them. 

This is a DSP implementation-oriented textbook that has been written 
based on the authors' experience in teaching graduate and undergraduate 
courses on the subject. The objective of the book is to help the reader to 
understand the architecture, programming, and interfacing of commercially 
available programmable DSP devices and to effectively· use them in system 
implementations. The book is intended for senior undergraduate and first­
level graduate students in electrical engineering and computer science pro­
grams. The book will also be useful to engineers in industry engaged in the 
design of DSP systems. The background expected from a reader is a course in 
digital signal processing and a course in microprocessors, both at the under­
graduate .level. 

This book contains 11 chapters and covers the architectural issues of pro­
grammable DSP devices and their relationship to the algorithmic require­
ments, architectures of commercially popular programmable devices~ and the 
use of such devices for software development and system design. rfhese issues 
are covered using a popular family ofDSP devices-TMS320C54xx from T.exas 
Instt:uments. 

Chapter 1 identifies the role of programmable devices in the implementa­
tion of DSP-based· systems. Chapter 2 reviews the DSP basics so that the 
reader can correlate the remainder of the book to the theoretical requirements 
of a DSP system. The aim is not to attempt to teach DSP theory, which is 
abundantly covered elsewhere, but to highlight the. concepts that are relevant 
from the point of view of implementations. MATLAB is used as a tool in ex­
ploring and understanding the basic DSP concepts. Chapter 3 looks at issues 
that determine the computational accuracy of algorithms when implemented 
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using programmable DSP devices. Although it is desirable to retain-as much 
accuracy as possible when DSP algorithms are implemented in hardware, in a 
practical implementation, accuracy has to be measured against thl:'speed of 
operation and hardware complexity. Different number representation schemes 
are introduced and their effects on precision and dynamic range are discussed. 
Various sources of errors in a DSP system are described and are quantitatively 
evaluated in this chapter. 

One of the objectives of the book is to iive readers su'flicient exposure to 
the architecture of programmable DSP devices so that they can use them ef­
fectively and optimally in designing systems. Chapter 4 explains the architec­
tural features of programmable DSP devices based on -the operations these 
devices are required to perfor.\ll.. Various building blocks that constitute a 
programmable digital signal processor are discussed from the point of view of 
implementatiqns. Desirable features for each of these blocks are discussed in 
terms of their hardware realization. Chapter 5 introduces the Texas Instru­
ments' TMS320C54xx family of fixed-point DSP processors and discusses their 
architecture, software, and hardware features. These devices are used in pro­
gramming and design examples throughout the book. Chapter 6 introduces 
the various' tools that are available for the development of DSP soft:wate ort 
programmable devices. In particular, the use of DSK5416, a system design kit 
used for program development for the TMS320C54xx, and the development 
software 'called Code Composer Studio are described. The DSK5416 IS the de­
velopment board around which all the designs are implemented in subsequent 
chapters. . 

In Chapters 7 and 8, programming of the TMS320C54xx devices for several 
basic DSP algorithms is explained. Examples are constructed to show im­
plementations of FIR filters, IIR filters, decimation filters, interpolation filters, 
adaptive filters, a PID controller, two-dimensional signal processing, and ~e 
FFT algorithms. , 

Chapters 9 and 10 deal with the signals of a programmable DSP device re­
quired for interfacing it to the real world. Interfacing of memory and I/O to 
the DSP devices are discussed with examples. The system integration topics 
su~h as DMA andinterrtipts are also covered. Programming of a CODEC de­

, vice interfaced to the DSP on the DSK5416 is covered so as to enable the 
reader to use its AID and D!A converters for serial I/O. 

Chapter llpresents several applications of programmable DSP devices. The 
objective of _this chapter is to highlight the suitability of programmable DSP 
devices for varioUs application areas and motivate readers to design. systems 
around these devices. 

The chapters have many end-of-chapter assignment problems and labora­
tory exercises. The lab exercises require the use of MATLAB as an analysis! 
design tool and DSK5416 with Code Composer Studio as a 'hardware/software 
development tool. The programs in the book are available on the web site. 
The site also contains additional examples and projects and links to other re­
lated information. To access the site requires a password available from the 
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publisher. The programs in the book can be used in many applications with 
appropriate enhancements. The development tools are inexpensively avaihible 
,from TI. At the end of a course with this book as the text, the student should 
be comfortable in using both hardware and software for designing with pro­
grammable DSP devices. 

In conclusion, there is a gap between the algorithm-based DSP courses, 
generally. offered in most universities, and the implementation of these algo­
rithms using commercial devices and tools. The imple!TIentation area is be­
coming increasingly important as it leads to innovative applications for the 
marketplace. Seeing. the importance, many universities have attempted. 
courses in this area, generally without a textbook and mainly relying on the 
company literature. In our opinion, this book tills this gap between DSP 
theory and DSP desigl,1. . 

A book of this nature can only be developed with help from both academia 
and industry. Many of our. students at both of our institutions have been the 
source of motivation for this project and have contributed to its completion. 
Specifically, we would like to thank our students Ramandeep Kaul' Sahi, Ulhas 
Kotha, Uldarico Muico, and H. Larios of San Jose State University, and Ab­
hishek Tandon, Vineet Jain, Kaushik Raghunath, Gaurav Verma, and Surender 
Reddy of the Indian Institute of Technology, Madras. Secretarial assistance 
provided by S. Sreekala and the technical assistance by Narendra S. Sihra are 
gratefully acknowledged. Chris Petersen and Keith Ogboenyiya of Texas In­
struments are specially thanked for arranging a generous donation of the de­
velopment boards and the software, without which this'project could· not have 
been completed. . 

Avtar Singh, SJSU. 
S. Srinivasan, lIT, Madras 





Chapter 1 
Introduction 

1.1 A Digital Signal-Processing System 

Digital signal processing (or DSP) is the technique of performing mathemati­
cal operations on signals represented as sequences of samples. These sequences 
are obtained by' converting real-world analog signals by means of analog-to­
digital converters. After processing, the digital samples are converted back to 
analog signals by means of digital-to-analog converters. Although function­
ally digital signal processing is the heart of a DSP system, the analog front end 
and the analog back end are equally important, as the system has to be inter­
faced to the real-world signals, which are mostly analog.' Digital processing 
of signals offers many advantages over analog processing. Some of these are: 
immunity to environmental noise, predictable and reproducible behavior, 
programmability, size, and cost. Examples of digital signal-processing systems 
can be found in speech and audio systems, telecommunication applications 
such as modems, electronic and biomedical instrumentation, image process­
ing, robotics, control applications, etc. 

The block diagram of a typical DSP system is shown in Figure 1.1. It con­
sists of the DSP processor between the analog front end and the analog back 
end. The analog front end consists of an anti aliasing filter, a sample and hold 
circuit, and an analog-to-digital (AlI;» converter feeding into the DSP. The 
back end consists of a digital-to-analog (D/A) converter to convert the digital 
output to its analog value followed by a reconstruction filter. The antialiasing 
filter, an analog lowpass filter, is used to band limit the input analog signal to 
the required frequency range and prevent frequency components beyond this 
range from appearing as aliases in the sampled spectrum of the input signaL 
The sample and hold circuit presents the samples of the input signal at the 
rate determined by the system design requirements to the input of the analog­
to-digital converter. It also holds these samples at constant levels irrespective 
of the variations in the input signal in the interval between sampling instants. 
The analog~to-digital converter maps the value of the analog input sample to 
its equivalent digital representation and feeds it to the DSP. 

1 
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Analoe Front End 
Antialiasing Filter, Analog • Sample and Hold, Signal in 

AID Converter. 
I 

DSP 
Processor 

Analoll Back End 
D/A Converter, 

Reconstruction Filter. 
Analog 

Signal out 

Digital Digital 

Figure 1.1 The block diagram of a DSP system 

After processing, the digital outputs of the DSP are converted to their 
equivalent analog values by the digital-to-analog converter. These discrete 
analog values are converted 'to a SrilOOth, continuous waveformhy the recon­
struction filter at the output for use in the real world. Like the antialiasing 
filter, the reconstruction filter is also an analog lowp.ass filter. 

The following issues are important to be considered in designing and im­
plementing a DSP system. 

Complexity of the algorithm: The arithmetic operations to be performed 
and the precision required are decided by the application. 


Sample rate: The rate at which input samples are received and processed 

varies with the application, and this rate along with the algorithm com­

plexity determines whether a particular DSP is suitable for a given applica­

tion. 


Speed: This depends on the technology. To meet specified throughput 
requirement with a given sample rate, it must be possible to operate the 
DSP at a particular clock rate (or speed). If this speed is not achievable in a 
given technQlogy, a faste'r technology or other options must be explored. 

Data representation: The format and the number of bits used for data 
representation depend on the arithmetic precision and the dynamic range 
required for the given application. ' 

1.2 Programmable Digital Signal Processors 

Digital signal processors can be either application-specific or general purpose. 
Application-specific chips are designed to perform one function more accu­
rately, faster, or more cost-effectively th;in their general-purpose counterparts. 
Typical examples are digital filters and fast Fourier Transform chips. Some 
application-specific chips are programmable, but only within the confines 
of the chip'S function; the coefficients of a' filter, for example, can be pro­
grammed. ' 
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A programmable digital signal processor, on the other hand, is cost­
effective. It can be programmed for different applications and has a short 
design cycle time. Basically, it is a microprocessor whose architecture is opti­
mized to process sampled data at high rates [1]. It performs such operations 
as accumulating the sum of multiple products much faster than an ordinary 
microprocessor. Its architecture is designed to exploit the repetitive nature of 
signal processing by pipelining the data flow and by incorporating parallelism 
in its operation. These features are designed in the programmable DSP to 
achieve higher speed and throughput. 

For a given application, there isa large number of programmable DSPs to 
choose from, based on such factors as speed, throughput, arithmetic capa­
bility, precision, size, cost, and power. consumption. As the technology grows, 
there are m9re and more sud:: devices with better and better performance 
characteristics that are easily incorporated in DSP systems. 

1.3 	 Major Features of Programmable Digital Signal 
Processors 

Although there are many unique architectural features implemented in pro­
grammable DSP devices [3], following are the ones that are commonly found: 

Multiply-accumulate hardware: Multiply-accumulate is the most fre­
quently used operation in digital signal processing. In order to implement 
this efficiently, the DSP has a hardware multiplier, an accumulator with 
an adequate number of bits to hold the sum of products and an explicit 
multiply-accumulate instruction. 

Harvard architecture: In Harvard memory architecture, there are two 
memory spaces, typically partitioned as program memory and dat.a mem­
ory (though there are modified versions that allow some crossover between 
the two). l'he processor core connects to these memory spaces by two 
separate bus sets, allowing two simultanwus accesses to memory. This 
arrangement doubles the processor's memory bandwidth,. and is crucial in 
keeping the processor core fed with data and instructions. The Harvard 
architecture is sometimes further e;x:tended with additional memory spaces 
and/or bus sets to· achieve even highet memory bandwidths. 

Zero-overhead looping: One common characteristic of DSP algorithms 
is that most of the processing time is spent on executing instructions 
contained within relatively small loops. That is why most DSP processors 
include specialized hardware for zero-overhead looping. The term zero­
overhead looping means that the processor can execute loops without con­
suming cycles to test the value of the loop counter, perfo~m a conditional 
branch to the top of the loop, and decrement the loop counter. 
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Specialized addressing: DSP processors often support specialized address­
ing modes that are useful for common signal-processing operations and 
algorithms. Examples include modulo (circular) addressing. useful for 
implementing digital-filter delay lines, and bit-reversed addressing, useful 
for implementing a commonly used DSP algorithm called the Fast Fourier 
Transform or FFT. . 

1.4 The Scope of the Book 

Due to advances in VLSI technology, programmable DSP devices are becom­
ing increasingly available and affordable. These devices have, therefore, be­
come popular in the industry for the design of products. Consequendy. a large 
number of undergraduate senior projects and graduate projects are· planned 
and implemented using these devic;es [2]. This book attempts to bridge the 
gap between the knowledge of DSP theory and practical implementation of 
systems using DSP devices. . 

The scope of this book includes the following: 

1. 	 Architectural issues of programmable DSP devices arid their relationship 
to the algorithmic requirements 

2. 	Exposure to commerCially popular architectures 

3. 	Use of programmable devices for software development and system 
design 

These topics are covered using a popular family of DSP devices from Texas 
Instruments (TI), the TMS320C54xx DSP family. similar to the one shown in, 
Figure 1.2. The processGrs from this family have been used in many digital 
signal-processing implementations. The processors from oili,er companies, 
such as Analog Devices and Motorola, can equally be used to implement such 
systems. In this book. however, we limit our discussion to the TI processors. 

The book contains 11 chapters. Chapter 2 reviews the basic DSP concepts. 
Chapter 3 covers the accuracy in DSP implementations. It discusses the 

. sources of errors in DSP computations. Chapter 4 lists the architectural 
requirements of digital signal processors for efficient implementation of algo­
rithms. Chapter 5 introduces programmable DSP devices and gIves the archi­
tectural and programming details of the TMS320C54xx family of devices. 
Chaptet' 6 covers the software development tools for programmable DSP de­
vices. Chapters 7 and 8 deal with implementations of DSP algorithms on 
TMS320C54xx DSP processors. Chapters 9 and 10 discuss interfacing of DSP 
devices to external peripherals, both serial and parallel. Chapter 11 gives se· 
lected examples of applicatiQns of programmable DSP devioes. 
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Figure-1.2 	 TMS320C54x DSP Microprocessor 

(Courtesy of Texas Instruments Inc.) 
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Chapter 2 
Introduction- to Digital Signal Processing 

2. 1 Introdudion 

This chapter reviews the important basic concepts of digital signal processing 
(DSP). The coverage is brief and is from the viewpoint of implementations of 
DSP algorithms. The concepts are illustrated with examples using MATLAB's 
capability to analyze and design algorithms. For comprehensive coverage of 
DSP algorithms, the reader is advised to consult the references [1,2] at the end 
of this chapter. Specifically, the following topics are covered-in this chapter: 

A digital signal-processing system 

. The sampling process 

Discrete time sequences 

Discrete Fourier transform (DFT) and fast Fourier transform (FFT) 

Linear time-invariant-systems 

Digital filters 

Decimation and interpolation 

Analysis and design tool for DSP systems: MATLAB 

2.2 A Digital Signal-Processing System 

A digital signal~processing (DSP) system uses a computer or a digital pro~ 
cessor to process signals. The real-life signals are analog and therefore must 
be converted to digital signals before they can be processed with a computer. 
To convert a signal from analog to digital, an analog-to-digital (AID) con­
verter is used. After processing the signal digitally, it i.s usually converted to 
an analog signal using a device called a digital-to-analog (D/A) converter. The 
block diagram of Figure 2.1 shows the components of a DSP scheme. This 

6 
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Analog Analog
Antialiasing 


Filter 

Reconstruction 


Filter 

AID D/A 

Digital Digital 

Figure 2.1 A digital signal-processing sys~em 

figUre contains two' additional blocks, one is theantialiasing filter for filtering 
the signal before sampling and the second is the reconstruction filter placed 
after the D/A converter. The antialiasingfilter ensures that the signal to be 
sampled does not contain any frequency higher than half of the sampling fre­
quency. If such a filter is not used, the high-frequency contents sampled with 
an inadequate sampling rate generate low-frequency aliasing noise. We will 
discuss the choice of sampling frequency further in the next section. The re­
construction filter removes high-frequency noise due to the "staircase" output 
of the D/A converter. 

The signals that occur in a typical digital signal-processing scheme as 
shown in Figure 2.2· are: continuous-time or analog signal, sampled signal 
sampled-data signal, quantized or digital signal, and the DIA output signal. 

An analog signal is a continuous-time, continuous-amplitude signal that 
occurs in real systems. Such a signal is defined for anytime and can have any' 
amplitude within a given. range. The sampling process generates a sampled 
signal. A sampled signal value is held by a hold circuit to allow an AID con­
verter to change it to the corresponding digital or quantized signal. The signal 
at the AID converter· input is called a sampled-data signal and at the output 
is the digital signal. The processed digital signal, as obtained from the digital 
signal processor (DSP), is the input to the DIA converter. The analog output 
of a D/A converter' has "staircase" amplitude due to the conversion process 
used in such a device. The signal, as obtained from the D/A, can be passed 
through a reconstruction lowpass filter to remove its high-frequency contents 
and hence smoothen it. 

2.3 The Sampli'ng Process 

The process of converting an analog signal to a digital signal involves sam­
pling the signal, holding it for conversion, and converting it to the corre­
sponding digital value. The sampling frequency must be high enough so as 
to avoid aliasing. Aliasing is a phenomenon due to which a high-frequency 
signal when sampled using a low (inadequate) sampling rate becomes a low­
frequency signal that may interfere with the signal of interest. To avoid 
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(al O"~IO====~ 
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. Figure 2.2 Typical signals in a DSP scheme: (a) continuous-time signal, (b) sampl«;ld signal, 
(c) sampled-data signal, (d) quantized (digital) signal, (e) digital-to-analog 
converter ouput signal 

aliasing, the sampling theorem states that the following requIrement must be 
satisfied: 

Is = liT > 2fmax. (2.1) 

where 

Is is the sampling frequency in Hz, 

T is the sampling interval in seconds, and 

fmax is the highest frequenCy contents of the analog Signal 
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, For instance. if we sample a signal with its highest frequency content as 
10 KHz. it must be sampled using a sampling rate of more than 20 KHz. In 
order to satisfy this requirement. an antialiasing filter is used. This filter limits 
the frequency contents of the signal to satisfy the sampling theorem. One has 
to sacrifice (unimportant. one hopes) frequency contents to avoid violation of 
the sampling theorem. or else the sampling rate must be increased. The actual 
sampling frequency must be higher than this theoretical limit to avoid tight 

. constraints for the implementation of the antialiasing filter. 

2.4 Discrete Time Sequences 

The result of sampling an analog signal is a sequence representing the signal 
samples. The sequence that results depends upon the signal that is sampled. 
For instance. when 

x(t) = A cos 2nft 

is sampled using T as the sampling interval. it yields the samples as 

x(nT) = A cos 2nfnT,· where n O. 1.2•...• etc. 

For simplicity. the sequence x(nT) is denoted as x(n). Thus. 

x(n) A cos 2nfnT 

Since the sampling frequency Is = liT. and substituting efor 2nfT. we obtain 

x(n) A cos 2nfnT = A cos 2nfnlls = A cos en 

The quantity. denoted bye. is called the digital frequency. Note that the units 
for the digital frequency are radians. The general equation that relates the 
digital frequency to analog frequet:Jq is 

e = 2nfT 2nflls (2.2) 

Note that the digital frequency range. for a properly sampled signal (Is > 
2fmax) as obtained from Eq. 2.2, is :rom 0 to n. 

The above x(n) .sequenc~ called the sinusoidal sequence. occurs frequently 
in DSP systems. Another important sequence that arises in DSP schemes is the 
complex exponential sequence given by 

j2nnIN 1 0 1 " tp()n e , n= ... -" ...., ... ,ec. 

where N is an integer. 
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A sequence that repeats is called a periodic sequence. Periodic sequences 
result from sampling periodic signals and satisfy the following relation: 

x(n) = x(n +N), n = ... 1, 0, 1,2, ••. (2.3) 

where N is called the sequence period. It is easy to .show that the sinusoidal 
sequence x(n) above has a period /sIf, and the exponential sequence p(n) has 
a period equal to N samples. 

The frequency response associated with a time domain N-point sequence 
x(n) can be determined from 

_ N-l 

X(e jo ) = -2: x(n)e-jnO (2.41 
n=O 

where f) is the digital frequency, which ranges from °to 211: radians corre­
sponding to the analog frequency from °to Is Hz. Note- that the frequency 
response is a complex continuous function of f) and provides both the mag­
nitude response and the phase response. 

2.5 	 Discrete Fourier Transform (OFT) and Fast Fourier 
Transform -(FFT) 

The discrete Fourier transform, or DFT, is used to transform a time domain 
x(n) sequence to a frequency domain X(k) sequence. To transform X(k) to 
x(n), the inverse discrete Fourier transform, or IDFT, is used. Algorithms for 
fast computation of DFT and IDFT' are known as FFT algorithms. 

2.5.1 	 The OFT Pair 

The two equations that relate the time domain x(n) and the frequency domain 
• X(k) sequences are called the DFT pair.and are given as 

N-l 

X(k) = 2: x(n)e-j2ttnklN, k = 0, 1, 2, ... (N 1) (2.5) 

n=O 

N-l 

x(n) ;=: liN 2:X(k)ej21tnkIN, n = 0,1,2, ... (N - 1) (2.6) 
k=o 

The first equation is called the DFT and the second is called the IDFT. The N 
in the DFT pair denotes the number of elements in the x(n) or X(k) sequence. 
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2.5.2 The Relationship between OFT and Frequency Response 

The frequency response of a sequence (Eq. 2.4) and its DFT (Eq. 2.5) are 
related as follows: 

X(k) = X(ejil)ll1=2nklN' k = 0, 1, 2•... (N - 1) (2.1) 

The elements of X(k) as· obtained from this equation are spaced at a digital 
frequency of 2nlN radian. The equation allows us to use DFT to compute 
points on the frequency response of the x(n) sequence. The corresponding 
analog frequency spacing At. between elements· of the X(k) sequence. using 
Eq. 2.2. can be shown to be 

At = IsIN 1INT = 1ITo (2.8) 

where To is called the signal record length. From the above relation, it is easy 
to conclude that the larger the signal record, the smaller (or better) is the fre­
quency spacing. 

The significance of this result lies in the fact that it descnbes th~ trade­
off between the sampling rate (Is), number of sequence points (N), and the 
frequency spacmg (At). To decrease the frequency spacing, N 'can be in­
creased by simply appending· zeros to the x(n) sequence before computing 
X(k). 

2.5.3 The· Fast Fourier Tra!1sform (FFT) 

The direct computation of DFT and 10FT requires a large number of complex 
multiplies. A number of algorithms have been developed to efficiently com­
pute DFT and 10FT. These algorithms use power of 2 points and exploit the 
periodic nature of the complex exponential ej211nklN occurring in the DFT and 
10FT equatioQs. Table 2.1 compares the complex multiplies needed to com­
pute DFT directly by using an FFT algorithm called the radix-2algorithm. 
The radix-2 algorithm uses Nthat is an integer power of 2, such as 2, 4, 8, Ie). 
etc. 

It is possible to show that the DFT requires N 2 complex multiplies and the 

radix-2 FFT algorithm requires N log2 N. This produces computational sav­
ings for larger values of N. 2 

An application of FFT can be to use it to compute signal power spectral 
density (PSD) or simply the signal spectrum. The FFT result X(k) can be used 
to compute the spectrum as follows: 

S(k) (lfN)IX(k)1 2 = (l/N)X(k)X*(k), k = O. 1.2•... N ~ 1 (2.9) 

The plot of S(k) provides power density associated with various frequencies 
and is used to characterize the signal in the frequency domain. 
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Table 2.1 Complex Multiplies for Direct OFT and FFT-based OFT Computations 

Direct OFT FFT Based OFT Multiplies/FFT . 
N Computation Computation Multiplies 

2 4 4.0 

4 16 4 4.0 

16 256 32 8.0 

64 4096 192 21.3 

256 65536 1024 64.0 

512 5122 512/2 log2 512 2 x 512 -:- log2 512 

2.6 Linear Time-Invariant Systems 

To represent the input/output relation of a discrete system, the block diagram 
of Figure 2.3 can be used. A system to which the superposition theorem can be 
applied is known as a linear system. A system that is described by the same 
input/output relation at all times is called a time-invariant system. A system 
that is both a linear as well as time-invariant is called linear time-invariant, or 
Ll1, system. 

The LTI systems can be represented in the time domain using linear con­
stant coefficient difference equations. A unit sample (or impulse) response is 
used to characterize an LTl system. Time domain convolution can be used to 
determine the response·of an LTI system. 

In the frequency domain, the system transfer function is used to represent 
such a system. We now briefly discuss these concepts. 

x(n) y(n) 
LTlSystem 

Figure 2.3 Representation of a linear time-invariant system 
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.2.6.1 Convolution . 

Convolution is an operation that relates the input/output of an LTI system to 
its unit sample response. It is given by the equation 

OCJ OCJ 

y(n) = L h(n)x(n - m) = L: x(n)h(n - m) = h(n) *x(n) (2.10) 
m=-OCJ m=-:>:) 

where x(n) represents the input, y(n) the output, and. h(n) the unit sample 
response of the system. The * in Eq. 2.10 is used to represent the convolution 
operation. This result can be derived using the impulse response definition as 
applied to the sampled x(n) sequence. This equatiQn is used to compute the 
time-domain response of a system.to an arbitrary input sequence. 

2.6.2 Z-Transform 

We have seen in Section 2.4 that the frequency response associated with the N­
point sequence x(n) is given as 

N-l 

X(ejD) =.Lx(n)e-jnll (2.11) 
n=O 

Using the substitution 

z = ejD (2.12) 

in the above equation yields 

N-l 

X(z) = L x(n)z-n (2.13) 
n=O 

where, X(z) is called the Z-transform of x(n). Since the parameter z is re­
lated to the digital frequency, X(z) represents the frequency response in terms 
ofz. 

2.6.3 The System Function 

The ratio of Z-transform of y(n) to that of x(n) 

H(z) = Y(z)/X(z) (2.14) 

http:system.to
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x(n-l)x(n) 

Unit 

Delay 


os(a) 0.5----1lo{ 

y(n) 

Figure 2.5 FIR filter in Example 2.1: (a) block diagram, (b) magnitude frequency response, 
(c) phase frequency response 

> Example 2.1 A FIR Filter 

The equation 
y(n) O.5x(n) +O.5x(n 1) 

descn"bes a simple FIR filter whose output is the average of the current input 
x(n) and the past input x(n ­ 1). 
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The unit sample response of this filter is obtained by substituting o(n) for 
x(n). Thus, we have 

. hen) 0.5t5(n) + O.5o(n 1) 

= [0.5 0.5] as a sequence. 

The frequency response, using Eq. 2.17, is obtained as 

H(e itl ) = j1J120.5 + O.5e-jlJ = e- cos 012 

or 


H(z) 0.5 + .5z-1 


The magnitude response is given as 


IH(ejlJ)I = M(O)= cos 012 


and the phase response is given as 

LH(eJtI ) = P(O) = -()/2 + Leos 0/2 

The group delay, which represents the delay to various signal frequencies, can 
be obtained by differentiating and negating the phase response function. For 
this example case it is obtained as 

Group delay = ! 
Figure 2.5 describes this filter with its magnitude and phase responses. Im­
plementing this filter requires a unit delay, two multiplies, and an addition. 

2.7.2 Infinite Impulse Response (IIR) Filters 

The general difference Eq. 2.15 for an LTI system defines an infinite impulse 
response (IIR) filter. The corresponding transfer function for this filter can be 
shown to be 

bo + b}Z-l +bzz-z + b.3Z-3 + ... + bLz-L 
H ()z = . N (2.19)

1 - alz-1 azz-z a3z-3 - .. . aNz-

Since an IIR filter has feedback in its structure, its staoility depends upon 
the number and values of coefficients. In general, an IIR filter has nonlinear 
phase response and does not provide constant group delay. This property 
makes this filter Unsuitable for applications that cannot tolerate phase distor­
tiOI,l. The advantage of an IIR filter is its smaller number of coefficients to re­
alize a desired frequency response relative to an FIR filter. Fewer coefficients 
require shorter computation time, providing capability to handle a larger 
bandwidth for a signal-processing scheme. 
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C>. Example2.2 An IIR Filter 

0.1 

~(n) y(n) 

(a) 

Unit 
y(n-l) LEelay 

Magnitude Respon.se 
~ 1 

0.8 

0.6 
(b) 

0.4­

0.2 

0 
0 0.5 1 1.5 2 2.5 3 3.5 

Phase Response 
0 

(c) -0.5 

-1 

-1.5 
0 	 0:5 1.5 2 2.5 3 3.5 

Radians 

Figure 2.6 The IIR filter in Example 2.2: (a) block diagram, (b) magnitude frequency response, 
(c) phase frequency response 

The difference equation 
y(n) = 0.9y(n - 1) + O.lx(n) 

http:Respon.se
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defines an IIR filter whose output is computed by taking 90% of past output 
y(n - 1) and 10% of the. current input x(n). 

The transfer function of this filter is obtained as . . 

0.1 O.lz 
H(z) = (1 - 0~9Z-1) = (z - 0.9) 

or 

jO _ O.le'°0 


H(e ) - (ejO _ 0.9) 


Figure 2.6 describes this filter and its magnitude and phase frequency re­
sponses. The magnitude and phase frequency responses can be computed by 
substituting values for the digital frequency () in the equation above and find­
.ing the absolute value for the magnitude and angle for the phase. To imple­
ment this filter requires a unit delay, two multiplies, and an addition. 

2.7.3 FIR Filter Design 

We have seen that a FIR filter's frequency response can be obtained from Eq. 
2.17. Solving the equation forbk for a desired frequency response H(e jo) yields 
the design equation for the FIR filter. The solution involves integration and is 
given as . 

bk = 1/211: [H(ejO)e-jkO d(} (2.20) 

where k is an integer from-oo to +00. An algebraic closed-form solution of 
the above equation may not be possible for an. arbitrary frequency function 
H(ejo).In such a case, a computer-based solution can be obtained. 

The impulse response bk as obtained by solving the above equation may 
be extremely lor.g and may have to be truncated. The truncation results in a 
distortion called Gibb's phenomenon that introduces ripple in the passband 
of a filter's frequency response. To control the Gibb's phenomenon, special 
truncation windows are used. These windows, in general, provide smooth 
truncation to control the ripple in the passband of the filter. Window:-based 
FIR filter design methods are covered in many DSP books, including the ref­
erences at the end of this chapter. 

Parks-McClellan FIR Filter Design 

This is a computer method for the design of FIR filters. It is based on the 
Remez exchange algorithm and Chebyshev approximation theory and involves 
minimization of the maximum error between the actual an<lthe desired 

http:H(ejo).In
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frequency responses. It allows arbitrary frequency response specification and 
designs an equiripple FIR filte~. This technique has been implemented in 
many filter· design packages and isavailal:)le ill the MATLAB program. The 
technique will be used to design FIR filters for the examples in this book. 

2.7.4 IIR Filter Design 

Two approaches are used to design IIR filters. One is based on analog filter 
design technique~ and the other. called direct design. is based on a least­
squares fit to achieve the desired frequency response. 

IIR Filter Design Based on Analog Filter Design Techniques 

Digital IIR filters are designed using techniques that are based on analog filter 
design methods such as Butterworth filter design •. Chebyshev! filter design. 
Chebyshev2 filter design, and elliptic filter design. These methods are covered 
in many DSP books, including the references at the end of this chapter. 

The approach consists of designing an analog filter to satisfy. the filter 
specifications and then converting it to the equivalent digital filter using an 
appropriate transformation. The filter specifications consist of: passband rip~. 
pIe (dB). stopband attenuation (dB). and the transition width (ws - wp). For a 
lowpass filter the specifications are illustrated in Figure 2.7. These design 
methods· are available in the MATLAB program and are used for examples in 
this book. 

Magnitude 

(dB) 


Passband 
Ripple 

Stopband 
Attenuation 

FrequencyTransition 
Width 

Figure 2.7 Lowpass filter design specifications 
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I> Example 2.4 The Interpolation Proc;ess 

Let x(n) = ro 3 6 9 12] be interpolated using L =:'; ~. After inserting zeros to 
increase the sampling rate, we get . 

w(m) = [0 0 0 3 0 0 6 0 0 9 0 0 12] 

Using the lowpass filter given by .bk [1/3 2/3 1 2/3 1/3J, we get the inter­
polated sequence as 

y(m) = [0 1 2 3 4 5 6 7 g 9 lO II 12J 

This is an example of linear interpolation, as the filter used computes linearly 
the interpolated samples from the original samples. 

2.9 Analysis and Design Tool for DSP Systems: 
MATLAB 

A tool for DSP analysis and design must provide functions for carrying out 
the following basic operations: 

1. Signal data generation and presentation 

2. Convolution 

3. Frequency response 

4. Discrete Fourier transform (DFT) 

5. Filtering 

6. Spectrum estimation 

7. FIR filter design, and 

8. IIR filter design 

MATLAB [3,4J is a program that provides the above functions to process 
signals in addition to many more. The program is\ based on manipulation of . 
data represented as vectors. The data can be one-dimensional, such as speech, 
or two-dimensional, such as an image. 

Signal data input to MATLAB is by way of data files or direct keyboard 
entries for matrix elements. For signal processing, program files incorporating 
the DSP functions can be used. These files are called M-files. MATLABalso 
provides the capability to use command mode execution. In the command 
mode, the comma1lds can be entered directly to process signals. 

MATLAB provides an e:nensive list of commands or statements usable 
for signal-pr9cessing analysis and design. The signals can be presented and 
viewed using its extensive data presentation capability, including various types 
of plots. 
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MATLAB is supported with Help and Demo facilities that can be used 
to learn the program. It also provides an editor to create program and data 
files. This is the program we use in this book todf;sign and analyze the DSP 
algorithms . 

.2. 1 0 Digital Signal Processing Using .MATLAB 

In this section, we present MATLAB examples. to illustrate the. basic digital 
signal-processing operations covered in this chapter. Each program is fol­
lowed by the results it produces when executed. The reader is advised to be­
come familiar with the commands used in the following programs by using 
MATLAB's extensive Help and Demo facility. . I 

C> Example 2.5 	 Convolution of Two Sequences [Figure 2.10] 

%Convolution of sequence x and sequence h to generate sequence y 
x [1 2 3 4]; 
h [3 2 1]; 
y conv(x 

y= 
3 8 14.20 11 4 

Figure 2.10 Result of convolution of sequence [1 2 3 4J and sequence [3 2 1] 

C> Example 2.6 Frequency Response of an FIR Filter [Figure 2.11] 

% Frequency response of a digital differentiator (FIR Filter): 
%yen) = x(n) - x(n - I} 

% Filter definition 
b :: [1 
a 1; 

% Frequency res.ponse computation 
[h,th] freqz(b,a,32): 

% Frequency response plot. 
clf 
figure(l} 
subplot(211), plot(th,abs(h», title('Magnitude Response'), 
subplot(212), plot(th,angle(h»,title('Phase Response'), 
xlabel('Radians'} 
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Magnitude Response 
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Figure 2.,11 Frequency response of the FIR filter, y(ri) =x(n) ­ x(n ­ 1) 

I> Example 2.7 Spectrum of a Noisy.Sinusoidal Sequence [Figure 2.12] 

%Generate a 5 Hz signal of 1 sec duration sampled at 100 Hz. 
t=O:.Ol:l; 
x =sin(2*pi*5*t); 
elf 
figure(!) 
plot(t,x), title('Original Signal'), xlabel('Time in sec.') 

%Add random noise with a standard deviation of 1 to produce a noisy. 
%signal y 
y =X.+ 1*randn(I,101); 
figure(2) 
plot(t,y), title('Noisy Signal'), xlabel(ITime in sec. l 

) 

%Compute the DFT and power spectral density of the noisy signal y 
using 128· poi nt FFT 
Y= fft (y,128); 
Pyy = Y. *conj(Y) /128; 
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Figure 2.12 Power spectral density of a noisy sinusoidal signal: (a) original sinusoidal signal, 
noisy sinusoidal signal, (c) power spectral density of the noisy sinusoidal signal 

(continued) 



2.10 Digital Signal Processing Using MATLAB 27 
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Figure 2.12 Continued 

% Change the horizontal axis to represent analo~ frequency in the 

frequency response plot 

f = 100/128*(0:63); 

figure(3) . 

plot(f,Pyy(l:64)), titl e(' Power Spectral Density'), 

xlabel('Frequency (Hz) ') 


t> Example 2.8 FIR Filter Analysis [Figure 2.13]. 

9<• e 2.8: FIR Filter 

% Filter definition (a 5-point averager) 

b = [.2 .2 .2 .2 .2]; , 

a = [1. .0 .0 .0 .0]; 


% Frequency re~ponse.calculations and plot~ 

[h,th] = freqz(b,a,32); . 
. figure(1) 

plot(th,abs(h)), title('Magnitud~ Response'), xlabel ('Radians'); 

s 
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Figure 2.13 Analysis of a FIR filter: (a) magnitude response, (b) dB magnitude response, 
phase and group delay responses, (d) impulse response, (e) pole-zero 

(continued) 
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Figure 2.13 Continued 
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Figure 2.13 Continued 

figure(2) 

plot(th,20*loglO(abs(h»), xlabel('Radians'), title('dB Magnitude 

Response'); 

figure(3) 

subplot(211). plot(th, angle(h», title('Phase Response') 

subplot(212), plot(th. grpdelay(b,a.32», xlabel('Radians'),· 

title( 'Groupdel ay Response'); 


% Impulse response calculations and plot 

x = [I zeros(1.31)]; 

y = filter(b,a,x)i 

figure(4) 

stem(y), title('Impulse Response'), xlabel ('Seconds'); 


% Pole-Zero Plot 

[z,p,k] = tf2zp(b,a); 

figure(5) 

zplane(z,p) 


http:zeros(1.31
http:grpdelay(b,a.32


2.10 Digital Signal Processing Using MATLAB 31 

l> Example 2.9 IIR Filter Analysis [Figure 2.14] 

% Example 2.9: IIR Filter Analysis [Figure 2.14] 

% Filler definition 

b = [.0013 .0064 .0128 .0128 .0064 .0013]; 

a = [1.0 -2.9754 3.8060 -2.5453 0.8811 -0.1254]; 


% Frequency response 

[h,th] =.freqz(b,a,128); 

elf 

figure(1) 

plot(th,abs(h», title('Magnitude Response'}, xlabel ('Radians') 

figure(2) 

subplot{211}, plot(th,angle(h}), title('Phase Response'), 

ylabel('Radians'); 

subplot(212). plot(th,grpdelay(b,a,128», title('Groupdelay . 

Response'), xlabel ('Radians'), ylabel('Seconds'}; 
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Figure 2.14 Analysis of an IIR filter: (a) magnitude response, (b) phase and group delay 
responses, (c) impulse response, (d) pole-zero plot . . (continued) 
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Figure 2.14 Continued 
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Figure 2.14 Continued 

% Impulse Response 

x = [i zeros(1,127)]; 

y = filter(b,a,x); 

figure(3) 

stem(y), title('Impulse Response'), xlabel('n') 


% Pole-Zero Plot 
[z,p,k] = tf2zp(b,a); 
figure(4) 
zplane(z,p) 

l> Example 2.10' Butterworth Lowpass IIR Filter Design [Figure 2.15} 

% Filter specifications 
N = 5; % Filter order 
fs = 200; % Sampling frequency 
fc = 30; % Cut~off frequency 

.. 
% Filter design 
[b,a] = butter(N. 2+fc/fs) 
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b= 
0.0069 0.0347 0.0693 0.0693 0.0347 0.0069 

a= 
1.0000 -1.9759 2.0135 -1.1026 0.3276 -0.0407 

(a) 

Magnitude Response 
1.4 r, ---,----.----.----~--~--~----~---.----~--, 

1.2 

0.8 

0.6 

0.4 

0.2 

OJ 	 I~ 

o 	 10 20 30 40 50 60 70 80 90 
Hz 

(b) 

Figure 2.15 	 Lowpass IIR filter design using the Butterworth technique: (a) designed filter 
coefficients, (b) designed filter magnitude response, (c) designed filter phase and 
group delay responses . (continued) 

%Designed filter frequency response 

[h.th] = freqz{b,a~128); 


f = (th/pi)*(fs/2); 

clf 

figure(1) 

plot(f ,abs(h», title( 'Magnitude Response' ),xlabel ('Hz') 

figure(2) 

subplot(211), plot(f,angle(h», title('Phase Response'), 

yl abel (' Hertz') 




2.10 Digital Signal Processing Using MATLAB 35 

4 
Phase Response 
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Groupdelay Response 
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~ 4 

'" 2 

0 
0 10 20 30 40 50 60 70 80 90 . 100 

Hz 

(c) 

Figl.,lJe 2.15 Continued 

subplot(212), plot (f ,grpde 1ay(b,a.128)}. titl e(' Groupdelay 
Response'), xlabel('Hz'). ylabel('Seconds') 

!> Example 2.11 Yulewalk IIR Filter Design [Figure 2.16] 

% Filter specifications (Bandpass filter) 
f = [0 .1 .2.3 .4 .6 .7 .8 .9 1]; 
m = [0 0 1 1 1 1 0 0 0 0]; 

% Fil ter des ign 

N= 10; % Filter order 

[b,a] =yulewalk(N,f,m) 


%Designed filter frequency response 
[h,th] = freqz(b,a,128); 

% Specifled(sol id curve) and designed(x curve)filter frequ~ncy 
responses comparison 
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b= 
Columns 1 through 7 

0.1467 0.1368 -0.1699 -0.3064 0.0072 0.2344 0.0883 
Columns 8 through 11 

-0.1106 -0.0771 0.0366 0.0664 

a= 
Columns 1 through 7 

1.0000 -0.9551 1.2125 -1.5030 1.6430 -0.9850 0.8491 
Columns 8 through 11 

-0.5510 0.2769 -0.0668 0.0462 

(a) 

Specified (solid curve) VS. Designed (x curve) Filter Frequency Response 
1.4 

1 

0.1 

I I, ,----­

1.2 

0.8 

0.6 

0.4 

0.2 

0.3. 0.4 0.5 0.8 0.9 
NormalIzed frequency, fs /2=.1 

(b) 

Figure 2.16 Bandpass IIR filter design using the Yulewalk technique: (a) designed filter, 
(b) designed vs. specified filter magnitude response 

fi gure(I) 

plot(f,m.th/pi .abs(h). 'x'). title('Specified (solid curve) vs 

Designed (x curve)Filter Frequency Response'). xlabel('Normalized 

frequency. fs/2 = I'} 
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I> Example 2.12 	 Parks-McClellen FIR Filter Design [Figure 2.17] 

% Filter specifications 
f = [0 .1 .2 .3 .4.6 .7 .8 .9 1J; 
m = [0 0 1 1 1 1 0 0 0 OJ; 

% Filter design. 

N = 20;% Filter order; 

b = remez(N.f.m) 


b= 
Columns 1 through 7 

0.0520 0.0101 -0.0001 0.0398 -0.0339 -0.0822 0.0000· 
Columns 8 through 14 

-0.1181 -0.2571 0.1348 0.5000 0.1348 -0.2571 -0.1181 
Columns 15 through 21 

0.0000 -0.0822 -0.0339 0.0398 -0.0001 0..0101 0.0520 

(a) 

Specified (solid curve) VS. Designed (x curve) Filter 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

Normalized Frequency, fs I 2 =·1 

(b) 

Figure 2.17 Filter design using theParks-McCulien technique: (a) designed filter, 
designed vs. specified filter magnitude response 
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% Frequency response 

[h,th] =freqz(b,1,128); 


% Speci fi ed vs des igned frequency· response 

figure(l) 

plot(f.m.th/pi,abs(h),'x') 

title('Specified (solid curve) vs Designed (x curve) Filter'), 

xlabel 'Normalized Frequency, fs/2 = l' 


.2.11 Summary 

This chapter is a brief review of digital signal-processing fundamentals. The 
basic DSP concepts· are discussed from the implementation point of view. The 
topics that are covered consist of: a digital signal-processing system, sam­
pling process and the sampling theorem, digital' signal sequences, DFT and 
FFT, linear time-invariant systems, the convolution theorem, digital filters, 
FIR and IIR filters, and filter design techniques. Thus most of the basic tech­
niques of DSP analysis and design have been introduced. The techniques are 
illustrated with MATLAB examples. 
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Assignments 

2.1 	 A signal whose spectrum' is shown in Figure P2.1 is to be sampled so that no 
aliasing results. Determine the minimum sampling rate that can be used to 

. sample the signal. If the' sampling rate must be 8 KHz, determine the type and 
the cutoff frequency of the antialiasing filter. 

www.mathworks.comlproductsleducationl
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Magnitude, dB 

o 

-100 

o 5 Frequency, 
KHz 

Figure P2.1 Magnitude spectrum for the signal in Problem 2.1 

2.2 	 Redraw the frequency spectrum for the signal in 2.1 using the digital fre­
quency as the horizontal axis. Let the sampling frequency be 8 KHz. Deter­
mine the analog frequencies for the digital frequencies 0, nl4, n/2, 3n14, and n 
radian. 

2.3 	 Determine the periods for the periodic sequences: (a) e-jnnI8, (bj e-jn3n/8. 

2.4 	 The signal in 2.1 is filtered and sampled using the sampling rate of 8 KHz. If 
512 samples of this signal are used to compute the Fourier transform X(k), 
determine the frequency spacing between adjacent X(k) elements. What is the 
analog frequency corresponding to k = 64, 128, and 200. Repeat this problem 
using 1024 samples and an 8 KHz sampling rate. 

2.5 	 Assuming X(k) as a complex sequence, determine the number of complex and 
real multiplies for computing IDFT using direct and radix-2 FFT algorithms. 

2.6 	 For the FIR filter 

y(n) (x(n) + x(n - 1) + x(n - 2»/3 

determine the (a) system function, (b) magnitude response fun~tiDn, (c) phase 
response function, (d) impulse response, (e) step response, and (f) poles. and 
zeros. 

2.7 	 For the IIR filter 

H(z) (z - 1) 
(z - 0.25){z - 0.5) 

determine the (a) magnitude response function, (b) phase response function, 
(c) impulse response, (d) step response, and (e) poles and zeros. 

2.8 	 Determine the lowpass filter cutoff frequency that must be used to decimate to 
reduce the sampling rate from 8 KHz to 4 KHz. 
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2.9 	 The signal sequence x(n) = [0 2 46 8] is interpolated using the interpola­
tion filter sequence bk [.5 1 .5] and the interpolation factor is 2. Determine 
the interpolated sequence y(m). 

La~oratory Assignment 

Use the MATLAB program to do the following laboratory- assignments: 

L2.1 Generate and plot each of the following sequences: 

a. 	x(n) [3 2 -2 °7], n = 0, 1, 2, 3, 4 

b. a ramp of length 64 with minimum value °and maximum value 1 

c. 	 a triangular. waveform of length 64, period 16, minimum value 0, and 
maximum value 1 . 

d. x(n) = 1.5 sin(nnllO + nI4), n = 0, 1, ... ,63. 

L2.2 Generate x(n) = 2 sin(O.lnn + 0.1) + w(n), n = 0, 1, ... , 255, where w(n) is 
Gaussian noise with zero mean and unit variance. 

L2.3 Given the sequences 

xm(n) = sin 2nn1100, n = 0, 1, ... , 255 

and 

xc(n) = sin 2nn11O, n = 0, 1, ... , 255 


use the given sequences to generate the following sequences: 

a. 	xam(n) = [1 + .7xm(n)]xc(n), n = 0, 1, ~ .. , 255 

b. xsc(n) = xm(n)xc(n), n = 0, 1; ... , 255 

L2.4 For the 12-point sequence 

x(n) = 1, n = 0, 1, ... , 5 


= 0, n = 6, 1, ... , 11 


use 64-point FFT to compute the following sequences: 


a. 	 IX(k)l, k = 0, 1, ... , 63 

b. 	LX(k), k 0, 1, ... , 63 

c. 	 Real(X(k», k = 0, 1, .. ;, 63 

d. Imag(X(k», k = 0, 1, ... , 63 

Also plot·all the above sequences. Determine the frequency resolution of the 
FFT. How can the resolution be improyed and at what cost? 

L2.S Given the sequences 

xl(n) = [3 4.2 11 °7 -1 °2], n = 0, ... , 7 

x2(n) = [1.2 3 ° -.52], n = 0, ... ,4 
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compute and plot the sequence x1(n) *x2(n). Determine the length o.f the 
computed sequence. 

L2.6 	 For the sequence in Problem 12.5, find the sequences, Xl(k) and X2(k) using 
8-point FFT. Next, multiply the two sequences· to generate the sequence 
Y(k) = Xl(k).X2(k). Now use 8-point IFFT to comput~ yen). Repeat using 16­
point FFT and IFFT. Compare these results to the one obtained in Problem 
12.5 and explain any discrepancy in the two approaches. 

l2.7 	 Find and plot the (a) impulse, (b) unit step, (c) magnitude, (d) phase, and (e) 
group delay responses for the system with transfer function 

H(z) (z -1) 
(z - 0.25)(z - 0.5) 

L2.S 	 Given a three-tap averaging filter 

yen) 	 "[(x(n) +x(n 1) + x(n - 2)]/3 

obtain and plot the (a) magnitude, (b) dB magnitude, (c) phase, and (d) group 
delay· frequency response fo.r the filter. Comment on the lowpass filtering 
nature ofthe filter. . 

L2.9 	 Repeat Problem L2.8 for the filter 

. yen) = [-3x(n) + 12x(n - 1) + 17x(ri 2) + 12x(n -3) - 3x(n 4)]/35 

L2.10 	 Design a 31-tap bandpass FIR filter with cutoff frequencies oE2S and 75 Hz 
and sampling frequency of 200 Hz. Calculate the passband ripple and the 
stopband attenuation for the designed filter. 

Use this filter to filferthe noisy signal 

. x(t) = 2 sin(lOOnt) + wet) 

where wet) is a uniformly distributed noise with amplitl,lde range from -.2S to 
+.25. Evaluate the performance using FFT. . 

L2.11 	 For the filter of Problem L2.1O, determine the transition widths, when gain 
drops from 90% to 10%, around the cutoff frequencies. How will you reduce 
the transition to obtain a sharper response? Demonstrate with an example. 

L2.12 	 Design a second-order Bptterworth IIR lowpass· filter with a cutoff frequency 
of 50 Hz for a signal sampled at 250 Hz. Determine its dc gain, poles, and 
zeros. 

L2.13 Design an elliptic IIR lowpass filter with cutoff frequency of 50 Hz for a signal 
. sampled at 250 Hz. The filter order should be such that the passband ripple is 
less than .2 dB and the stopband attenu~tion is more than 20 dB. 



<;:hapter 3 " 
Computational Accuracy in DSP 
Imple"mentations 

3. 1 Introduction 


In this chapter, we shall study the issues related to. computational accuracy of 
algorithms when implemented using programmable digital signal processors. 
We shall first study the various formats of number representation and their 
effect on the dynamic range and precision of signals represented using these 
formats. We shall also study the various sources of errors in the implementa­
tion cif DSP algorithms and how to control these errors while designing DSP 
systems. Specifically, we discuss the following topics in this chapter: 

Number formats for signals and coefficients in DSP systems 

Dynamic range and precision 

So~ces of error in DSP implementations 

AID conversion errors 

DSP computational errors 

D/A conversion errors 

3.2 .Number Formats for Signals and Coefficients in 
DSP Systems 

In a digital signal processor, as in any other digital system, signals are repre­
sented as. numbers right from the input, through different stages ofprooess­
ing, to the output. The DSP structures, such as filters, also require numbers to 
specify coefficients [1]. There are various ways of representing these numbers 
[4], depending on the range and precision of signals and coefficients to be 
represented, hardware complexity, and speed requirements. In this section, we 
look at the typical formats used for numbers to represent signals and co­
efficients in DSP systems. " 

42 
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3.2.1 Fixed-Point Format 

The simplest scheme of number representation is the format in which the 
number is represented as an integer or fraction using a fixed number of bits. 
An n-bit fixed-point signed in~eger shown in Figure 3.I(a) specifies the value x 
given as· 

x = _s,2 ft - 1 + bn_ 2.2 n- 2 + bn_ 3,2n- 3 + .. , + b1.2 1 + bo.2° (3.1)
• 

where s represents the sign of the number:s = 0 for positive numbers and 
s = -1 for negative numbers. The range of signed integer values that can be 

1represented with this format is _2 n- 1 to +(2n- - 1),· 
Similarly. a fraction can also be represented using a fixed nUmber of bits 

with an implied binary point after the most significant sign bit. An n-bit fixed­
point signed fraction representation shown in Figure 3.1(b) specifies the value 
given as 

20 b 2-1 + b 2-2 . + b 2-(n-2) + b 2·-(n-l). x -so + -1' -2· + .. , -(n-2)' -(n-l). (3.2) 

. The range of signed fractions that can be represented with this format is -I to 
_ 2-(n-I». 

n-ln-2 210 

I ~ lb.] Ib21 bll bol 
\ 

Implied 
binary 
point 

(a) 

Figure 3.1(a) Fixed-point format to represent signed integers 

n-l n-2 2 1 o 

Isib_I I Ib_('_3)lb_('~2)lb_(·_')1
7' . 

Implied 

binary point 


(b) 

Figure 3.1(b) Fixed-point format to represent signed fractions 
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I> Example 3.1 What is the range of numbers that can be represented in a fixed-point for­
mat using 16 bits if the numbers are treated as (a) signed integers, (b) signed 
fractions? 

Solution a. Using 16 'bits, the range of integers that can be represented is determined 
by substituting n' 16 i.rr Eq. 3.1 and is given as 

_2 15 to +215 - 1 

i.e., -92,768 to +32;767. 

b. The range of fractions, al!deterIl1ined from Eq. 3.2 using n = 16, is given as 

-1 to +(1- T 15 ) 

i.e., ..,.1 to +.999969482. 

In DSP implementations, multiplication of integers produces numbers that 
may require more bits to represent, and in the event of a fixed number of 
available bits, it may create wraparound. The wraparound generates the most 
negative number after the most positive number, and vice versa. The prob­
lem can be tackled by using fractional representation. When, two fractions are 
multiplied, the result is still a fraction. The resulting fraction may use the same 
number of bits as the original fractions by discarding the less significant bits. 

3.2.2 Double-Precision Fixed-Point Format 

To increase the range of numbers that can be represented ih fixed-point 
format, one obvious approach is to increase its size. If the size is doubled, 
the range of numbers increases substantially. Simply doubling the size and 
still using the fixed-point format creates what is known as the double-precision 
fixed-point format. However, one should remember that such a format re­
quires double the storage for the same data and may need double the number 
of accesses for the same size of data bus of the DSP device. 

3.2.3 Floating-Point Format 

For DSP applications, if an algorithm involves summation of a large number 
ofproducts, it requires a large number of bits to represent the signal to allow 
for adequate signal growth over the summation. However. since a processor 
architecture will not allow for an unlimited number of bits, some processors 
choose a floating-point format for signal-processing computations. A iloating­
point number is made up of a mantissa Mx and an exponent Ex such that its 
value x is represented as 

x = Mx2Ex (3.~) 
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figure 3.2IEEE-754 format for floating-point numbers 

If two floating-point numbers x and y are multiplied, the product xy is given
by . . 

xy MxMy2Ex+EY 	 (3.4) 

Implementation of a floating-point multiplier must contain a multiplier for 
the mantissa and an adder for the eJq'onent. An addition of floating-point 
numbers requires normalization of the numbers to be added so that they have 
the same eJq'onents. 

A commonly used single-precision floating-point representation (IEEE-754 
format) is shown in Figure 3.2. 

The value represented by the data: format in Figure 3.2 is given as 

x = (-Os X 2~E-bias) X I.F 	 (3.5) 

F represents the magnitude fraction of the mantissa, and the eJq'onent E is an 
integer. Further, in determining the mantissa, an implied 1 is placed immedi­
ately before the binary point of the fraction. The sign bit provides the sign of 
the fractional part of the number. That is to say, with n bits for F, the range 
of fractional numbers that can be represented in the mantissa is -(2 - 2-n ) 

to +(2 - 2-n). The bias depends upon the bits reserved for the exponent. If!. 
Figure 3.2, the bias is 127, the largest positive number represented by 8 bits. 
The value of E can be from D to 255. In double-precision representation, the 
eJq'Onent uses 11 bitS, making the bias value as 1023. . ­

!>Example 3.2 	 Find the decimal equivalent of the floating-point binary number 
1011000011100. Assume a format similar to IEEE-754 in which the MSB is the 
sign bit followed by 4 exponent bits followed by 8 bits for the fractional part. 

Solution The number is negative, as the sign bit is 1. 


F = 2-4 +T 5 + T6 .109375 


E = 21 + 22= 6 
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Thus the value of the number is 

x -1.109375 x 2(6-7) = -0.5546875. 

I> Example 3.3 Using 16 bits for the mantissa and 8 bits for the exponent, what is the range 
of numbers that can be represented using the floating-point format similar to 
IEEE-754? 

Solution The most negative number will have as its mantissa -2 +2-16 and as its 
exponent (255 - 127) 128. The most negative number is; therefore, 

-1.999984741 x 2128 

Similarly, the most positive number is 

+1.999984741 x 2128 

Floating-point format, used to increase the range. of numbers that can 
be represented, suffers from the problem of speed reduction for DSP compu­
tation. More steps are required to complete a floating-point computation 
compared to a fixed-point computati<?n. For instance, a floating..,point multi­
plication requires addition of exponents in addition to the multiplication of 
mantissas. Floating-point additions, on the other hand, require the exponents 
to be normalized before the addition of the mantissas. For these reasons, a 
floating-point processor requires a more. complex hardware compared to a 
fixed;point processor and requires more time to do computations. 

3.2.4 Block Floating-Point Format 

An approach to increase the range and precision of the fixed-point format is 
. to use the block floating-point format [3]. In this approach, a group or block of 
fixed-point numbers are represented as though they were floating-point num­
bers with the same exp~:ment value and' different mantissa values. Mantissas 
;:).re stored and handled similar to fixed-point numbers. The common expo­
nent of the block is stored separately and is used to multiply the numbers as 
they are read off the memory. The exponent is decided by the smallest number 
of leading zeros in the fixed~point representation of the given block of num- . 
bers. The numbers are then shifted by this value to accommodate the maxi­
mum number of nonzero bits using the given fixed-point format. 

The block floating-point format increases the range and precision of a 
given fixed-point format by retaining as many lower-order bits as is possible. 
The scheme does not require any additional hardware resources except an 
extra memory location to store the block exponent. However, programming 
overhead is needed to find the block exponent and to normalize. and de­
normalize the given numbers using this exponent. 
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[:> Example 3..4 The following 12~bit binary fractions are to be stored in an 8~bit memory. 
Show how they can be represented in block fioating~point format so as to i,m­
prove accuracy. 

. 000001110011 

000011110000 

000000111111 

000010101010 

Solution If these fractions are represented using an 8-bit fixed-point format, they will 
be represented as 

00000111 

00001111 

00000011 

00001010 

The last 4 bits of the numbers would have been discarded, thereby losing the 
precision corresponding to those "4 bits. 

However, since all four numbers ha~e at least four leading zeros, they can be 
rewritten as 

01110011 X 2-4 

"11110000 X Z-4 

00111111 X 2-4 

10101010 X 2-4 

Eight bits of each number can be stored without discarding any bit. The block 
exponent is -4 and will have to be stored separately. When the numbers are 
read from the memory for any computation, they have to be shifted by four 
bit positions to the right to bring them to their original values. 

Similar operation can also be performed on a block of integers if there are 
zeros to the right. . . 

-3.3 Dynamic Ran~e and Precision 

The dynamic range of a signal is the ratio of the maximum value to the mini­
mum value that the signal can take in the given number representation 
scheme. The dynamic range of a signal is proportional to the number of bits 
used to represent it and increases by 6 dB for every additional bit used for the 
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representation. The number of bits used to represent a signal also determines 
. the resolution or· the precision with which the signal can be represented. 
However, the time taken for certain operations such as the AID conversion 

. increases with the h-tcrease in the number of bits. 
Resolution is the minimum value that can be represented using a number 

representation format. For instance, if N bits are used to represent a number 
from 0 to 1, the smallest value it can take is the resolution and is given as 

. Resolution 1/2N forlarge N 	 (3.5) 

Resolution of a number representation format is normally expressed as 
number of bits used in the representation. At times, it is also expressed as a 
percentage. 

Precision isan issue related to the speed of DSP implementation. In gen­
eral, techniques to improve the precision of an implementation reduce its 
speed. Larger word size improves the precision but may pose a problem with 
the speed of the processor, especially if its bus width is limited. For example, 
if the 32-bit product of a 16 x 16 multiplication has to be preserved without 
loss ofprecision, two ,memory accesses are required to store and recall this 
product using a 1fi-bit bus., Another example is the rounding off, I).S against 
the truncation, used to' limit the word size in th'e fixed-point representation of 
numbers. The former is slightly more accurate than the latter, but requires 
more time to carry out computations. 

When the floating-point number representation is used, the exponent de­
termines the dynamic range. Since the exponent in the floating-point repre­
sentation is a power, the dynamic range of a floating-point number is very 
large. The resolution or precision of a floating-point number is determined by 
its mantissa .. Since the mantissa uses fewer bits compared to fixed-point rep­
resentation, the precision of floating-point number representation is smaller 
than a comparable fixed-point representation. . 

It is important to be aware of the speed implications when adopting 
schemes to improve precision or the dynamic range' and not just choose 
~gh:er . precision or larger dynamiC range than what is required for a given 
application. 

t> Example 3.5 	 Calculate the dynamic range and precision of each of the following number 
representation formats. 

a. 24-bit, single-precision, fixed-point format 

b. 48-bit, double-precisiQn, fixed-poi!tt format 

c. a floating-point format with a 16-bit mantissa and an 8-bit exponent 

Solution a. 	 Since each bit gives a dynamic range of 6 dB, the total dynamic range is 
24 x 6 = 144 dB. Percentage resolution. is (l/224) x 100 6 X 10-6• . 

b. Since each bit gives a dynamic range'of 6 dB, the total dynamic range is 
48 x 6 = 288 dB. Percentage resolution is (11248 

) x 100 = 4 X 10-13 • 
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c. 	 For floating-point representation, the dynamic range is determined by the 
number ofbits in the exponent. Since there are 8 exponent bits, the dy­
namic range is (28 -1) X 6 = 255 x 6 1530 dB. 

The percentage resolution depends on the number of bits in the mantissa. 
Since there are 16 bits in the mantissa, the resolution is. 

(i/2 16 
) X 100 1.5 x 10-3% 

These results are summarized in Table 3.1. 

, 	 Table 3.1 Dynamic Range and Precision for Various Number Representations 

Percentage 
Format of Number of Dynamic Resolution 
Representation Bits Used Range (Precision) 

Fixed-point 24 bits 144 dB 6 x 10-6 

Double-precision 48 bits 288 dB 4 x 10-13 

Floating-point 24 bits (16-bit mantissa, 1530 dB 1.5 x 10-3 

8-bit exponent) 

3.4 Sources of Error in DSP Implementations 

A nsp system consists of an AID converter, a nsp device, and a D/A con­
verter. The accuracy of a DSP implementation depends upon a numl;er of 
factors, contributed by the AID and D/Aconversions and how the calculations 

. are performed in the DSP device. The error in the AID and DIA in the repre­
sentation of analog signals by a limited number of bits is called the quantiza­
tion error [2]. The quantization error decreases with the increase in the num­
ber ofbits used to represent signals in AID and D/A converters. 

The errors in the DSP calculations are due to the limited word length used. 
These errors depend upon how the algorithm is implemented in a given DSP 
architecture. This error can be reduced by using a larger word length for data 
and by using rounding, instead of truncation, in calculations . 

. In the following sections, we consider the quantization and rounding errors 
in AID converters, DSP computations, and D/A converters.' 

3.5 AID Conversion Errors 

Consider an AID converter, shown in Figure 3.3(a), with b bits used to 
represent an unsigned signal value. Its di~ital representation is of the form 
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x 	 o[ lox,MD 

(a) 

8=Xq -X-9.x 	 + ' 

Xq 

(b) 

e 

o A 2A-2A -A 
I< k K K -"X 

A == 2-bfor xqrepresented by b 

fraCtional bits 

(c) 

Figure: 3.3 	 (a) An AID converter with b bits for signal representation, (b) quantization 
model fOr the AID converter, (c) quantization error in truncation AID converter, 
(d) quantization error in rounding AID converter, (e) probability density function 
for truncation error, (f) probability density function for rounding error 

(continued) 

.XXX ••• x, where there are b bits after the assumed binary point. In this kind 
of binary representation, the value of the least significant bit is given by 

l1 = 2-b 	 (3.6) 

The maximum error due to quantization depends on b. The quantization 
error for a given conversion as shown in the model of Figure 3.3(b) is given by 

e=xq-x 	 (3.7) 
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Figure 3.3 Continued 

where x is the input· and Xq is the quantized output. This' error is called the 
truncation error if the signal value above the largest integral multiple of A is 
simply dropped. It is called the rounding error if the value is rounded to the 
nearest integral multiple of A. This way the rounding limits the error. to ±Al2. 
Figures 3.3(c) and (d) show these two types of errors. The statistical inter­
pretation of these errors can be used to evaluate their effect on PSP imple­
mentations. Assuming that the truncation and rounding errors in . the AID 
converter are uniformly distributed,. their' probability density _ functions are 
given in Figures 3.3(e) and (f), respectively. Analysis of Figure 3.3(e) for the 
mean and the variance of the error yields 

me = -Al2 _2(-b-l) (3.8) 

O'e 2= fO (e _ (_Al2»2p(e) deLA 

o . 

=J. (e+Al2)211Ade 
_ -A 

= -A2/12 = r 2b/12 (3.9) 
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Similarly, the analysis of Figure 3.3(f) yields 

me =0· (3.10) 

ae
2 = T 2bl12 (3.11) 

That is, the variance of error is the same in both cases; the mean is zero in 
rounding and nonzero in truncation. The signal-to-noise ratio (SNR) is a 
measure that is used to evaluate the performance of the AID converter. It can 
be calculated from 

.. SNR = 1010g(a/la/) (3.12) 

where ax2 is the signal power and ae 
2 is the noise variance. 

The SNR cannot be calculated unless an assumption about the input signal 
amplitude is made. Practically spea.kirtg, too little a signal amplitude will result 

. in a poor SNR, yet assuming the maximum signal amplitude in Eq: 3.12 will 
show only the best SNR. For the signal representation considered here (value 
from 0 to 1). it is customary to assume the root mean square (rms) value .of 
the signal (ax) as 114 for SNR calculations. This leaves enough bits for the 
maximum possible value of the signal, yet it yields a more realistic SNR for 
evaluation of an AID converter. With this assumption and substituting for a/' 
and ae 

2 in Eq. 3.12, we get . 

.SNR :::; 10 log(1I16)/(r2b/12) = 1010g«3/4)(22b» (3.13) 

It is clear from Eq. 3.13that using an AID converter with a larger word length 
"gives a larger SNR. As an example. if b = 14, the SNR is given as 

,~NR = 10 log«3/4)(22X14»= 83.04 dB. 

3.6 DSP Computational Errors 

The DSP computations involve using .the digitized signal values and DSP 
structures. represented by coefficients. These numbers are typica:Uy repre­
sented in the signed fractional 2's complement form. The computations 
almost always· involve multiplications or multiply and accumulate (MAC) op­
erations. In this section, we discuss the error in the multiplication carried out 
using the fixed wor:d length arithmetic logic unit. Gonsider a specific DSP 
device that provides a 16 x 16 multiplier with a 32-bit result interlaced to a 
16-bit AID lmd a l l6-bit D/A converter. The error in the computation will be 
due to discarding the 16 least significant bits of the 32-bit multiplicati'bn 
product. Assuming that the signal and the coefficients use s.xxx .•. x format 
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representation for signed numbers, and the. flmltiplier used is also a signed 
binary multiplier, the multiplier result will be of the form ss.xx. ... x. Before 
truncating (or rounding), this result can be shifted left by 1 bit (to discard the' 
extra sign bit) to generate s.b_ I b_2 ... b_300 and then the 16 least significant 
bits can be dropped. The error in this computation is then given by 

e = 0 +r 3O.b_3O +r 29.b_29 +r 28 .b_28 +.. , + r I6.b_16• (3.14) 

14aximum error occurs when all the discarded bits are Is. That is, 

(riSemaxA = r 30 + r29 +... +2-16 == - 2-30). 

and the minimum error is when all the discarded bits are Os. That is, 

eminA = 0 

Assuming that e is uniformly distributed, we can compute mean as 

(rlsme = -A/2 = - r 30)/2= (r16 - r 31 ) ~ Z-16 (3.15) 

and the variance' as 

as 2 = A2/12 = (T 15 T30)2/12 ~ Z-30112 (3.16) 

Using the argument ofthe last section, we can assume that the multiplier re­
sult has the rms value ax of 1/4. Using this assumption leads to the following 
SNR: 

SNR'=,10 log(a}lae
2 ) 

10 log(I/16)/(Z-30112) 

= 10 log«3/4)(230» 
89.06 dB (3.17) 

In a multiply and accumulate process using a fractional signed multiplier and 
a 32-bit accumulator, assuming no overflow condition, the SNR will be even 
better due to the averaging effect of the accumulator. It can be shown that in 
such a: case the error variance is given as 

a/ = (l/N)(r30112) (3.18) 

for N accumulations. As is obvious, ,in most cases an individual DSP operation 
. ! 

is not the dominant factor in error calculations. The overall calculation error 
depends upon the DSP algorithm that is being implemented. 



54 Chapter 3 Computational Accuracy in DSP Implementations 

Another type of computational error in DSP implementations is the over­
ftowerror . 

.Ifthe result-of a computation cannot be held in the accumulator register, 
an overftow condition occurs. If nothing is done to avoid or correct the over~ 
ftow condition, the arithmeticwraparoun~ occurs, in which case after the 
most positive number an overftow generates the most negative number, and 
vice versa. In a signal. it amounts to presence of a glitch With serious con­
sequences. 

A solution to the overftow problem is to provide extra bits called guard bits 
in the accumulator to accommodate the overftow bits. For instance, a provi­
sion of 4 extra bits ensures that there will not be any overftow for up to 16 
accumulations. 

If enough guard bits cannot be provided, there is need to implement satu­
ration logic to at least keep the overftow under control and. not let it produce 
a glitch in the signal. This is done by replacing the overftowed result with the 
most positive number, in the case of overftow from the most positive number 
t.O a negative number. For the case where the wraparound occurs from the 
most negative to a positive number, the result is replaced with the most neg­
ative number. This implementation ensures a glitchcft:ee signal, although it 
still has calculation error, the amount of which depends upon the amount of 
the overftow. 

3.7 D/A Conversion Errors 

A source of error jn a DJA converter is due to the fa~t that, typically, aD/A 
converter uses fewer bits in conversion than the number of bits required by 
the computed result, produced by the DSP device. This is equivalent to the 
truncation or the rounding off error in the AID converter and can be handled 
in the same way as the computational error described in the previous section. 

Another and more serious error occursin the DJA converter due to the fact 
that the D/A converter output is not ideally reconstructed. Typically, the out­
put samples from the DSP are applied to the input ofa reconstruction filter 
through a zero-order hold, which maintains the input to the filter constant 
during the periods between successive samples. This is equivalent to saying 
that the input to the reconstruction filter is the convolution of the DSP output 
samples with a unit pulse of width equal to the sampling interval. The effect of· 
this convolution is a reduction in the amplitude of 'the analog output. A com­
pensating filter can compensate. for this reduction in the amplitude. The fre­
quency response of the compensating filter should be the inverse of the 
frequency response of.the convolving pulse. 

The source of error explained above can be illustrated by means of Figure 
3.4. Consider the sequence of output samples of a DSP as shown in Figure 
3.4(a). These samples are passed through a D/A converter with a zero-order 
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Figure 3.4 	 An example showing the D/A converter error due to the zero-order hold at its 
output: (a) DSP output, (b) D/A output, (c) the convolving pulse that generates (b) 
from (a), (d) frequency contents of the convolving pulse in (c) 
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hold at its output. The output of the DIA converter is shown in Figure 3.4(b). 
Figure 3.4(c) shows the shape of the convolving pulse that generates the out­
put of Figure 3.4(b) from the DSP output of Figure 3.4(a). Figure 3.4(d) shows 
the frequency contents of the convolving pulse as well as the degradation 
(amplitude error) of the output of the reconstruction filter from an ideal out­
put. The compensating filter to restore the required output of the reconstruc­
tion filter should have a frequency response, which is the inverse of Figure 
3.4(d). 

[:> Example 3.6 lIind the degradation in amplitude gain when a sine wave of unit amplitude 
and 50 Hz frequency, sampled at 400 Hz, is reconstructed using a zero-order 
hold. 

Solution The amplitude of the sine wave at a sampling instant is given by 

x(n) sin 2nfnlls (3.18) 

where! is the frequency of the- sine wave and Is is the sampling frequency. In 
this example, ! = 50 Hz and Is = 400 Hz. Substituting these values in Eq. 3.18 
yields 

x(n) = sin 2nn/B (3.19) 

The values of the amplitude computed using Eq. 3.19 are valid only for the 
ideal case. In order to compute the degradation in the amplitude due to the 
zero-order hold, these values have to be modified by the frequency response 
of the convolution pulse shown in Figure 3.4(d). In the frequency domain, the 
amplitude or the gain is a sine function and is given by 

Gain = H(!) (sin n!IIs)/(n!/Is) (3.20) 

Table 3.2 gives the values of the gain given by Eq. 3.20 for different frequencies 
expressed as a fraction of Is. The gain at 50 Hz (fs/B) is 0.9745 instead of 1. 

Table 3.2 Amplitude Degradation of DIA Output Due to the Zero-Order Hold. 

Frequency Gain 1/Gain 

0 

f s/32 0.9984 1.0016 

fsfl6 0.9936 '1.0064 

f./8 0.9745 1.0261 

fs/4 0.9003 1.1101' 

f./3 0.8270 1.2092 

f.12.5 0.7568 1.3213 

fo12 0.6366 1.5708 
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3.7.1 Compensating Filter 

I> 
I 

Example 3.7 

One can design a filter with a frequency response, which is the inverse of the 
gain H(!) as shown in Table 3.2, and place it at the output of the D/A con­
verter to compensate for the amplitude degradation of the DIA output due 
to the zero-order hold. Such a filter can be an IIR filter that can be designed 
using the techniques discussed in Chapter 2. 

Design a first-order IIR compensating filter having the frequency response 
depicted in Table 3.2. 

Solution A first-order IIR filter can be designed using the program in Figure 3.5(a). 
Notice that the program uses the direct design method called the Yulewalk 
techniq.JIe.· As shown in Figure 3.5(b), the design produces the following co­
efficients for the filter: 

b = [1.1752 0.0110] 

a = [1.0000 0.1495] 

which corresponds to the difference equation 

y(n) = ~0.1495y(n - 1) + 1.1752x(n) +O.OllOx(n ­ 1) (3.21) 

%Compensati~g filter specifications 
f = [0 1/32 1/16 1/8 1/4 1/3 1/2.5 1/2]*2; 
m = [1 1.0016 1.0064 1.055 1.1107 i.2092 1.3213 1.5708]; 

.% Filter design 
[b.a] = yulewalk(l.f.m) 

%Designed filter frequency response 
[h.th] = freqz(b.a.128); 
plot(th/pi;abs(h». title('Designed Compensating Filter Frequency 
Response'). xlabel('f*2/fs'). ylabel('Magnitude') 

(a) 

b= 
1.1752 0.0110 

a= 
1.0 0.149~ 

(b) 

Figure 3.5 Design of the compensating filter of Example 3.7: (a) a MATLAB program, 
(b) designed filter coefficients, (c) designed filter frequency response 

(continued) 
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Designed Compensating Filter Frequency Response 
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Figure 3.5 CQntinued 

The transfer function of the filter in the z-domain is given by 

H(z) = (l.i752 + O.OllOZ-l) 
(3.22)

(1 + 0.1495z-1) 

The frequency response of this compensating filter is shown in Figure 3.5(c). 
Since ~e compensating filter is a digital filter, itcan be merged with the DSP 
calculations. That is, the input to the D/A converter is first passed through the 
filter before it is applied to the D/ A cohverter, thus eliminating the need for a 
filter to be placed after the D/A converter.· In general, making the compensat­
ing filter a part of the DSP eliminates additional computations, since the filter 
computations can be merged with the DSP computations. 

The analysis presented above can be extended to correct degradation more. 
accurately. However, it should be noted that the compensating fUter in such a 
case Will be more complex and will be of orders higher than 2. 
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3.8 Summary 

In this chapter, we studied various number formats for representing signals 

. and coefficients, consisting of the fixed-point format, floating-point format, 

double-precision format, and block floating~point format. We also studied the 

dynamic range and precision of signals represented by each of these formats. 

We identified the sources of errors in PSP implementations, such as AID 

conversion errors, DSP computational errors, and DIA conversion errors. For 


. each category, we have estimated the errors and have suggested ways to min­
imizethem in the implementation of DSP systems. . 
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Assignments 

3.1 	 Determine (a) the most positive, (b) the least positive, (c) least negiltive, and 
(d) the most negative values for the following number representation formats. 

a. 32-bit 2's complement integer format 

b. 32-bit floating-point format given as: 


s eee ... e fIf.... f 


1 8 23 (bits) 
s exp frac 

(unsigned) (unsigned) 

where the value of the number is computed as l.frac x 2exp if s = 0, and 
-1.frac x 2 exp if s 1. 

3.2 	 Determine the maximum truncation error for both positive and' negative 
numbers for the two formats in Problem 3.1. 
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3.3 	 Show that the dynamic range of a signal increases by 6 dB for each additional 
bit used to represent its value. 

3.4 	 Compute the dynamic range and percentage resolution of a ~ignal that uses 

a. 16-point fixed-point format 

b~ .32-point floating-point format with 24 bits for the mantissa and 8 bits 
for the exponent. 

3.5 	 Compute the dynamic range and the percentage resolution for a block 
floating-point format with a 4-bit exponent used in a 16-bit fixed-point pro­
cessor. 

3.6 	 For the DSP system shown in the block diagram of Figure P3.6, the analog 
input is a 50 Hz sinusoidal signal with 2 V peak value. Both the AID and D/A 
converters are 0-5 V devices. Determine (a) the SNR of AID, (b) the SNR of 
DSP, and (c) the peak ()utput of the D/A converter. Assume a sampling rate of 
400 samples/sec. State other assumptions that are needed for calculations. 

l~bit fixed-point processor with it 
16x16 2's complement multiplier 

,J 

Analog in 

SBit 
DIA 

Converter Analog out 

16 

Memory 
16-bit coefficients 

Figure P3.6 A DSP system block diagam 

3.7 	 One can use the filter of Eq. 3.22 to compensate for the DfA converter error 
in Problem 3.6. This filter, however, does not compensate the DfA error com­
pletely. There remains some error at different frequencies. Prepare a table to 
show the error that remains uncompensated. . 

3.8 	 Determine the frequency response for the filtet 

H(z _ 1.125 
) - + 0.1807z-1) 

Compare its frequency response to the one in Table 3.2 and discuss its suit­
ability as a zer,? order hold DIA compensating filter. , 



Chapter 4 
Architectures for Programmabl~ Digital 
Signal-Processing Devices 

4.1 Introduction 


In this chapter, architectural features of programmable DSP devices are de­
scribed based on the DSP operations these devices are generally required to 
perform. The features are examined from the points of view of functional 
needs, programmability, speed,and interfacing requirements of these devices. 
Commonly used hardware implementations are also described for various 
functional units. Following are the topics covered in this chapter: 

Basic architectural features 

PSP computational building blocks 

Bus architecture and memory 

Data addressing capabilities 

Address generation unit 

programmability and program execution 

Speed issues . 


Features forextt:rnal interfacing 


4.2 Basic Architectural Features 

A programmable DSP device should provide instru~tions similar to a micro­
processor. These instructions can then be used to design programs for im­
plementing DSP algorithms. The basic computational capabilities provided by 
way of instructions should include the following [1-3, 11]: 

• Arithmetic.operations such as add, subtract, and multiply. 


.• Logic operations such as AND, OR, XOR, and NOT. 


61 
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• 	 MultiplY'and accumulate (MAC) operation. 

• 	 Signal scaling.operations for scaling'the signal before and/or after digital 
signal prQCessing. 

. . It is important that dedicated high-speed hardware be provided· to carry 
out these operations. For instance, multiply operation can be done much 
faster on a hardware multiplier than on a microcoded m~tiplier realized 
using the shift and add technique, as is often done in microprocessors. 

In addition to the computational units, support archit~cture should include 
the following hardware features [10]: 

• 	 On-chip registers for storage of intermediate results. 

• 	 On-chip memories for signal samples (RAM). 

• 	 On-chip program memory for programs and fixed data such as filter 
coefficients (ROM).' . 

I> Example 4.1 	 Investigate the basic features that should be provided in the DSP architecture 
to be used to implement the following Nth-order FIR filter: 

N-l 

y(n) = L h(i)x(n -i); n == 0, 1,2, ... (4.1) 
i=O 

where x(n) denotes the input sample; y(n), the output sample; and h(i), the ith 
filter coefficient. x(n - i) is the input sample i samples earlier than x(n). 

Solution The FIR filter requires the following basic features for implementing Eq. 4.1: 

1. 	 Memory for storage of signal samples x(n), x(ti -:- 1), ... , etc. (RAM).. 

2. 	 Memory for storage offilter coefficients: h(O), h(I); .•. , etc. (ROM). 

3. 	A hardware multiplier and an adder to carry out the multiply and accu­
mulate (MAC) operation. 

4. 	 A register to ke~p track of accumulation (accumulator). 

5. 	 A register to point to the current signal sample being used (signalpoin,ter). 

6. 	 A register to point to the current filter toefficient being used (coeffic'ient 
pointer). 

7. 	 A register to keep count of the MAC operations that remain to be done 
(counter). 

8. 	Capability to scale the signal value x(n) as itis read from the memory and 
the computed signal y(n) as it is stored in the memory (shifters at input 
and output). 

Computational units such as the multiplier, the arithmetic logic unit (ALU), 
shifters, etc. will be described in the next section. Subsequent sections will 
examine the other functional units such as, the memory, the addressing unit 
and the program execution unit. 
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4.3 DSP Computational Building Blocks 

I,n this section, we learn about the hardware building blocks that carry out the , 
basic DSP computations.'.While choosing these computational building blocks, 
we keep in mind the requirements of speed and accuracy, which are the two 
key issues iIi the design of DSP systems. At the same time, we should ensure 
that such -building blocks 'could be configured to implement many different 
applications. That is, while each building block should b~ optimized for func­
tionality and speed, the design should be sufficiently general so that it can be 
easily integrated with other blocks to implement overall DS1> systems. 

Following are-the basic building blocks that are essential to carry out DSP 
computations [5-9]: ' 

• Multiplier 

• Shifter 

• Multiply and accumulate (MAC) unit 

• Arithmetic logic unit 

In the following subsections, we shall discuss each of these blocks in detail. 

4.3.1 Multiplier 

The advent of single-chip multipliers and their integration into the micro­
processor architecture are the most important reasons for the availability of 
commercial VLSI chips capable of implementing DSP functions. These multi- . 
pliers, called parallel or array multipliers, implement complete multiplication, 
of two binary numbers, to generate the product in a single processor cycle. 
Earlier multiplication schemes relied either on software such as the shift and 
add algorithm or on microcoded controllers, which implement the same al­
gorithm in hardware. Both these options require several processor cycles tp 
complete the multiplication. The advances~Me in VLSI technology, both m 
.terms of speed and size, have made possible the hardware Implemturation of 
parallel multipliers. 
. From earlier chapters, it is apparent that multiplication is one of the key 
operations in implementing DSP functions. HoweVer, before we design' an 
actual multiplier, we should be dear about its specifications sJlch as speed, 
accuracy, and dynamic range. The number of bits used to represent the 
multiplication operands and whether they are represented in fixed-point or 
floating-point format decide the accuracy and dynamic range of the multi­
plier. The speed, on the other hand, is decided by the architecture employed. 
For ,a given technology, there are several architectures for parallel multipliers, 
which trade off speed for reductions in circuit complexity and power dissipa­
tion. The choice of the architecture depends on the application. 
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A3 A2 A, Ao 
B3 B2 B1 Bo 

A3 BO· A2 BO A,Bo AoBo 
A3B, A2B, A,B, AoB, 

A3 B2 A2B2 A,B2 AoB2 
A3B3 A2B3 A,B3 AoB3 

P7' P6 Ps P4 P3 P2 ,. P, Po 

(a) 

Figure 4.1(a) The 4 x 4 binary multiplication 

Parallel Multiplier 

Let us consider the multiplication of two unsigned nwnbers A and B. Let the 
nwnber A be represented using m bits (Am- 1Am- 2 ... Ao) and the nwnber B, 
using n bits (Bn- 1Bn- 2.•. Bo). The multiplicand A, the multiplier B, and the 
product P are given bY [4-6] 

m-l 
A= LAi2i (4.2) 

;=0 

n-l 

B = LBj2 j (4.3)· 
j=O 

"-1 [m-l 1P = ~ ~AiBj2i+j (4.4J 

and can have a maximwn of (m + n) bits. Each bit of the product P is 
obtained by a summation of bits AiBj using an array of single-bit adders. 
The bits A;Bj, where the index i takes on values from 0 to m - 1, and the 
index j from 0 to n:"- 1, are formed using AND gates. Figure 4.1(a) shows the 
multiplication operation using 4 bits for both A and B (A = A3A2AIAo and 
B = B3B2BIBo). Figure 4.1(b) shows the hardware structure of the multiplier 
for this eXample. The structure is regular and requires twelve 3 input, 2 output 
adders. It can be shown that for an n x n multiplier, the number of adders 
required is n(n - 1). 

Multiplier for Signed Numbers 

The multiplier shown in Figure 4.1(b) is known as Braun multiplier [7] and is 
the basis for most of today'scommercial implementations. Several improve­
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A3Bo A2Bo A]BO 

o I 0 

r 
P7 P6 Ps P4 P3 P2 PI 

Figure 4.1(b) The structwe of a 4 ~ 4 Braun multiplier 

ments on this basic structure are possible and have been used to increase the 
speed and reduce the hardware complexity and power dissipation. We will not 
be dealing with. these variations here. However, we will consider one modifi­

. cation of the Braun structure, which is essential to carry out multiplication of 
signed numbers. 

Braun's multiplier does not take into account the signs of the numbers that 
are being muitiplied. Additional hardware is required before and after the 
multiplication when signed numbers, represented in 2's complement form, are 
used. It would be desirable to have a structure that can directly operate on 2's 
complement numbers. 

Consider two numbers A and B represented in 2's complement format. Let 
A have m bits and B, n bits. A andB can be written as follows: 

m-2 

A -Am_ 12
m- 1 +LAi2i (4.5) 

i=O 

n-2 . 

B -Bn_ 12
n

-
1 + LSj2 j (4.6) 

j=O 
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The product P Pm+n-I ... PIPo can be written as 

m-2 n-2 m-2' 

P Am- 1Bn-12 m+n-2 + 2: 2: AiBj2 i+j - 2: AiBn-I.2n-I+i 
i=O j=O i=O 

n-22: A - I Bj2m-1+j (4.7)m 

'j=O 

The two subtractions in Eq. 4.7 can be expressed as additions of 2's comple­
ment numbers. In doing so, Eq. 4.7 gets modified to an expressioI). with only 
additions and no subtractions and can then be implemented through a struc­
ture similar to the Braun multiplier rising only adders. The modified structure 
for handling signed numbers is called the Baugh-Wooley multiplier [8J. 

Speed 
The shift and add technique of multiplication normally used in micropro­
cessors requires n processor cycles to carry out an n x n multiplication. The 
cycle time is the time to access the operands, perform add and shift, and store 
the result in the product register. The parallel multiplier, on the other hand. 
is a fully combinational implementation, and once the operands are made 
available to the multiplier, the multiplication time is only the longest path 
delay time through the gates and adders. . 

Normally, one would want to achieve the highest possible speed of opera­
tion for a given DSP function. This would mean a multiplication time com­
parable to the processing times of other computational units as well as the 
access times of memories holrung the program and data. As memory tech­
nologyadvances, lower and lower access times are achieved. In order to make 
the best use of such speeds in a DSP' implementation. it w0uld be highly 
desjrable to design mUltipliers operating at the highest possible speeds. This is 
possible only with a fully parallel implementation. 

Bus Widths 

Consid~r a multiplier with inputs X and Y and the product Z. If X and Yare 
represented with n bits each, Z can have a maximum of 2n bits. Let us assume 
that both X and Y ·are in the memory and the product Z has also to be written 
back to the memory. A single-cycle execution of the multiplication will then 
require two buses of width n bits each (for X and Y) and a third bus of wil;ith 
2n bits (for' Z). This type of bus architecture is expensive to implement. A 
number of practical considerations, however, make it possible to realize ili:e 
multiplication with a less extensive bus architecture. First, the program bus 
can be used to transfer one of the operands (say. Y) after the· multiplication 
instiuction has been fetched from the progtam memory. This does not cause 
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an additional overhead when repeated multiplications are carried out, as is 
generally the case with many DSP algorithms. This is because, the instruction, 
once fetched, usually resides in an on~chip cache. Second, it separate bus for 
the product Z can be dispensed with, since one of the buses (say, that of X) 
can be used to transfer the product to the memory as the operand X would 
have been latched long before the product Z is made available. To handle the 
2n bits of Z, there are two available alternatives: 

a. 	 Use the X bus (n bits) and save Z at two successive memory locations 
using two memory accesses. 

b. Discard the lower n bits of Z and save only the higher n bits. This is the 
option most often used since one of the two operands X and Y (usually 
Y) is normalized to one before multiplication so that the n bits dis­
carded from Z are the less significant fractional bits. However, if the 
product· Z is to be further processed (e.g., added to the previous result 
as is the case in a multiply and accumulate operation), all 2n bits of 
the product Z are retained and passed on to the next stage to retain the 
accuracy of the product. The decision on discarding lower-order bits 
or saving the entire word is made. after the accumulation process is 
completed. 

For applications in which speed is not the main issue, buffers and latches 
may be provided at inputs and the output, as shown in Figure 4.2. A single bus 
cari then be used to preload the operands in the input latches before the mul­
tiplication and transfer the result from the output latches/buffers to the 
memory or the next stage, if necessary in two cycles after the multiplication. 

Data bus . 

~7n 

I
rtn1 X 

7:;­ y 

/ n 

.... 

Multiplier ~ Z ~ 
.... • 

X, Y, Z are latel est buffers 

Figure 4.2 A multiplier with input and output latcheslbuffers 
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4.3.2 Shifter 

Shifter is an essential component of any DSP architecture. Shifters are re­
quired to scale, down or scale up operands and results to avoid errors resulting 
from overflows and underflows during computations. Let us consideJ the fol­
lowing cases: 

a. 	 It is required to compute the sum of N numbers, each represented by n 
bits. As the accumulated sum grows, the number of bits required repre­
senting it increase~. The maximum number of bits to which the sum can 
grow is (n + logz N) bits. However, if each of the N numbers is scaled 
down by logz N bits prior to the addition, the loss of the result due to 
.overflow can be avoided. The accumulator will then hold the sum scaled 
down, by logz N bits. Although the accuracy of the sum is reduced be­
cause of the loss of logz N lower-order bits, the summation would be 
completed without the occurrence of the overflow error. The actual sum 
can be obtained' by scaling up the result by logz N bits, when required. 

b. When two 	 numbers, each represented by n bits, are multiplied, the 
product can have a maximum of 2nbits. When this product is saved in 
memory, which is also n bits wide, the lower-order n bits are generally 
discarded, resulting in 16ss' of accuracy. However, in the case of multi­
plication of two signed numbers, the accuracy can be slightly improved 
by shifting the product by one bit position to the left before saving the n 
higher-order bits. This is because the 2n-bit product will have two sign 
bits, .and even after discarding one of them (by a single-bit left shift), the 
sign of the product is still pres~rved. The accuracy improves because, 
instead of discarding all th~ n lower-order bits, we now discard only 
(n 1) bits. 

c. 	 When carrying out floating-point additions, the operands shouid be 
normalized to have the same exponent. This is accomplished by shifting 
one of the operands by the required number of bit positions so that it 
has the same exponent as the other operand. 

The cases illustrated above are examples of situations that require shifting 
of data while implementing DSP operations. 

[> Example 4.2 	 It is required to find the sum of 64 numberseach represented by 16 bits. How 
many bits should the accumul.~tor have so that the sum can be computed 
without the occurrence of overflow error or loss of accuracy? 

Solution 	 When 64 numbers are added, the sum can grow by a maximum of logz 64 = 
6 bits. To avoid overflow, the total number of bits the, accumulator should 
have is 16 + 6 = 22. 
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. l> Example 4.3 

Solution 

If, for the problem of Example 4.2, it is decided to have an accumulator with 
only 16 bits but shift the numbers before the addition t6 prevent overfl6w, by 
how many bits sh!Juld each number be shifted? 

Since the sum can grow by 6 bits, in order to prevent overflow, each number 
should be shifted by 6 bits to the right before the addition. 

l> Example 4.4 If all the numbers in the problem of Example 4.3 are fixed-point integers, what 
is the actual sum of the numbers? 

Solution Since each number has been shifted to the right by 6 bits, the sum should be 
shifted left by 6 positions to get the actual value. 

The actual sum = (content of the accumulator) x 26 

l> Example 4.5 What is the error in the computation of the sum in the problem of Example 
4.4? 

Solution Since the six lowest significant bits have been lost in tl1e process of summa­
tion, the sum could be off by as much as 26 - 1 63. 

Barrel Shifter 

In conventional microprocessors shifting is normally implemented by an op­
eration similar to the one performed in a shift register. The operation takes 
one clock cycle for every single bit shift. Such Ii scheme requires unduly large 
amounts of time to implement multibit shifts, which are generally required 
in DSP computations, In DSPs, on the other hand, in order to preserve the 
computational speed of single-cycle instruction execution, shifts by several 
bits should be accomplished in a single cycle. This is possible by a combina­
tional circuit known as the barrel shifter. The barrel shifter connects the input 
lines representing a word to a group' of output lines with the required shift 
determined by its control inputs, as shown in Figure 4.3(a). Control input also 
determines the direction of the shift (left or right). If the input word has n 
bits, and shifts from 0 to n 1 bit positions to the right or left are to be im­
plemented, the control input requires log2n lines to determine the number of 
bits to be shifted. Further, an additional line is also required for the control 
input to indicate the direction of Ithe shift. In practice, however, the direction 
of shift is usually fixed, with the result that only log2 n lines are required for 
the control input. Bits shifted out of the input word are discarded and the new 
bit 'positions are filled with zeros in the case of left shift. In the case of right 
shift, the new bit positions are replicated with the most significant bit to 
maintain the sign of the shifted result. 

Figure 4.3(b) shows animplerrientation of a barrel shifter with four input 
bits, (A3A2AIAo) and four output bits (B3B2BIBo). Using this shifter, it is 
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Figure 4.3(a} 
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possible to realize right shift by 0, I, 2, or 3 bit positions by setting the control 
inputs (So, S1> S2, or S3) high, respectiv~ly. Only one of the control inputs can 
be high at any time and this input closes all the switches controlled by it and 
enables the appropriate paths between the inputs and the outputs. 

Since the circuit for a barrel shifter is a combinational logic circuit, the time 
taken to implement the shift is the total combinational delay involved in de­
coding the, control lines and setting up the path from the input lines to the . 

. output lines. This delay is only a fraction of a clock cyde. In fact, in practical 
DSPs, shifting is combined with data transfer. Both operations are executed in 
a single clock cyde. ' 

I> Example 4.6 A barrel shifter is to be designed with 16 inputs for left shifts from 0 to 15 bits. 
How ma,ny control lines are required to implement the shifter? 

Solution The number of control lines required is four, since 4 bits are needed to code 
any number between 0 and 15, the. range over which the shift is required to be 
accomplil>hed. 

4.3.3 Multiply and Accumulate (MAC) Unit 

Most DSP applications such as filtets require the accumulation of the products 
of a series of successive multiplications. In order to implement this accumu­
lation; we need an add/subtract unit' and an additional register called the 
accumulator at the output of the multiplier. The configuration of such a mul­
tiply and accumulate unit, commonly known as the MAC unit, is shown in 
Figure 4.4.. 

The MAC unit consists of a multiplier that multiplies two n-bit numbers X 
and Y and gives a product 2n bits wide. This is added to or subtracted from 
the contents of the accumulator in the add/sub unit. The result is saved in the 
accumulator. The MAC unit can thus be used'to implement functions of the 
type A +Be. If the accumulator is cleared at the start of a series of multi­
plications, it will contain the accumulated sum of the products on completion 
of all the multiplications. 

Although multiplication and accumulation are two distinct operations, each 
normally requiring a separate instruction execution cycle, the two can work in 
parallel. At a time when the multiplier is computing a product, the accumula­
tor accumulates the product of the previous multiplication. If N products are 
to be accumulated, N - 1 multiplies can overlap with accumulations. During 
the very first multiply, the accumulator is idle since there is nothing to accu­
mulate. Likewise, during the very last accumulation, the multiplier is idle since 
all the N products have been computed. Thus it takes a total of N + 1 in­
struction execution cycles to compute the sum of products of N multiplica­
tions. If N is large, this works out to a speed of nearly one multiply and 
accumulate (MAC) operation per instruction execution cycle .. This pipelined 
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Figure 4.4 A MAC unit 

operation of a multiplier and .an accumulator working in parallel to effectively 
execute a MAC operation per cycle is a standard feature of ma~y commercial 
DSP devices. 

t> Example 4.7 

Solution 

If a sum of 256 products is to be computed using a pipelined MAC unit, and if 
the MAC execution time of the unit is 100 nsec, what will be the total time 
required to complete the operation? 

To carry: out 256 MAC operations, 257 execution cycles are required. 

The total time required = 257 x 100 x 10-9 sec = 25.7 Ilsec. 

Overflow and Underflow 

When designing a MAC unit, one has to pay attention to the word sizes en­
countered at the input of the multiplier and the sizes of the addlsubtractunit 
and the accumulator, as overflow and underflow conditions may be encoun­
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tered otherwise. Provision of barrel shifters at the inputs and the output of the 
MAC unit, provision of guard bits in the accumulator, and provision of satu­
ration logic are ~e frequently used techniques to prevent overflow and 00-" 
derflow conditions from occurring in the MAC unit. Now let us consider each 
of these provisions in detail. ' 

Shifters 

Shifters are normally providedat the inputs and the output of the MAC unit. 

The input shifters help to normalize data samples andlor filter coefficients as 


, they are fed into the multiplier, to avoid overflow of the accumulated result at 

the output. Likewise, the shifter at the output is used to denormalize the result 

after the sum of products computation,'before being saved in the memory. In 


. addition, the outpUt shifter may also be u~ed to discard the redundant sign bit 
in 2's complement product or to shift the output by the required number of 
positions before saving to preserve th~ maximum possible accuracy. This is 
done when the number to be saved is preceded by several leading Os or Is. 
As shifters provided in the MAC unit are typically barrel shifters, they do not 
require additional clock cycles to implement the shifts. 

Guard Bits 

Sometimes, in order to preserve accuracy, the inputs to the multiplier are not 
normalized. In such a case, when repetitive MAC, operations are performed, 
the accumulated sum grows with each' MAC operation. This increases' the 
number of bits required to represent the result without loss of accuracy. One 
way to handle this growth is to provide extra bits in the accumulator. These 
extra bits, called guard bits or extension bits, allow for the growth of the ac­
cumulated sum as more and more product terms are added, up. When the 
computation of the required sum of products is completed, the extension bits 
may be saved as a separate word, if required. Alternatively, the sum along with 
the guard bits may be shifted by the required amount and saved as a single 
word. When guard bits are provided in the accumulator, the size oft;he add! 
subtract uQit also, increases correspondingly. 

I> Example 4.8 	 Consider a MAC units whose inputs are 16-bit numbers. 1£256 products are to 
be summed up in this MAC. how many guard bits should be provided for the 
accumulator to prevent overflowcondition'from occurring? 

Solution 	 In general, the product of a 16 x 16 multiplication has 32 bits. Since 256 such 
products are ·to be summed, the sum can grow by a maximum of log2 256 
6 bits. Therefore, the number of guard bits required to prevent the occurrence 
of overflow is 8. 
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Figure 4.5 A MAC unit with accumulator guard bits 

Figure 4.5 shows a block diagram of the MAC unit with guard bits for this 
example. 

Saturation Logic 

With or without guard bits, an,overflow condition occurs when the accumu­
lated result becomes larger than the largest number it can hold. Likewise, 
when handling a negative number, an underflow will occur if the contents of 
the accumulator become smaller than the smallest number it can hold. Iii. 
such situations, it may be better to limit the accumulator contents to the most 
positive (or the most negative) value to avoid an error known as the wrap­
around error. 

Limiting the accumulator contents to its saturation limits is achieved with 
a simple logic circuit called the saturation logic. The circuit, shown in Figure 
4.6, detects the overflow and underflow condition and accordingly loads the 
accumulator with the most positive or the most negative value, overriding the 
value computed by the MAC unit. The overfloW/underflow condition is de­
tected by monitoring the carry into the MSB and the carry out of the MSB. If 
carry-in is not equal to carry-out, the overflow/underflow condition occurs. 
The selection between the most negative and the most positive numbers 'is 
made based on the sign bit of the number. 
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Figure 4.6 A schematic diagram of the saturation 

4.3.4 Arithmetic and Logic Unit 

In addition to shift, multiply, and multiply.and-accumulate (MAC) opera­
tions, a DSP'is required to carry out several arithmetic and logic operations. 
These are the operations, such as· add, subtract, increment, decrement, negate, 
AND,OR, NOT, EXOR, and· compare, that are also implemented in a conven­
tional microprocessor. This means that the ALU of a DSP is similar to the 

.. ALU of a microprocessor butwith additional features such as shift and mul­
tiplydiscussed in the earlier sections. Figure 4.7 shows the block. diagram of 
the ALUof a typical DSP device. 

Apart from providing arithmetic, and logic' functions, the design of an 
ALU for a DSP incorporates several other features borrowed from,a general­
purpose microprocessor. Three of these features are discussed next 

Status Flags 

It is important to know the status of the accumulator after arithmetic or. a 
logic operation. This information is used for program sequencing and scaling. 
The ALU irlcludes circuitry to generate status flags after arithmetic and logic 
operations. These flags include sign, zero, carry, and overflow. For instance, if 
the execution of an instruction results in overflow, the overflow flag is set; 
otherwise it is reset. 

Overflow Management 

Features similar to those explained in the previous section on MAC are also, 
r~quired in the ALU for overflow management .. These features are generally 
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Figure 4.7 Block diagram of an arithmetic logic unit 

combined with the status fl.ags. For example, depending on the status of the 
overfl.ow and the sign fl.ags, the saturation logic can come into effect to limit 
the accumulator contents to its most positive or the most negative value. 

Reg ister ,file 

A feature tlnll improves the efficiency of an ALU is the implementation of a 
large generaJ.~p~rpose· register file. Instead of moving data in and out of the 
ALU to memory during the course of an arithmetic computation, it may be 
faster to have intermediate results of arithmetic computations stored in the 
ALU until the computation is complete and the result is ready to be saved. 
This is possible by providing a file of general-purpose registers in addition to 
the accumulator as part of the ALU architecture.. 

http:overfl.ow
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4.4 Bus Architecture and Memory 

In conventional microprocessors, the von Neumann architecture is used, 
wherein the program and the data reside in the same memory and a single bus 
(Address + Data) is used to access both, as is shown in Figure 4.8(a). This 
slows down the program execution considerably as the processor has to wait 
for the data even after the instruction is made available to it. In order to avoid 
this waiting and to speed up the program execution, it is desirable to have the 
program and data reside in two separate memories and have two buses for 
the processor to access the two memories. This modification, which is called 
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Figure 4.8(a) The bus structure of von Neumann architecture 
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Figure 4.8(b) The bus structure of Harvard architecture 
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Figure 4.8(c) 	 The bus structure for the archite.cture with one program memory and two data 
memories 

the Harvar.d architecture, is shown in Figure 4.8(b). In fact, even this may not· 
solve the problem completely. For example, the m.ultiplication op~ration °re­

. quires two operands to be fetched from the memory; one may be a qata.sam­
pIe and the other, a coefficient. Even with separate memori.es fOl'.the'program 
and data, it is not possible to fetch the two operands required f9r th. multi­
plication along with the program instruction, and the processor has to 'wait for 
the second operand. It would therefore be required to provide dual data 
memories (for data and filter coefficients, for example) in addition to' program 
memory and provide each with a separate bus for the processor to access 
them simultaneously. Figure 4.8(c) shows a possible bus structure of this type. 
As we can see, this will require a lot of hardware and interconnections to im­
plement, thereby increasing'the cost; Therefore,'a compromise solution needs 
to be found to strike a balance between the hardware complexity and speed 
requirement of the multiplication operation, which, is the most critical DSP 
operation in terms of the overall speed of algorithm implementation: 

http:memori.es
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4.4. 1 On~Chip Memory 

A co.mpro.mise between having multiple memo.ries with individual buses fo.r 
each and having fewer memo.ries and buses is to. provide. some o.f the memo.­
ries alo.ng with their buses o.n~chip. Even tho.ugh the pro.cessor has to. make 
simultaneo.us accesses to all the memo.ries, o.nly so.me o.fthese are to. the mem­
o.ries external to the DSP, thereby reducing the interco.nnectio.n requirements 
to' external devices. ' 

On-chip. memo.ries help in running DSP algo.rithms faster than when the 
memo.ries' are lo.cated o.ff-chip. This is because o.n-chip memo.ries can have 
dedicated address and data buses unlike o.ff-chip memo.ries, who.se buses 
are o.ften multiplexed to. reduce the pin count o.n the DSP. There are several 
issues related to. the design o.f o.n-chip memo.ries; two o.f these are co.nsidered 
next. 

Speed 

The o.n-chip memo.ries sho.uld match the speeds, o.f the ALU o.peratio.ns in 
o.rder to. maintain the single-cycle instructio.n executio.n requirement o.f the 
DSP. Ho.wever, this is no.t a serio.us co.nstraint because executio.n times o.f 
co.mplex arithmetic o.peratio.ns such as multiplicatio.n are generally Io.nger 
than memo.ry access times. In fact, very o.ften, mo.re memo.ry accesses than 
o.ne are po.ssible within a single instructio.n cycle, as will be explained later. 

Size 

Size is a majo.r co.nstraint fo.r on-chip memo.ries. In a given area o.f a DSP chip 
as many DSP functio.ns as' po.ssible must be packed in o.rder to. get the best 
Po.ssible perfo.rmance. On the o.ther hand, the mo.re area occupied by the o.n- . 
chip memo.ry. the less will be the area available fo.r ~e o.ther func:tio.ns.The 
sizes o.f the o.n-chip memo.ries are bptimized taking into. acco.unt the speed 
advantage, but witho.ut co.mpro.mising any essential features required o.n the 
DSP. 

4.4.2 Organization of the On~Chip Memory 

Ideally, the entire memo.ryrequired to. implement a DSP algo.rithm sho.uld re­
side o.n-chip. This means, that the o.n-chip memo.ry sho.uld be partitio.ned into. 
pro.gram and data spaces. If necessary, the data memo.ry should be further 
divided into. separate areas for sto.ring data samples, co.efficients, and results. 
This way, an instructio.n with two. o.perands can be fetched and executed and 
the result saved all in a single cycle. Writing the pro.gram and data intothe 
o.n-chip memo.ries is done befo.re'the program executio.n.. Likewise, the results 

http:witho.ut
http:functio.ns
http:o.peratio.ns
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are read off the on-chip memory after the program execution is completed. 
However, . this scheme is not practical because the different memory blocks 
and their buses take an enormous amount of chip area, thereby limiting the 
scope of other functions that are to be provided on the chip. There are several 
other ways in which the on-chip memory can be organized efficiently and ina 
cost-effective manner. 

1. 	Many DSP algorithms require repeated executions of a single instruction 
such as the multiply and accumulate or a loop consisting of a few in­
structions. The result is normally saved only after the repetitions are 
completed. It is, therefore, sufficient to provide only two blocks of on­
chip memories to hold the operands required for the execution of the 
instructions. The instruction or instructions required to carry out the 
repetitive calculations can reside in the external memory and, once 
fetched, can be repetitively used by keeping them in an . instruction 
cache. Since the result is to be saved less frequently, there is no need to 
provide a separate memory for this purpose. 

2. 	On-chip memories can be designed such that they can be accessed 
more than once in an instruction cycle. This way, fewer memory blocks 
can serve to hold the program, the operands, and results. This means 
that their access times should be sufficiently small to match the tim­
ing requirements of single-cycle instruction execution. Considering the 
advances made·in memory design technology, it is possible to integrate 
dual-access on-chip memories on today's commercial DSPs. For exam­
ple, let us assume that there are two on-chip memories and two buses in 
a DSP device. If each of these memories is fast enough to be accessed 
twice in each instruction cycle, execution of a multiply instruction that 
includes an instruction fetch, two operand fetches, and a memory access 
to save the result can be completed in one clock cycle. 

3. 	On-chip memories can be configured for different uses at different times 
. 	 dependiI1.g on the requirements. For example, if a DSP has t\vo blocks of 

on-chip memory, ordinarily one of them will be configured ~ program 
memory and the other as the data memory. However, for exe~ution of 
instructions, which requires two operands to be fetched simultaneously, 
they can both be configured as data memories. The instruction itself 
can be fetched from an external memory or it can reside' in an on-chip 
cache. . 

In addition to program memory and data memories, DSP architecture 
should provide for a separate stack that can be directly accessed by the pro­

.. gram counter. This provision can considerably reduce the overhea:ds during 
, the subroutine an~ interrupt calls and returns. If the cost becomes an issue in 

the I:hoice of access times required for memories in a multiple memory sys­
tem, it is preferable to provide faster memories for those segments that are 
more frequently accessed than the others. 
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4.5 Data Addressing Capabilities 

The"data processed by a digital signal-processing scheme typically consist of 
signal samples and filter coefficients. An efficient way of accessing data while 
performing computations can go a long way in the overall performance of an 
implementation. The provision of flexibility in accessing data helps in writing 
efficient programs for various applications. The data addressing capability -of a 
programmable DSP device is provided by means of its addressing modes. The 
addressing modes that can enhance DSP implementations consist of immedi­
ate,register, direct, and indirect addressing modes. We now discuss each of 
these modes. These modes are summarized in Table 4.1. 

Table 4.1 Summary of DSP Addressing Modes 

Addressing Sample 
Mode Operand Format Operation 

Immediate Immediate value ADD#imm #imm+A A 

Register Register contents ADD reg reg + A ..... A 

Direct Me.mory address contents ADDmem mem+A ..... A 

Indirect Memory contents with ADD *addrreg *addrreg+A A 
address in the register 

Notations used in describing the operation in the table: 

#imm = value represented by imm, 

reg = contents of register reg. 

mem contents of memory location with address mem, and 

*addrreg = contents of memory location whose address is the contepts of address 

register addrreg, 

..... represents the transfer from left to right. 


4.5.1 Immediate Addressing Mode 

The capability to include data as part of the instruction is provided by the 
immediate addressing mode. For example; a DSP processor may allow the 
programmer to write the instruction 

ADD #imm 

to ,add the value represented by imm to the accumulator register, A. In other 
words, the operation 

#imm+A -7 A 

is implemented. In such' an addressing mode data has to be a fixed number 
known at the time of writing instructions. Filter coefficients are examples of 
this kind of data. 
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4.5.2 Register Addressing Mode' 

In the register addressing mode a processor register provides the operand. 
Using this addressing mode the DSP processor may provide an instruction 

ADD reg 

to implement 

reg+A -+ A 

4.5.3 . Direct Addressing Mode 

In the direct addressing mode a memory operand is specified by providing its 
memory address. For instance a DSP processor may allow an instructio~ 

,ADD mem 

to implement 

mem +'A -+ A 

A signal sample stored in a memory location can be accessed using direct 
addressing mode. This mode. however. requires an explicit knoWledg~ of the 
memory address. memo . 

4.5.4 Indirect Addressing Mode 

In the indirect addressing mode an operand is accessed usin~ a pointer. A 
pointer is typically a z:egister that holds the address of.the location where the 
operand resides. For example. to add to the accumulator. A. the content of the 
memory location whose address is held in addrreg.the following'Instruction is 
implemented: 

ADD *addrreg 

which means 

*addrreg +A -+A 

In order to use this. addressing mode; addrreg needs to be loaded before the 
use. Any memory location can be accessed by simply changing the register 
contents. 

. The indirect addressing mode caD. be enhanced by providing an automatic 
capability to manipulate the pointer register just before (pre) or just· after 
(post) the use. The pointer register may be incremented or decremented. It 

-.--~-.---
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may also be possible to add or subtract the contents ofanother register (offset 
register) provided in the architecture. This leads to the following enhanced 
indirect addressing modes: 

PosCincrement addressing mode, 


PosCdecrement addressing mode, 


Pre_increment addressing mode, 


Pre_decrement addressing mode, 


PosCoffseCadd addressing mode, 


PosCoffsecsubtract addressing mode, 


Pre_offsecadd addressing mode, and 


Pre_offsecsubtract addressing mode. 


These enhanced indirect addressing modes, !!r~ ~~~m~rized in Table 4.2. 

Table 4.~ Enhancements to Indirect Addressing Mode 

Addressing Mode Sample Format Operation 

PosUncrement ADD *addrreg+ 

PosCdecrement ADD *addrreg-, 

: Pre_increment ADD +*addrreg 

Pre_decrement ADD *addrreg 

Poscadd_offset ADD *addrreg, offsetreg+ 

A+­

A +*addrreg, 


addrreg+­


addrreg+ 1 


A+-· 

A +*addrreg, 


addrreg+- . 


addrreg- 1 


addrreg+­


addrreg+ 1, 


A+­

A +*addrreg 


addrreg+­


addrreg- i, 


A+­

A+ *addrreg 


. A+­

A + *addrreg, 

addrreg +- addrreg + offsetreg 

(continued) 
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Table 4.2 Ccmtinued 

Addressing Mode Sample Format 	 Operation 

PoscsubtracCoffset ADD *addrreg, ojJsetreg- A<­

A + *addrreg, 

addrreg <-. 

addrreg - offsetreg 

Pre_add_ojJset ADD offsetreg+, *addrreg 	 addrreg+­

addrreg + offsetreg, 

A<­

A +*addrreg 

Pre,-sJbtraccojJset ADD ojJsetreg-, *addrreg addrreg<­

addrreg offsetreg, 

A<­

A +*addrieg 

In order to realize the indirect addressing mode and its enhanced versions 
in a DSP architecture, additional hardware operating in conjunction with its 
addressing unit is required. For example to provide pre_offsecadd addressing 
mode, an a3der· and· another register to hold the offset are ne.eded. It also 
means extra time for operand accessing or, alternatively, the need for com­
puting the operand address using a dedicated address arithmetic unit working 
in parallel with the main arithmetic unit. 

I> Example 4.9 What are the memory addresses of the operands in each of the following 
cases of indirect addressing modes? In each case, what will be the content of 
the addrreg after the memory access? Assume that the initial contents of the 
addrreg and the·0ffsetreg are 0200h and OOlOh, respectively .. 

a. ADD *addrreg-. 

b. ADD+ *addrreg 

Table 4.3 Solution fol' Example 4.9 

lnstruction 
Addressing 
Mode Operand Address 

Contents of addrreg 
after the Memory 
Access 

a PosCdecrement 0200h 0200h- Ih =OlFFh 

b Pre...:.increment 0200h + Ih = 0201h 0201h 

d Pre_add_offset 0200h + lOh 0210h 0210h 

d PosCsubtracCoffset 0200h 0200h ­ lOh = OlFOh 
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c. ADD offsetreg+, *addrreg 

d. ADD *addrreg, offsetreg-

Solution The sohltion is given in Table 4.3. 

4.5.5 Special Addressing Modes 

In addition to the addressing modes mentioned earlier, special addressing 
modes are provided in the architecture of a DSP to implement real-time signal 
processing and to compute DFT using FFT algorithms. Real-time signal proc­
essing is enhanced by the provision ofa circular buffer and the addressing 
mode that goes with it. The FFT implementation requires data to be accessed 
,in a nonsequential, yet regular, manner. The data for FFT is accessed by what 
is called as bit-reversed index. A bit-reversed addr~ssing mode is generally 
provided in the architecture to support FFT implementations. Similarly, to 
proce!;stwo-dimensional data, it will be .advantageous to provide a special 
addressing mode that can help access data· organized in a matrix form. Now 
we consider two of these special addressing modes. 

Circular Addressing Mode 

The provision of a circular buffer allows one to handle a continuous' stream of 
incoming data samples. In acircular buffer, successive data samples are stored 
in sequential buffer locations until the end of the buffer is reached. After 
reaching the end we start all over from the beginning, of the buffer. This pro­
cess can go on forever as long as the data samples get processed in a timely 

. manner at a rate faster than the incoming data. To access a data sample from a 
circular buffer, a circular addressing mode is of great help. The implementation 
of such an addressing mode in hardware requires three registers: a pointer reg­
ister (PNTR) to keep track of current address, a start, address register (SAR) to 
hold the start address of the buffer, and an end address register (EAR) to hold 
the end address of the buffer. The pointer register should have the capability of 
getting incr~mented/decremented. Different forms of the indirect addressing 
mode for the pointer register are required in order to update the pointer for 
different applications. The pointer~updating algorithm is given in Figure 4.9. 

The different cases that are encountered during the updating process of the 
pointer are shown in Figure 4.10. These cases are: 

1. SAR < EAR, and updated PNTR > EAR 

2. SAR < EAR, and updated PNTR < SAR 

3. SAR > EAR, and updated PNTR > SAR 

4. SAR > EAR, and updated PNTR < EAR 

The buffer size in the first two cases = (EAR - SAR + 1) and in the last two it 
is = (SAR - EAR + 1). 
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; Pointer Updating 	Algorithm for the Circular Addressing Mode 

Updated PNTR +- PNTR ± increment 
If SAR < EAR 

and .if Updated PNTR > .EAR, then 
New PNTR +- Updated PNTR - Buffer size 

and if Updated PNTR < SAR, then 
New PNTR +- UpdatedPNTR,+ Buffer size 

If SAR > EAR 
and if Updated PNTR'> SAR. then 

NewPNTR +-UpdatedPNTR - ·Buffer size 
and if ,Updated PNTR < EAR, then 

, New PNTR +- UpdatedPNTR + Buffer si ze 
Else 

New PNTR +-Updated PNTR 

Figure 4.9 	 Register pointer updating algorithm for circular buffer addressing mode. 
SAR = start address register contents, EAR = end address register contents, 
PNTR = pointer' , ' 

[> Example 4.10 	 A DSP has a circular buffer with the start and the end addresses as 0200h and 
020Fh, respectively. What woUld be the new values of the address pointer of 
the buffer if, in the course of address computation, it gets updated to (a) 
'0212h, (b) OlFCh? 

Solution 

The bUffer length = 020Fh - 0200h + 1 = 10h 

, ,a. The new value of the pointer is updated value - buffer length, i.e., 
0212h-0010h 0202h. 

b. The 	 new value of the pointer is updated value + buffer length, i.e" 
OlFCh + 0010h .-:- 020Ch. 

[> Example 4.11 

"Solution 

Repeat the pr~blem of Example 4.10 if the start and end addresses of the cir­
cular buffer are 0210h and 0201h, respectively. . 

a. 	The new value of the pointer is the updated value - buffer length, i.e., 
0212h - 0010h = 0202h. 

b. The new value of the ,pointer is the updated value + buffer length, i.e., 
OlFCh + OOloh = 020Ch. 

Note that these values are the same as those in the previous example. This 
shows th'at in a '-circular buffer, the address pointer wraps around to point to 
an address inside the buffer, irrespective of whether the buffer start address is 
hi~er or the end address is higher. 
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Low address 

SAR .. , 

NewPNTR ... 1 J"Equal 
EAR ...1 -1/ 

Updated PNTR ..'nnnmj} 
High address 

Case 1: SAR < EAR, and Updated PNTR > EAR 

Low address 

High-address 

Case. 2: _SAR < EAR, and Updated PNTR < SAR 

Figure 4.10 	 Different cases that arise in updating the pointer in circular buffer addressing 
mode (continued) 

Bit-Reversed Addressing Mode 

Special data access capability is needed in the FFT algorithm implementation. 
In the algorithm called decimation in time (DIT) FFT, the natnrally ordered 
data needs to be accessed according to the indices, as shown in Table 4.4 for 
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EAR 

NewPNTR 

SAR 

Updated PNTR 

Low address 

"I :}".. ' 
Equal 

... I . 
I } / 

.. 

High address 

Case 3: SAR > EAR, and Updated PNTR > SAR 

LoW address 

Updated PNTR "---------, } 
EAR " Equal... 

NewPNTR .. I 1··/
}

SAR .. 
Hi~address 

Case 4: SAR > EAR, and Updated PNTR < EAR 

. figure 4.10 Contin'ued 

an 8-point FFT. That is. in the case of an 8-point FFT. the input data x{O). 
x(I).x(2),x(3). x(4). x(S), x(6). and x(7) need to be accessed in the order x(O), 
x(4),x(2), x(6). x(l), xes). x(S), and x(7). The interesting point is that the 
indices describing the order of data. access can be obtained as follows: start 
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Table 4.4 Index Computation Using Bit-Reversed Addressing Mode for an 8-point FFT 

Input Index Output Index 
(natural order) (bit-reversed order) 

000=0 	 000= 0 

001 = 1 	 100 4 

010 2 	 010 = 2 

011 = 3 	 110=6 

100= 4 	 001 

101 = 5 101 = 5 

110 = 6 011 3 

III 7 111 = 7 

with index 0, obtain each current index by adding (in a special way) half the 
size of the FFT to th~ corresponding previous index, i.e., 

Current ,index = previous index + B(l/2(FFT size» (4.8) 

The addition J;towever, is different in the sense that during addition the carry 
must propagate from the most significant to the least significant bit. 

The reverse-carry-add operation can be provided in: the architecture to 
implement this special addressing mode. The architecture will require a regis­
ter to keep track of the index at any time in addition to the capability to 
propagate the carry in the reverse direction during the add operation in order 
to generate the next index to be used to access data. To provide this capability 
in parallel with the instruction execution, a special address generation unit is 
employed. 

t>Example 4.12 	 Compute the sequence in which .the input data should be ordered for a 16­
point DIT FFT. 

Solution 	 Assuming that the first sample .is located at address O,the next sample should 
be located at address 0+ B(length of FFT/2) = 0 +8 = 8. This address can be 
arrived at by carrying out binary addition with reverse carry propagation as 
follows:. 

Initial address in binary = 0000 

Half the length of the 'FFT in binary = 1000 

Next address (add with reverse carry propagation) = 1000 

To compute the address of the third sample, repeat the operation. 

Initial address in. binary 1000 
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Half the length of the FFT in binary = 1000 

Next address '(add with :reverse carry propagation) 0100 

The process is repeated until the addresses of all the 16 samples are computed. 
Table 4.5 gives the results. 

Table 4.5 Solution for Example 4.12 

Sample Binary Hexa-decimal 

Number Address Address 


0000 0 

2 1000 8 

3 0100 4 

4 1100 C 

5 0010 2 

6 1010 A 

7 0119 6 

8 1110 E 

9 0001 

10 1001 9 

11 0101 5 

12 1101 D 

13 ()Oll 3 

14 1011 B 

15 0111 7 

16 1111 F 

4.6 Address Generation Unit 


The function of the address generation unit is to provide the addresses of the 
operands required. to carry out the DSP operations. Since many instructions, 
such as the mUltiply instruction, require more than one operand for their ex­
ecution, the address generation unit should work fast enough to provide the 
addresses within the time constraints imposed by the instruction execution 
requirements. _ _ 

Further, in a DSP implementation, the address generation unit may be 
required to perform some computation of its own in order to arrive at the 
operand addresses. This is because of the need for the various enhancements 
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to the indirect addressing mode as well as some special addressing modes; 
such as the circular addressing mode and the bit-reversed addressing mode. 
These special f.eatures were discussed in Section 4.5. In order to carry out the 
computations required for the specialized addressing modes the address gen­
eration unit in a DSP implementation is provided with a separate arithmetic 
unit of its own. This way, address computation overhead is removed from the 
main ALU, thereby allowing ino perform more efficiently. 

Address generation typically involves one of the following operations: 

l. 	Getting a new value from an immediate operand, a register, or a mem­
ory location. 

2. 	 Incrementing or decrementing the current address. 

3. 	Adding or subtracting an offset to the current address. 

4. 	Addmg or subtracting ail offset to the current address, comparing the 
new address with the limits defined for a circular addressing mode, and 
generating a new address as per the circular addressing mode algorithm. 

5. 	 Generating a new address from the current address by applying the bit­
reversed addressing mode algorithm. 

The hardware necessary to carry out the various operations listed above 
may consist of the following: an ALU; registers to store the current value, the 
offset, and the new value; registers to store the limits of the circular buffer; 
logic to implement the circular addressing mode; and the logic to implement 
the bit-reversed addressing mode. The block diagram of a typical addressing 
unit is shown in Figure 4.11. , 

4.7 Programmability and Program Execution 

A programmable DSP device needs to provide programming capability similar 
to that of a microprocessor. It should be possible to write programs involving 
branching, loops, and subroutines. The branching capability is needed in 
order to alter conditionally or unconditionally the normal execution sequence. 
The looping operation. is desirable in order to repeat a'section of the program 
the desired number of times. The subroutine handling instructions provide 
the capability to develop'structured software. 

The imple~entation of repeat capability should be hardware based so that 
it can be programmed with minimal or zero overhead. For instance, a counter 
is needed to keep track of the number of times the execution of a block of 
iDstructions remains to be repeated. A dedicated register for this purpose can 
enhance the performance. Repeat is an operation that is needed in the imple­
mentation of many PSP algorithms, and hence its hardware implementation 
has a direct bearing on the overall performance of aDSP scheme. 
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Circular Buffer 

Length
Offset 

1 

FFr 
Length 

Mux 

Add/Sub 

Next Address .Reg 

Next Address 

Figure 4~11 Block diagram of an address generation unit 

The subroutine implementation requires saving the return address in the 
stack. ln a general-purpose microprocessor, a part of the m~ory is used to 
implement the stack. This means that to save the return address as well as 
to restore it on return, the processor requires to carry out memory read and 
write operations using the system data bus. These operations add to the 
overhead and make the overall program execution slow, thereby lowering the 
performance. For a DSP device, it is desirable that a last-in-fitst-out (LIFO) 

. buffer directly interfaces to the program counter (instruction pointer) to save 
the re~rn address. This approach avoids th~ use of the system bus for ac­
cessing the stack and thus speeds up the subroutine. branching as well as its 
retUrn. . 
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4.7.1 Program Control 

Like microproces$ors, a DSP requires a control unit, which provides the nec­
essary control and timing signals for proper execution of instructions. In 
microprocessors, the control unit is generally implemented by means. of a 
microcoded sequencer. Each instruction of the microprocessor is broken 
down into several microinstructions and stored in a microstore as a micro­
code. Whenever one of the instructions is to be executed, the corresponding 
microcode is called from the mi!::rostore and executed, in a manner very sim­
ilar to the execution of subroutines in a program. This type of control unit is 
easy to design and implement and uses less hardware. However, it is not very 
fast since execution of each instruction requires several accesses to the mi­
crostore. For a DSP, on the other hand, the speed of execution of instructions 
is a critical issue. For this reason the design of various building blocks is 
optimized for speed. In a DSP, the microcoded control unit is replaced by a 
hardwired design. In a hardwired design, the control unit is designed as a 
single, comprehensive, hardware unit taking into account the complete in­
struction set of the DSP. Although the hardware complexity is high and the 
design· is not easy to change to incorporate additional features, this works 
much faster compared to the microcoded design and reduces the overhead for 
the instruction execution time. 

4.7.2 Program Sequencer 

The program sequencer, which is a part of the control unit, generates instruc­
tion addresses in the sequence needed to access instructions. Normally, in­
structions are executed in the. orde.r in which they are stored in the memory. 
However, there are several exceptions to this normal flow. Examples are sub­
routines, loops, and branching. The program sequencer hardware computes 

. the instruction address under various conditions. 
After fetching each instruction from the program memory, the sequencer 

generates the address from which the. next instruction is to be fetched. The 
next address is from one of the following sources: 

1. 	The program counter, which is incremented after each instruction fetch. 

2. 	The· instruction register, which holds the address of the instruction in 
·branching, looping, and· subroutine calls. 

3. 	The interrupt vector table, in the case of interrupt service routines. 

4. 	The stack, which holds the return addresses in the case of return from 
subroutines, return from interrupt service routines, and end of loops. 

Figure 4.12 shows the block diagram ·of a program sequencer. The program 
sequencer, in effect, acts as a multiplexer, which selects the address ofthe next 
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Address. . RET ------II>­

Stack 
IRET ------II>­

AddressInterrupt 
Interrupt Vector- Table 

AddressJMP ,------II>­
Instruction ' 

CALL ------II>­

PC IAddress 
~Increment~I 

" 

Multiplexer 

, 

Next Address 

Figure 4.12 A conceptual diagram of a program sequencer 

instruction to be obtained from one of the sources listed above. In order to 
carry out this task, several hardware ,features are incorporated in the program 
sequencer. The program counter has to be updated after every fetch. Circuitry 
is provided for this purpose. Counters are provided to hold the counts in the 
case of loop and repeat instructions. Stacks push: the return addresses for 
subroutines and interrupt service routines and while executing loops and re­
peat instructions. The program sequencer also requires a logic block to test 
conditions under which jump and loop instructions are executed as well as to 



4.8 Speed Issues 95 

determine when· to terminate loop and repeat instructions. This logic, called 
the condition logic, tests variQusarithmetic conditions by means of staWs flags 
to decide if conditional jump and loop instructio.n& are to be executed: This 
logic also monitors repeat and loop counters to determine when these have to 
be terminated to return to the normal program flow. 

4.8 Speed Issues 

Fast execution of algorithms is an essential requirement of Ii digital signal­
processing architecture. In order to meet this requirement, DSP architecture 
must include features that facilitate high speed of operation and large through­
puts. Many of these features are possible due to advances in VLSI technology 
arid design innovations. In this section, we will discuss some of these features 

. and see how they can increase the eXecution speed of the DSP architecture. 
We shall 'also discuss certain trade-offs between speed and performance in 
relation to some of these features. 

4:8.1 Hardware Architecture 

Functions such as multiplication, scaling, loops . and repeats, and special 
addressing modes are essential for signal-processing algorithms. The archi­
tectures designed 'tor the signal-processing applications should implement 
these functions in the quickest possible time. This is achieved by hardware 
units, which are specially designed to implement these functions. For example, 
conventional microprocessors implement' the multiplication by means of a 
microprogram (microcode) using the well-known shift and add algorithm. 
This approach takes a large number of clock cycles to implement. In order 
to increase the speed of the operations considerably, parallel multipliers have 
been used to carry out the entire multiplication in a single clock cycle. Thanks 

. to breakthroughs. in VLSI technology, this is possible today. Similar hardware 
. solutions have also been found to implement the other functions mentioned 

eatlier to reduce overheads and to increase the speed. Such methods typically 
replace the slow microprogrammed solutions used in conventional micro­
processors. 

Harvard architecture, which separates the ptogramand data memories with 
separate buses for each, increases the speed of execution of programs consid~ 
erably. Dual data memories with individual buses for each help in accessing 
dual operands simultaneously: 

Multiple external memories require multiple buses external to the DSP. In 
addition to being expensive, external buses are slow for program access and 
execution. By providing oncchip memories and an instruction cache,program 
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execution is speeded up considerably. Further, these on-chip memories can 
also be accessed twice in a clock cycle, thereby reducing the number of sepa­
rate memories and buses required in a device. 

In addition to the hardware issues mentioried earlier, there are many tech­
niques used in nsp architectures tei increase their spee4 of operation. We shall 
consider two of these techniques: parallelism and pipelining. 

4.8.2 Parallelism 

A very major requirement to achieve high speed of operation fu DSP archi­
tecture is the provision of parallelism. Parallelism may mean. several things. 
One is the provision of functional urrits, which may operate in parallel and 
increase the throughput. For example, instead of the same arithmetic unit 
being used to do computations on data and address, a separate address arith­
metic unit can be pz:ovided to take care of address computations. This frees 
up the main arithmetic unit to concentrate on data computations alone and 
thereby increases the throughput. Another example, whichw.as discussed ear:­
lier; is the provision of multiple memories and multiple buses. to fetch an 
instruction and operands simultaneously. In short, there are many functional 
blocks 6perating simultaneously for each of the most commonly used DSP 
operations, , such as add, multiply, shift, etc. This way, algorithms can perform 
more than one operation at the'same time, such as adding while carrying out a 
multiply, shifting:while reading data, from memory, etc. . 

Availability of multiple functional units can increase the speed of the DSP 
architectures. They should be exploited to their full potential by structuring 
the instructions to carry out the required operations in parallel. This requires 
complex hardware to control these units, and the cqntroller is hardwired 
rather .than microprogrammed in order to ensure high speed. The architecture 
should be such that instructions and data required for a computation are 
fetched from the memory simultaneously. 

An ideal parallelism in the DSP architecture with regard to ihe multiply 
and acclUllulate operation, which is the most used operation in DSP im­
plementations, should be able to accomplish the following operations in a 
single clock cycle: 

• 	 Fetch instructions and multiple data required for the computation 

• 	 Shift data as they are fetched in order to accomplish scaling 

• 	 Carry out a multiplication operation on the fetched data 

• 	 Add the product to the previously computed result in the accumulator 

• 	 Save the accumulator contents in the memory storage, if required, and 

• 	 Compute new addresses for' the instruction and data required for the ' 
next operation 

http:whichw.as
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4.8.3 Pipelining 

An architectural feature to increase the speed of the DSP algorithm is pipe­
lining. In a pipelined architecture, an instruction to be executed is 'broken into 
a number of steps. A separate unit of the architecture performs each of these 
steps. When the first of these units performs the first step on the current in­
struction, the second unit will be performing the second step on the previous 
instruction, the third unit will be performing the third step on the instruction 
prior to that, etc. If p steps were required to complete the execution of each 
instruction, it would take p units of time for the complete execution of each 
instruction. However, since all the units will work all the time, one output will 
flow out of the architecture at the end of each time unit, and the throughput 
can be maintained as one instruction per unit time. A problem with this 
approach is dividing each instruction into steps taking equal amounts of time 
trr perform and designing the architectural units accordingly. In practice, 
however, this may not be entirely possible and the slowest unit decides the 
throughput. A second problem is the extra time required at the start of algo­
rithm execution, as the pipeline has to be filled before the result of the first 
instruction can start to flow out. This initial delay in units of time, called the 
pipeline latency, is related to the number of units in the pipeline. Likewise, 
when there is a change in the instruction sequence, as in the case of a branch 
or a loop, the pipeline needs to be c1e,aredbefore the steps of the new instruc­
tion can be loaded into the pipeline, thereby causing a delay. This condition 
can, however, be avoided, at the cost of additional hardware to anticipate the 
branch instruction ahead of time and not filling, the pipeline beyond the 
branch instruction. As an example, let us assume that the execution of an in­
struction can be broken into five steps: instruction fetch, instruction decode, 
operand fetch, execute, and save the result. Figure 4.13 shows how a pipelined 

Time Slot Step 1 Step 2 Step 3 Step 4 Step 5 Result 

to . Insf1 

t1 Inst 2 Inst 1 

t2 Inst 3 Inst 2 Inst 1 

t3 Inst4 Inst 3 Inst 2 Inst 1 

. t4 Inst 5 Inst 4 Inst 3 Inst 2 Inst 1 Inst 1 complete 

ts Inst 6 Inst 5 Inst 4 Inst 3 Inst 2 Inst 2 complete 

• • • • • • • 

Figure 4.13 Pipelining for speeding up the execution of an instruction 
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processor will handle this. For the sake of simplidtywe will assume that all 
the steps take equal amounts of time. 

As we can· see from the figure, the output corresponding to the first in­
struction is available after 5 units of time. However, once the resUlt starts to 
come out, we get an output after each unit of time. In other words, the steady­
state throughput of the system is one instruction per unit time. 

4.8.4 System Level Paralielisman,dPipelining 

The panillelism and·pipelining concepts explained in the last two subsections 
can be extended to the implementation .of DSP . algorithms. Consider the ex-. 
ample of an 8-tap (8 coefficic:nts) FIR ,filter given by 

1 

y(n) L h(i)x(n - i) (4.9) 
1=0 

The filter can be implemented in many ways depending on the number of 
multipliers and· accumUlators available~ Let us look a1 some of these im­
plementations. 

Implementation Using a Single MAC Unit 

If only one multiplier and accumulator· is available, it must be used 8 times to . 
compute the eight product terms in Eq. 4.9 and find thdr sum. Figure 4.14(a) 
shows such an implementation. Each input sample is delayed from the previ­
ous sample by 8T, where T is the time taken by the multiplier and accumula­
tor to compute one product term and add it to the previC!usly accumulated 
sum in the accumulator. Input samples and the filter coefficients are fed to the 
multiplier through multiplexers, which are controlled such that the correct 
combination of a sample and the corresponding filter coefficient are fed to th_e 
multiplier at a given time. As each product term is generated, it is added to 
the previously accumulated sum in the MAC unit After·alI the eight product 
terms are accumulated, the MAC contents are available as the output. Output 
y(n) is available 8T units of time after x(n) is made available to the filter. 
At this time, a new sample x(n + 1) is applied to the filter. The filter then 
uses eight samples, namely, x(n+ 1), x(n), x(n 1), ... , x('n - 6) to compute 
y(n + 1) after another 8T units of time. Thus, this implementation can take in 

. a fresh input sample once every 8 T units of time and generate an output 
sample at thesarne rate. In other words, the maximum sampling rate that 
this filter implementation can handle is lI8T. 
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Figure 4.14(a) . Single MAC implementation of an 8-tap FIR filter 
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. Figure 4.14(b) Pipelinedimplementation of an 8-tap FIR filter using eight MACs 



100 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices 

h(O}. h(l) h(2) h(3) 

Multiplexer.. 

Multiplexer 

Multiplexer 

Multiplexer 

. h(7) h(6) h(5) h(4) 

(e) 

I---..~y(n) 

Figure 4.14(c) Parallel implementation of an 8-tapFIR filter using two MAC units 
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Pipelined Implementation Using Eight Multipliers and Eight 
Accumulators 

The implementation of the FIR filter of Eq. 4.9 can be speeded up if more 
multipliers and accumulators are available. Let us assume that there are eight. 
multipliers and eight accumulators connected in a pipelined structure, as 
shown in Figure 4.14(b). Each multiplier computes one product term and 
passes it on to the corresponding accumulator, which in turn adds it to the 
summation passed on from the previous accumulator. Since all the multipliers 
and accumulators work all the time, a new output sample is generated once 
every T units of time. This is the time required by the multiplier and accu­
mulator to compute one product term and add it to the sum passed on from 
the previous stage of the pipeline;This implementation can take in a new in­
put sample once every T units of time and generate an output sample at the 
same rate. In other words, this filter implementation works S times faster than 

. the simple one MAC implementation. 

Parallel Implementation Using Two MAC Units 

A third implementation of the FIR filter of Eq. 4.9 is shown in Figure 4.14(c). 
This implementation uses two MAC units and an adder at the output. Each 
MAC computes four of the eight product terms in Eq. 4.9. Input samples and 
the filter coefficients are fed to the MAGs using multiplexers that are con­
trolled such that correct combinations of samples and the corresponding filter 
cqefficients are fed to the two MACs at any given time. If T tin1e units are 
required to compute one pair of products and add them to the previously 
accumulated sum in the MAC units, it will require 4T units of time to generate 
the final output by adding the outputs of the two MACs. At this time, a new 
input sample can be applied to the filter for computation o( the next out­
put sample: The speed of thi~ implementation is 2 times that of one MAC· 
implementation of Figure 4.14(a) and one fourth of that of the pipelined eight­
multiplier. eight-accumulator implementation of Figure 4.l4(b). The maxi~ 
mum rate at which input samples can be applied to this filter implementation 
is 2 times that of the first implementation and one fourth that of the second. 

Table 4.6 Performance Summary of Different Implementations of an 8 -tap FIR Filter 

Type of Maximum 
Implementation Sample Rilte Maximum Throughput 

One MAC lI8T One sample in· 8T units of time 

Pipelined (8 Multipliers liT One sample in T units of time 
and 8 Adders) . 

Two MAC 1I4T One sample in 4T units of time 

T MAC time 
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Table 4.6 summarizes the performance of the three implementations de~ 
scribed above. The example shows that it is possible to achieve higher-speed 
implementation by the use of parallelism andlor pipelining. This, however, 
incteases the hardware complexity. 

4.9 Features for External Interfacing 

It is important for a DSP device to be able to communicate with the outside 
world. The outside world provides the signal to be processed and receives the 
processed signal. Therefore, most of the peripherals used with conventional 
microprocessors are also needed in a DSP system. These peripherals include 
interfaces for interrupts, direct memory access, serial I/O, and parallel I/O. In 
addition, since DSP is a digital device that is expected to process analog sig­
nals, conversions from analog-to-digital and digital-to-analog representations 
need to be carried out outside the device. From signal interfacing viewpoint, a 
DSP device should be capable of handling commonly available serial and par­
allel signal converters. All these features require the availability of appropriate 
address, data, and control signals to set up interfaces with the peripherals. The 
inclusion of a timer in the architecture is also very desirable to implement 
events at regular intervals, such as periodically initiating an AID converter to 
start the conversion. A timer should be able to interrupt the processor to get 
its attention when needed so that the data acquisition can go on in the back­
ground simultaneously with the execution of the signal-processing program. 

4. 1 0 Summary 

In this chapter, architectural features of programmable DSP devices have been 
examined based on the most frequently used DSP operations. Computational 
building blocks and other functional units have been described along with 
examples of i11;lplementations. Bus architecture and memory organization are 
explained to show how they help in realizing fast implementations of DSP 
algorithms. Trade-off' between complexity and speed has also been discussed 
to show how the architectural features of programmable DSP devices can be 
optimized fot efficient implementations. , 

In summary, the following is a list of architectural features of a program­
mable DSP device that should be evaluated before implementing an algorithm: 

• 	 Data representation format: fixed-point, floating-point formats and data 
word length for accuracy and dynamic range. 

• 	 Computational capability: an ALU with. a hardware multiplier and 
shifters for scaling. 
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• 	 Harvard architecture: provision of separate D;lemories for program arid 
data to fetch instructions and data simultaneously. . 

• 	 On-chip memories: provision of on-chip program and data memories to 
avoid bus contention and to speed up program execution. 

• 	 Addressing modes: data addressing capabilities including indirect, in­
dexed, circular buffer, and bit-reversed addressing modes. 

• 	 Programmability: programming capabilities including subroutines, 
branching, loops and repeats. 

• 	 Hardwired control: fast implementation of sequencing and control for 
single-cycle instruction execution. 

• 	 Parallelism: multiple functional units for parallel implementation of 
different functions such as simultaneous execution of an arithmetic 
operation and an address computation. 

• 	 Pipelining: simultaneous operation of different stages of an instruction 
execution by splitting it into steps handled by individually designed 
units. 

• 	 Interfacing: provision to interface serial devices such as AID and D/ A 
converters; parallel I/O, interrupt, and direct memory access. 
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Assignments 

4.1 	 What distinguishes a digit'al signal processor from a general-purpose micro­
processor with regard to basic capabilities? 

4.2 	 Specify the basic architecture required to implement the following operations 
so that they ~an be executed in the least possible time: 

a. 	 (Xl + jYl)(X2 + jY2) 

b. 	(0.5Xl + 4x2)/256 

4.3 	 Draw a structure similar to that of Figure 4.1(b) for an 8 x 8 unsigned binary 
multiplier. 

4.4 	 How will you implement an 8 x 8 multiplier using 4 x 4 multipliers as the 
building blocks? 

4.5 	 Suggest a scheme to implement a multiplier to multiply two complex numbers 
using the multiplier shown in Figure 4.1(b) as the building block. 

4.6 	 Draw a structure based on Eq. 4.7 to' multiply two 4-bit signed numbers, A 
and B. 

4.7 	 a. Assuming the availability of a single 16-bit data bus, how many memory . 
accesses will be required to access two 16-bit operands from the mem­
ory, multiply them, and save the 32-bit product back in the memory! 

b. Suggest. a 	suitable hardware scheme to implement the multiplication 
specified in part (a). 

4.8 	. Figure 4.3(b) shows the structure of a 4-bit barrel shifter. The switches shown 
connect each input bit ~o one ofthe output lines, depending on the number of 
bits to be shifted. Suggest a suitable hardware scheme for the switches and 
redraw Figure 4.3(b) by replacing the switches with its hardware. Also show 
how the control inputs control the switches to achieve the desired shift. 

4.9 	 What should be the minimum width of the accumulator in a DSP device that 
receives lO-bit AID samples and is required to add 64 of them without causing 
an overflow? 

4.10 	 a. What is meant by -overflow in an arithmetic computation? How is an 
overflow condition detected in an ALU? 

b. 	By means of numerical examples using 8-bit, 2's complement numbers, 
illustrate the conditions of (i) no overflow, (ii)' overflow, (iii) no under­
flow, and (iv) underflow resulting from arithmetic operations in an ALV. 
In each case; verify if the circuit of Figure 4.6 can detect the condition. 
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4.11 	 Suggest the memory architecture reqUired for a DSP device to implement each 
of the following algorithms: 

a. N-tap FIR filter 
b. 2M_point FFT 

c. autocorrelation of a segment ofN samples 

d. crosscorrelation of two sequenc~s of N samples each. 

4.12 	 Figure 4.8(c) allows for an instruction and two operands to be fetched simul­
taneou$ly from the memory to. the DSP to execute a multiply instruction in a 
single cycle. However, to save the result in memory, one mere memory access 
is required. Can you specify an architecture that allows the result to be written 

. back to the memory in the same cycle?' . 
. . 

4.13 	 Identify the addressing modes of the opermds in each of the following in­
structions (AR stands for address register): . 

ADD#1234h 

. ADD 1234h. 

ADD*AR+ 


. ADD offsetaddr-,*AR 


4.14 	 What is the bit-reversed sequence of32 samples Xu, Xl> X2, ••• , X31 as obtained 
by sampling a signal? . . 

4.15 	 Table 4.4 shows how bit reversing is done for 8 points. A similar algorithm 
can be used for any 2n pomtS. Specify using a block diagram how it can be 
implemented in hardware. 

4.16 	 How will you organize samplis and Iilter coefficients using a circular buffer 
addressing scheme to implement a 32 'l.p FIR filter given by 

31 

y(n) = 2.: bkx(n - k) 
k=O 

4.17 	 When a two-dimensional array of data such as a matrix is organized in a 
memory with linear (or one-dimensional) addressing, it is usually arranged in 

. a row-ordered format. That is, all the elements of the first row are placed first 
in successive memory locations, starting with the very first location. This is 
followed by the elements of the second row, and so on,' until all the elements 
of all the rows are arranged. Wri~e a pseudocode to compute the address of 
any given element of this matrix, say, the element (i, j), assuming that there 
are N rows and M columns in the matrix. . 

4; 18 	 Suggest a hardware architecture for the addressing unit that computes the 
two-dimensional address described in Problem 4.17 without the overhead re­
quired for computing it in software. 

4.19 	 Given below is the pseudocode of a software lOOp normally used in a general­
. purpose microprocessor for repetitive execution of an arithmetic operation. 
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Modify the code for a DSP with zero-overhead looping hardware: 

Load count register 

Back: 	 Get operands; Compute; Update pointers 

Decrement Count 

If Count is not zero then jump Back 

Proceed 

14.20 	 Explain the difference between a single-instruction, zero-overhead hardware 
looping and multiple-instruction, zero-overhead hardware looping in terms of 
architectural requ4'ements and the performance. . . 

4.21 	 What is the difference between a microcoded program control and a hard­
wired program control? Why is the latter preferred for DSP implementations? 

4.22 	 List the major architecturat features used in a digital signal processor to 
achieve high speed of program execution. 

4.23 	 What architectural features are required in a DSP device to implement an FIR 
filter with N taps so that a steady-state throughput of one output sample per 
cycle is achieved? 

4.24 	 List the essential peripherals required to implement the fonowing DSP sys­
tems: 

A speech processing system 

A biomedical instrumentation system 

An image processing system 
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Programmable Digital Signal· Processors 

5. 1 Introduction 

. In Chapter 4, we learned about the architectural requirements of digital signal 
processors. In this chapter, we first examine the basic architectures of three 
commonly' used commercial DSP families and s~e how they incorporate the 
various features discussed in Chapter 4. We then study in detail, the Texas 
Instruments' TMS320C54xx processors, which, while retaining all the features 
of the basic architecture, provide a number of additional features for im­
proved speed and performance. These devices will be used in the later chap­
ters of this book to illustrate programming and interfacing con,cepts. The 
topics covered in this chapter are as follows: 

Commercial digital signal-processing devices 

The architecture of TMS320C54xx digital signal processors 

Data addressing modes of TMS320C54xx processors 

Memory space of TMS320C54xx processors 

Program co~trol in TMS320C54xx processors 

. TMS320C54xx instructions and programming 

On-chip peripherals of TMS320C54xx processors 

Interrupts of TMS320C54xx processors 

Pipeline operation of TMS320C54xx processors 

5.2 Commercial Digital Signal-Processing Devices 

There are several families of commercial DSP devices. Right from the early 
eighties, when these devices began to appear in the market, they have been 
used in numerous applications, such as communication, control, computers, 

107 
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instrumentation, and consumer electronics. The architectural features and the 
processing power of these devices have been constantly upgraded bllsed, on 
the advances in technology and the application needs. However, in their basic 
versions, most lof them have Harvard architecture, a.single-cycle hardware 
multiplier, an address generation unit with dedicated address registers, special 
addressing modes, on-chip memories with off-chip expansion capability, hard­
ware support for loops, and on-chip peripheral interfaces. 

Of the various families of programmable DSP devices that are commercially 
available, the three most popular ones are those from Texas Instruments, Moto­
rola, and Analog Devices. Texas Instruments was one of tlle first to come out 
with a commercial programmable DSP with the introduction of its TMS32010 
in 1982. This was followed in 1984 by TMS32020, which liad many additional 
features compared to TMS32010, and in 1985 by TMS320C25 [1] with a speed 
improvement. by a factor of 2 when compared to the TMS32020. Since then, 
TMS320C25 has been used widely in many communication, control, and instru­
mentation applications. Likewise, around the same time, Motorola introduced 
DSP 56000 [2], and Analog Devices, ADSP 2100 [3]. Both of these devices have 
features, speed, and performance comparable to those of TMS320C25 and have 
also been used in many similar applications as the Texas Instruments' device. 

Over the years, each of these families has evolved into several devices to fit 
different application needs and constant demands for improved performance 
and speed. Although these improvements have been brought about by an in­
crease in the number of features With better performance, there have been no 
major changes in. the basic architectures of these DSP devices. Therefore. we· 
consider the architectures of TMS320C25. DSP 56000. and ADSP 2100 in order 
to get an insight into how the various features discussed in Chapter "* are in­
corporated in typical commercial DSP devices. Figures 5.1-5.3 show the basic 
architectures of the three processors respectively. Table 5.1 summarizes these 
features for the three processors. Architectures and features of these devices 
will form the basis for exploring the more advanced architecture of the 
TMS320C54xx processors in the sub,sequent sections of this chapter. 

5.3 	 Data Addressing Modes of TMS320C54xx Dig,ital 
Signal Processors 

TMS320C54xx processors retain the basic Harvard architecture of their pre­
decessor, TMS320C25, but have several additional features. which improve 
their performance over it. Figure 5.4 shows afunctio~al .block diagram of 
TMS320C54xx processors. They have one program and\three data memory 
spaces with separate buses, which provide simultaneous accesses to a program 
instruction and two data operands and enables writing oIa result at the same 
time. Part of the memory is implemented on-chip and consists of a combina­
tion of ROM, dual-access RAM, and single-access RAM. Transfers between the 
memory spaces are also possible. 
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Figure 5.2 Architecture of Motorola's DSP 56000 signal processor 

. (Courtesy of Motorola Inc.) 

The central processing unit (CPU) of TMS320C54xx processors consists 
of a 40-bit arithmetic logic unit (ALU), two 40~bit accumulators, a barrel 
shifter, a 17 x 17 multiplier; a 40-bit adder, data address generation logic 
(DAGEN) with its own arithmetic unit, and a program address generation 
logic (PAGEN). These major functional units are supported by a number of 
registers and logic in .the architecture. 
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figure 5.3 Architecture of the Analog Devices' ADSP 2100 signal processor 

(Courtesy of Analog Devices Inc) 

A powerful instruction set with a hardware-supported. single-instruction 
repeat and block repeat operations. block memory move instructions. instruc­
tions that pack two or three simultaneous reads, and arithmetic instructions 
with parallel store and load make these devices veryefficient for running high­
speed DSP algorithms. 

Several peripherals. such as a dock generator. a hardware timer, a wait 
state generator. parallel 110 ports, and serial I/O ports. are also provided on­
chip. These peripherals make it convenient to interface the signal processors 
to the outside world. 

In· the following sections, we examine in detail the various architectural 
features of the TMS320C54x:x family of processors [4.5]. 

5.3. 1 BusStructure 

The performance of a processor gets enhanced with the provision of multiple 
buses to provide simultaneous access to ,various parts of memory or periph­
erals. The '54xx architecture is built around four pairs of 16-bit buses with 
each pair consisting of a., address bus and a data bus. As shown in Figure 5.4, 
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Table 5.1 Summary of the Architectural Features of Three Fixed-Point DSPs 

Architectural Feature TMS320C25 DSP 56000 ADSP 2100 

Data representation format 16-bit fixed point 24-bit fixed point 16-bit fixed point 

Hardware multiplier 16 x 16 24 x 24 16 x 16 

ALU 32 bits 56 bits 40 bits 

Internal buses 16-bit program bus 24-bit program bus 24-bit program bus 

16-bit data bus 2 x 24-bit data buses 16-bit data bus 

24-bit global data bus 16-bit result bus 

External buses 16-bit program/data bus 24-bit program/data bus 24-bit program bus 

16-bit data bus 

On-chip memory 544 words RAM 512 words PROM 

4Kwords ROM 2 x 256 words data RAM 

2 x 256 words data ROM 

Off-chip memory 64K words program . 64K words program 16Kwords program 

64K words data 2 x 64K words data 16K words data 

Cache memory 16 words program 

Instruction cycle time 100 nsec. 97.5 nsec. 125 nsec. 

Special addressing modes Bit.reversed Modulo Modulo. 

Bit reversed Bit reversed 

Data addrE;ssgenerators 2 2 

Interfacing features Synchronous serial I/O Synchronous and DMA 
DMA asynchronous serial 

lIO DMA 

these are the program bus pair (PAB, PB), which carries the instruction code 
from the program memory, and three data bus pairs (CAB, CB; DAB, DB; and 
EAB, EB), which intetconnect the various units within the CPU. In addition, 
the pairs CAB, CB and DAB, DB are used to read from the data memory, while 
the pair EAB, EB carries the data to be written to the memory. The 'S4xx can 
generate up to two data"memory addresses per cycle using the two auxiliary 
register arithmetic units (ARAUO and ARAUl) in the DAGEN block. This en­
ables accessing two operands simultaneously . 

. 5.3.2 Central Processing Unit (CPU) 

The 'S4xx CPU is common to all the 'S4xx devices. The 'S4xx CPU contains 
a 40-bit arithmetic logic unit (ALU); two 40-bit accumulators (A and B); a 
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Figure 5.5 Functional diagram of the central processing unit of the TMS320C54xx processors 

(CourteSy of Texas Instruments Inc.) 

barrel shifter; a 11.x 11",bit multiplier; a 40-bit adder; a compare, select and 
store unit (CSSU); an exponent encoder (EXP); a data address generation unit 
(DAGEN); and a program address generation unit (PAGEN). 

The ALU performs· 2's complement arithmetic operations and· bit-level 
Boolean operations on 16-, 32-, and 4O-bit words. It can also function as two 
separate 16-bit ALUs and perform two 16-bit operations simultaneously. Fig­
ure 5.5 shoWs the functional diagram of the ALU of the TMS320C54:xx family 
of devices. 

Accumulators A and B store the output from the ALU or the multiplierl . 
adder block. and provide a second input to the ALU. Each accumulator is 
c:Uvided: into three parts: guard bits (bits 39-32), high-order word (bits 31­
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Figure 5.6 Functional dia~ram of the barrel shifter of the TMS320C54xx processors 

.(Courtesy of Texas Instruments inc.) 

16), and low-order word (bits 15-0), which can be stored and retrieved indi­
. vidually. 

The barrel shifter provides the capability to scale the data during an oper­
and read.or write.NooverJt<!ad is required to implement the shift needed for 
the scaling operations. The '54xxbarrel shifter can produce a left shift of 0 to 
31 bits or a right shift of 0 to 16 bits on the input data. The shift requirements 
are defined in the shift.count field of the instruction, the shift. count field of 
status register ST!, or in the temporary register T. Figure 5.6 shows the func­
tional diagram of the' barrel shifter of TMS320C54xx processors. 

The barrel shifter and the exponent encoder normalize the values in an . 
accumulator in a single cycle. The LSBs of the output are filled with Os, and·· 
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40,1 From accumulator A 

4<} .From accumulator B 

XM 

o 

FRCT 

Adder (40) OVM 

Zero detect Rouud SAT 
OVAlOVB 

ZAlZB 

40/ ... To accumulator AlB 

Figure 5.7 Functional diagram of the multiplier/adder unit of TMS320C54xx processors 

(Courtesy of Texas Instruments Inc.). 

, the MSSs can be either zero filled or sign extended, depending on the state of 
the sign-extension made bit in the status register STl. Additional shift capa­
bilities enable the processor to perform numerical scaling, bit extraction, ex~ 
tended arithmetic, arid overfiow prevention operations. 

The kernel of the DSP device architecture is its multiplier/adder unit. 
The multiplierladder unit of TMS320C54xx devices performs 17 X 11 2's­
complement multiplication with a 4O-bitaddition effectively in a single instruc­
tion cycle. In addition to the multiplier and adder, the unit consists of control 
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logic for integer and fractional c~mputations and a 16-bit temporary storage 
register, T. Figure 5.7 shows the functional diagram of the multiplier/adder 
unit of TMS320C54xx processors~ 

The compare, select, and store unit (CSSU) is a hardware unit specifically 
incorporated to accelerate the add/compare/select operation. This operation is 
essential to implement the Viterbi algorithm used in many signal-processing 
applications. . . 

The 'eXponent encoder unit supports the EXP instruction, which stores in 
the T register the number of leading redundant bits of the accumulator con­
tent. This information is useful while shifting the accumulator content for the 
. purpose of scaling~ , . 

5.3.3 Internal Memory and Memory-Mapped Registers 

The amount and the types of memory of a processor have direct relevance 
to the efficiency and the performance. obtainable hi implementations with the 
processor. The '54xx memory is organized into three individually selectable 
spaces: program, data, and I/O spac~s. All '54xx devices contain both RAM 
and ROM. RAM can be either dual-access type (DARAM) or single-access type 
(SARAM). The on-chip RAM for these processors is organized in pages having 
128 word locations on each page. . 

The '54xx processors have a number of CPU registers to support operand 
addressing and computations. The CPU registers and peripheral registers are 
all located on page 0 of the data meplory. Figures 5.8(a) and (b) show the in­
ternal CPU registers and peripheral registers with their addresses. Figure 5.8(c) 
shows the processor mode status (PMST) register that is used to configure the 
processor. It is a memory-mapped register loc~ted at address lOh on page 0 of 
the RAM; The peripheral registers are covered in subsequent chapters. 

A part of on-chip ROM may contain a bootloader and look-up tables for 
functions such as sine, cosine, Jl-law, and A-law. Details of the memory space 
of TMS320C54xx processors are discussed in Section 55. 

5.4 	Data Addressing Modes of TMS320C54xx 
Processors 

Data addressing modes provide various ways to access operands to execute 
instructions and place. results in the memory or the registers. The '54xx devices 
offer seven basic addressing modes: immediate addressing, absolute address­
ing, accumulator addressing, direct addressing, indirect addressing, memory­
mapped register addressing, and' stack addressing. 
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ADDRESS 

NAME' DEC HEX DESCRIPTION 

IMR 	 0 0 Interrupt mask register 
IFR 1 1 Interrupt flag register 

2-5 2-5 Reserved for testing 
STO 6 6 Status register 0 
sn 7 7 Status register 1 
AL 8 8 Accumulator A low word (15"-0) 
AH 9 9 Accumulator A high word (31-16) 
AG 10 A Aq:umulator A guard bits (39-32) 
BL 11 B Accumulator B low word (15-0) 
BH 12 C AccumulatorB bigh word'(31 ~16) 
BG 13 D Accumulator B guar~ (39-32) 
TREG 14 E Temporary regist~r 
TRN 15 F . Transition register 
ARO 16 10 Auxiliary register 0 
AR1 17 11 Auxiliary register 1 
AR2 18 12 Auxiliary register 2 
AR3 19 13 Auxiliary register 3 
AR4 20 14 Auxiiiary register 4 
AR5 21 15 AuxiUary register 5 
AR6 22 16 Auxiliary register 6 
ARt 23 17 Auxiliary register 7 
SP 24 18 Stack pointer register 
BK 25 19 . Circular buffer size register 
BRC 26 1A Block repeat counter 
RSA 27 1B Block repeat start address' 
REA 28 1C Block repeat end address 
PMST 29 10 Processor mode status (PMST) register 
XPC 30 1E Extended program page register 

31 1F Reserved 

(a) 

Figure 5.8(a) 	 InternaLmemory-mapped registers of TMS320C54xx signal processors 

(Courtesy of Texas Instruments Inc.) 

5.4,1 Immediate Address1ng 

.In this mode, the instruction contains the specific value ofthe operand. The 
. operand can be short (3, 5, 8, or 9 bits in length) or long (16 bits in length), 

The instruction syntax for short operands. occupies one memory location, 
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ADDRESS 

NAME DEC HEX DESCRIPTION 

DRR20 32 20 McBSP 0 Data Receive Register 2 
DRR10 33 21 McBSP 0 Data Receive Register 1 
DXR20 34 22 McBSP 0 Data Transmit Register 2 

DXR10. 35 23 McBSP 0 Data Transmit Register 1 

TIM 36 24 Timer Register 

PRD 37 25 Timer Period Register 

TCR 38 26 Timer Control Register 

3.9 27 Reserved 

SWWSR 40 28 Software Watt-State Register 

BSCR 41 29 Bank-Switching Control Register 

42 2A Reserved 

SWCR 43 2B Software Watt-StateContr¢ Register 

HPIC 44 2C HPI Control Register (H~ODE = C} only) . 

45-47 2D-2F Res~rved . 
DRR22 48 30 McBSP 2 Data Receive Register 2 

DRR12 49 31 McBSP 2 Data Receive Register 1 

DXR22 50 32 McBSP 2 Data Transmit Register 2 

DXR12 51 33 McBSP 2 Data Transmit Register 1 

SPSA2 52 34 McBSP 2 Subbank Address Register 

SPSD2 53 35 McBSP 2 Subbank Data Register 

54-55 36-37 Reserved 

SPSAO 56 38 McBSP 0 Subbank Address Register 

SPSDO 57 39 McBSP 0 Subbank Data Register 

58-59 3A-3B Reserved 

GPIOCR 60 3C General"Purpose 1/0 Control Register 

GPIOSR 61 3D General-Purpose I/O Status Register 

CSIDR 62 3E Device ID Register 

63 3F Reserved 

DRR21. 64 40 McBSP 1 Data Receive Register 2 

DRR11 65 41 . McBSP 1 Data Receive Register 1 

DXR21 66 42 McBSP 1 Data Transmit Register 2 

DXR11 67 43 McBSP 1 Data Transmit Register 1 

68-71 447"47 Reserved 

SPSA1 72 48 McBSP 1 Subbank Address Register 

SPSDl 73 49 McBSP 1 Subbank Data Register 

74-83 4A-53 Reserved 

DMpREC 84 54 DMA Priority and Enable Control Register 

DMSA 85 55 DMA Subbank Address Register 

FigureS.8{b) Peripheral registers for the TMS320C5416 processor 
(contin:Jed)(Courtesy of Texas Instruments Inc.) 
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DMSDI 86 56 DMA Subbank Data Register with Autoincrementt 

DMSON· 87 57 ·DMA Subbank Data Register 
CLKMD 88 58 Clock Mode Register (CLKMD) (. 

89-95 59-5F Reserved 

(b) 

Figure S.8(b) Continued 

15-7 '6 5 4 3 2 o 
IPTR 

tThese bits are only supported on C54x devices with revision A or 

(c) 

Figure S.8(c) Processor mode status (PMSn register ofTMS320C54xxprocessors 

(Courtesy of Texas Instruments Inc.) , 

whereas that for long operands occupies two ,memory locations. This address­
ing mode can be used to initialize registers and memory locations. Examples 
of instructions using this addressing mode are 

LO #20, DP This accomplishes #20 ~ DP 
RPT #OFFFFh This accomplishes #FFFFh ~ RC 

5.4.2· Absolute Addressing 

In this mode, the instruction contains a specific address. The ~pecified address 
may be for a data memory location (dmad addressing), a program memory 
location (pmad addressing), a port address (PA addressing), or a location in 
the data space specified directly (*(lk) addressing). Examples of instructions 
using. this ,mode of addressing are 

*AR5 1000h ~ AR5 addressi 

MVPO IOOOh, *AR7 1000h ~ *AR7 (pmad addressi 

PORTR 05h, *AR3 05h ~*AR3 (PA addressing) 

LD *(lOOOh). A *(IOOOh) ~ A (*(lk) addressing) 


5.4.3 Accumulator Addressing 

This mode uses the accumulator contents as the address and is used to move 
data between a program memory location and a data memory location. Ex­
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amples of iQstructions in this mode ~e READA andWRITA. READA trans­
fers'a. word from a program-memory location specified by accumulator A to.a 
data-memory location. WRITA transfers a word from a data-memory location 
to a program-memory location specified by accumulator A. 

. Here is an example:. 

RfADA *'AR2 ; This accomplishes *A -ii- *AR2 

5.4.4 DirectAddressing 

In the direct addressing mQde. the 16-bit address of the' data-memory location 
is formed by combining the lower 7 bits of the data-memory address con­
tained in the instruction with a base address given by the data-page pointer 
(DP) or the stack pointer (SP). Figure 5.9 shows the operation of the direct 
addressing mode of TMS320C54xx processors. . 

Using this form of addressing, one can access a page of 128 contiguous 
locations without changing the DP or theSP. The compiler mode bit (CPL), 
located in the! status register ST1, is used to select between the two pointers 

DP(9) 

CPLI CPL 
DAGEN 

DatabUsDB(16) 

Data bus EB(l6) 

o EA =DP: offset(IR) 
1 EA""SP+offset(IR) 

7 LSBs from IR (dma) 

DAB(16) (read) 

EAB(16) (write) 
or 

CAB(16) 
(32-bit read) 

Legend: EA Effective address 
IR Instruction register 

Figure 5.9 Block diagram of the direct addressing mode for TMS320C54xx processors 

(Courtesy of Texas Instruments inc.), 
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used to generate the address. CPL 0 selectsDP and CPL = 1 selects SP. For 
example, when CPL 0,· to add the contents of the memory location 0 on 
page 4 in the data memory to accumulator B, we can use the instruction 
sequence: 

LD #4, DP DP = 4 = upper 9 bi ts of address 
ADD=O. B Lower 7 bi ts of the address· 

With this exap1ple the contents of the first locations on data page 4 (memory 
address 0200h) are added to accumulator B. 

It should be remembered that when SP is used instead of DP, the effective 
address is computed by adding the 7-bit offset to SP. 

5.4.S Indirect Addressing 

In indirect addressing, any location in the data space can be accessed by 
means of an address contained in an auxiliary register. The '54xx devices have 
eight 16-bit 'auxiliary registers (ARO-AR7). Indirect addressing is used when 

DAB(16) 
(read) 

EAB(16) 
(write) or 
CAB(16) 
(32-bit read) 

Figure 5.10 Block diagram for the indirect addressing mode of TMS320C54xx processors 

(Courtesy of Texas Instruments Inc,) 
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there is a need to step through a sequence of locations in the memory in fixed­
sized steps. 

Two auxiliary register arithrrietic units (ARAUO and ARAUl) are used to 
modify the contents of the auxiliary registers for the indirect addressing mode. 
They perform unsigned, l6-bit arithmetic operations. The auxiliary registers 
can be loaded with an immediate value, loaded via the data bus, and modified 
by the indirect addressing field of any instruction that supports indirect 
addressing or by the modify auxiliary register (MAR) instruction and used as 
loop counters. 

Figure 5.10 shows how ARAUs are used to generate an address in the indi­
rect addressing mode using a single data-memory operand. An address can be 
modified before or after accessing the location or can be left unchanged. 
Modification can be by incrementing or decrementing the addresli by 1, add­
ing a 16-bit offset, or indexing with the value in ARO. Each of these mod­
ifications may be carried out either before or after accessing the memory 
location. Table 5.2 gives the operand syntax and the correspondin~ ARAU 
operations for the single operand indirect addressing mode. 

I> Example 5.1 Assuming the current contents of AR3 to be 200h, what will be its contents 
after each of the following TMS320C54xx addressing modes is used? Assume 
that the contents of ARO are 20b. 

a. *AR3 + 0 

b. *AR3-0 

c. *AR3+ 

d. *AR3­

e. *AR3 

f. *+A:R3(40h) 

g. *+AR3(-40h) 

Solution a. AR3 +- AR3 + ARO; 
AR3 = ~OOh + 20h = 220h. 

b. AR3 +- AR3 ­ ARO; 
AR3 200h - 20h = lEOh. 

c. AR3 +- AR3 + 1; 
AR3 = 200h + 1 = 20lh.· 

d. AR3 +- AR3 ­
AR3 = 200h ­

I; 
1 = IFFh. 

e. AR3 is not modified. 
AR3 = 200. 

f. AR3 +- AR3 + 40h; 
AR3 = 200h + 40h 240h. 

g. AR3 +- AR3 40h; 
AR3 = 200h - 40h = lCOh. 
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Table 5.2 	 Indirect Addressing Options with a Single Data-Memory Operand 

Operand Syntax Operation 

*ARx addr +- ARx 

*ARx+ addr +- ARx 

ARx+- ARx+ 1 

*ARx- addr +- ARx 

ARx+- ARx-l 

*+ARx ARx+- ARx+ 1 

addr +- ARx 

. *ARx+O addr +-"ARx 

ARx +- ARx + ARO 

*ARx 0 addr +- ARx 

ARx +- ARx ARO 

*ARx+OB addr +- ARx 

ARx +- B(ARx + ARO) 

*ARx-OB addr +- ARx 

ARx +- B(ARx - ARO) 

*ARx+% addr +- ARx 

ARx+- circ(ARx + 1) 

*ARx-% addr +- ARx 

ARx +- circ(ARx - 1) 

*ARx+O% addr +- ARx 

ARx +- circ(ARx + ARO) 

*ARO-O% addr +- ARx 

ARx +- circ(ARx - ARO) 

*(lk) addr +-lk 

*ARx(lk) addr +- ARx + lk 

*+ARx(lk) ARx ARx+lk 

addr +- ARx 

*+ARx(lk)% ARx <- circ(ARx + lk) 

addr <- ARx 

Circular Addressin9 

Many fast real-time algorithms, such as convolution,. correlation, and FIR fil­
ters,require the implementation of a circular buffer in memory. A circular 
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buffer is a sliding window containing the most recent data ..As new data come 
in, the buffer overwrites the oldest data. An indirect addressing mode with 
circular address modification allows implementation of circular buffers. 

The circular-buffer size register (BK) specifies the size ofthe circular buffer. 
A circular buffer must start on an N-bit boundary; that is, the N LSBs of the 
base address of the circular buffer must be o. For example, a 31-word circular 
buffer must start at an address whose five LSBs are 0 and the value 30 must be 
loaded into BK. Similarly, a 48-word circular buffer must start· at an address 
whose six LSBs are 0 and the value 47 must be loaded into BK. 

The algorithm for circular addressing works as follows: 

If 0 ~ index + step <BK: index = index + step; 
else if index + step ~ BK: index = index + step - BK; 
else if index + step < 0: index = index + step + BK. 

First I at location N - I 

~ 
15 N N-l o 15 N N-l () 

I H ... H I L ... L I I 0 ... 0 I BL ... BL J 
t 

,. 0 

EOB + 11 H ... H I BL .,. BL J 
15 N N-l r 0 

Index I 0 ... 0 I L ... L I 

15+ N N-l 

•Circular 
addressing 15.t N N-I 0 

algorithm EFBI H ... H I 0 ... o J 
logic 

Base (low address) 

::XI 0 ... 0 1 L' ... •L' I Legend: EFB Effective base address 
H High-order bits I 
L Low-order bits 

15 r N N-l 0 L' New low-order bits 1 , ,_T 'II 1 ~. L'" •New " er 
ARx I H ... H I L' ... L' 

Size register 

(a) 

Figure 5.11(a) Block diagram of the circlilar addressing mode for TMS320C54xx processors 

(Courtesy of Texas Instruments Inc.) 
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Address 

15 N N-l o 
Effective o 01-+bise 

ARK. 

N N-l 0 

-+ 

15 

I H 

N N -1 

H I LSBs BK 

(b) 

0 

I -+ 

Data 


Top of circular buffer 


Element 0 

Element 1 

Element (n LSB 

Last element 


Last element +1 


Figure 5.11{b) Circular addressing mode implementation in TMS320C54xx processors 

(Courtesy of Texas Instruments Inc.) 

Figure 5.11(a) illustrates the relationships between BK) the auxiliary register 
ARx (the pointer), the bottom of the circular buffer, the top or the circular 
'buffer, and the index into the circular buffer. Figure 5.11 (b) shows how the 
circular buffet is implemented and illustrates the relationship between the 
generated values and the elements in the circular buffer. 

I> Example 5.2 	 Assume that the register AR3 with contents 1020h is selected as the pointer 
for the circular buffer. Let BK 40h to specify the circular buffer size as 41h. 
Determine the start and the end ,addresses for the buffer. What will be the 
contents of register AR3 after the execution of the instruction LD -*AR3 + 00/0, 
A, if the contents of register ARO are 002Sh? 

Solution 	 AR3 1020h means that currently it poihts to location 1020h. Making the 
lower 6 bits zeros gives the startaddress of the buffer as HiOOh. .Replacing the 
same bits with the BK gives the end address as 1040h. 

The instruction 

LD *AR3 +0%, A 

modifies AR3 by adding ARO to it and applying the circular modification. It 
yields 

AR3 = circ(1020h + 002Sh) = circ(l04Sh) = 104Sh - 40h = 100sh. 

Thus the location 100sh is the one pointed to by AR3. 
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Bit-Reversed Addressing 

Bit-reversed addressing is used in FFT algorithms. In this addressing mode, 
ARO specifies one half of the size of the FFT. An auxiliary register points to the 
physical location 6f a data value. The address of the next location is generated 
by adding, in a bit-reversed manner, ARO and the other specified auxiliary 
register. In the bit-reversed addition, the carry bit propagates from left to 
right, instead of right to left as in the regular add. 

l> Example 5.3 Assuming the current contents of AR3 to be 200h, what will be its contents 
after each of the following TMS320C54xx addres~ing modes is used? Assume 
that the. contents of ARO are 20h. 

a. *AR3+ OB 

b.*AR3 - OB 

Solution a. AR3 <- AR3 + ARO with reverse carry propagation; 
AR3 = 200h +20h (with reverse carry propagation) = 220h. 

b. AR3 <- AR3- ARO with reverse carry propagation; 
AR3 ~ 200h - 20h (with reverse carry propagation) = 23Fh. 

./ 

Dual-Operand Addressing 

Dual data-memory operand addressing is used for instructions that simulta­
neously perform two reads (32-bit read) or a single read (16-bit read) and a 
parallel store (16-bit store) indicated by two vertical bars, II. These instruc­
tions access operands using indirect addressing mode. 

If in an instruction with a parallel store the source operand and the desti­
nation operand point to the saine location, the source is read before writing to 
the destination. Only 2 bits are available in the instruction code for selecting 
each auxiliary register in this mode. Thus, just fo~r of the auxiliary registers, 
AR2-AR5, can be used, The ARAUs, together with these registers, provide the 
capability to access two operands in a single' cycle. Figure 5.12 shows how an 
address is gene~ated using dual data-memory operand addressing. 

5.4.6 Memory-Mapped Register Addressing 

Memory-mapped register addressing is used to access the memory-mapped 
registers without affecting either the current data-page pointer (DP) value or 
the current stack-pointer (SP) value. This mode works for both ~irect and 
indirect addressing~ Taking only the seven least significant bits of the 16-bit 
direct address or the value of the auxiliary register used for indirect address­
ing, the required address is generated. 

For example, if ARi is used indirectly to point to a memory-mapped reg­
ister using the memory-mapped register addressing mode and its contents are 
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AROBKlk 1 

ARO(l6) index . 

AR2(16) 

AR3(16) 
AR4(16) 
ARS(16) 

BK(16) 

Data bus DB(l6) 

DAB(16) 
(read) 

EAB(16) 
(write) or 
CAB(l6) 
(32-bit read) 

Data bus EB{16) 

Figure5.12 Block diagram of the indirect addressing mode of TMS320C54xx processors 
usi l1g dual memory operands 

(Courtesy of Texas Instr!Jments Inc.) 

3825h, then ARl points to the timer period register (PRD), since the seven 
LSBs of ARl are 25h, which is the address of the PRD register. After execution, . 
ARl contains 0025h. 

Consider the following instruction as another example: 

LDM AR4. A 

In this case the data stored at OOl4h; which is the memory address of AR4, is 
loaded onto A. . < 

5.4.7 Stack Addressing 

The stack is used to store the return address during the servicing of interrupts 
and invoking of subroutines. It can also be used to pass parameters to sub­
routines during program execution. The stack is ·filled from the highest to the. 
lowest memory address and emptied from the lowest to the highest address. 

http:Figure5.12
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A 16-bit stack pointer (SP) is used to address the stack location at a given in~ 
stance. SP points to the last element stored onto the stack. Instructions that 
access the stack for saving and recovering data on the stack consist of PUSHD, 
PUSHM, POPD, and POPM; 

5.5 Memory Space of TMS320C54xx Processors 

TMS320C54xx processors provide for a total of 128K words of memory ex­
tendable up to 8192K words. This includes both program memory and data 
memory. Within this space; RAM (both single access and dual access), ROM, 
EPROM, EEPROM, or memory-mapped peripherals may reside either on- or 
off-chip. The program memory space is used to store program instructions 
and the tables used in the execution of programs. The data-memory space is 
used to store data required to run programs and for external memory-mapped 
peripherals. Figures 5.13(a) and (b) show memory maps for the basic and ex­
tended memories. of the TMS320C5416 processor. 

The size of the data memory is 64K words, part of which is on-chip 
DAl,tiM. The device automatically accesses the on-chip RAM when the ad­
dress is within its· range.· Memory-mapped registers are also part of the data­
memory space. 

The program memory is organized into 128 pages, each of 64K word size. 
Page 0 is part of the basic 128K space, and pages 1 to 127 are extended pages. 
Out of the 64K words on page 0, 4K words are on-chip ROM. The remaining 
space on page 0 as well as the extended space consist ofDARAM and SARAM, 
both on-chip and off-chip, as shown in Figures 5.13(a) and (b)~ The 4K on­
chip ROM space contains a GSM EFR speech codet table, a bootloader, Jl-Iaw 
and A-law expansion tables, a sine look-up table, and an interrupt vector 
table. 

The MP/MC, OVLY, and DROM bits located in the processor mode status 
register (PMST) are used to enable and disable on-chip memories in the pro­

.gram and data spaces. The functions of these bits are described in Table 5.3. 

> Example 5.4' 	 What is the configuration of on-chip DARAM, on-chip SARAM, and ROM if 
MP/MC = 0, OVLY I, and DROM 0 for TMS320C5416? 

Solution a. 	Since MP/MC = 0, 16K on-chip ROM is enabled as program memory at. 
address cOOOh-feffh. 

b. Since miLY = 1, DARAM is mapped on to the program memory space 
at address 0080h-7flTh. Memory at addresses OOOh-007fh is reserved for 
memory-mapped registers and the scratch pad purpose. 

c. Since DROM = 0, ROM is not mapped on to the data memory. 
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External 
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Hex Page 0 Program Hex Page 0 Program Hex 
0000 Reserved 

(OVLY I) 
External 

(OVLY=O) 

On-Chip 
DARAM0--3 
(OVLY= I) 

External 
(OVLY=O} 

External 

Interrupts 
(External) 

00000000 Reserved 
(OVLY=I) 

External 
r-i0VLY=OL 

On-Chip 
DARAM0--3 
(OVLY=I) 

External 
(OVLY=O) 

External 

On-Chip ROM 
(l6KX Iii-bit) 

Reserved 

Interrupts 
(On-Chip) 

005F 

0060 
0080 

007F007F 
·007F 

0080 
0080 

7FFF7FFF 7FFF8000 
BFFF 

8000 
8000 

COOO 
FF7F FEFF 

FFOOFF80 
FF7F 
FF80 

FFFF FFFF 
MPtMC=1 MPIMC=O 

(Microprocessor Mode) (Microcomputer Mode) 

FFFF 

Address ranges for on-chip DARAM in data memory are: 

Hex Program Hex Program Hex Program 
030000' 

On-Chip 
iARAM0--3 

(OVLY=I) 
External 

037FFFI (OVLY =0) 

IIP,(MC=O) 
External 

'!MC=I) 
........__-' 03FFFFI--__.... 


Page I Page 2 l'age 3 Page 4 

XPC I XPC=2 XPC=3 XPC=4 


Address ranges for on-chip DARAM in program memory are: DARAM4: 01800Qh-Q19FFFh; 
. DARAM6: OIDOOOOh-QlDFFFh; 

Address ranges for on chip SARAM in program memory are: SARAMO: 028000h-029FFFh; 
SARAM2: 02CooOh--Q2DFFFh; 
SARAM4: 038000h-Q39FFFh; 
SARAM6: 03COOOh-Q3DFFFh; 

(b) 

Figure 5.13 Memory map for the TMS320C5416 processor 

(Courtesy of Texas Il\struments Inc.) 

DARAMO: 0080h-IFFFh; 
DARAM2: 4OQOh-5FFFh; 
DARAM4: 80ooh-9FFFV; 
DARAM6: COOOh-DFFFh; 

(a) 

Hex Program 

040000= 
bn-Ch. ip 
ARAM0--3 

(OVLY= I) 
External 

04~fFFI~VLY= 0) 

048000 

External 

Data 

Memory-Mapped 
Regist~ 

Scratch-Pad 
RAM 

On-Chip I 

DARAM0--3 
(32K X 16-bit) 

On-Chip 
DARAM4-7 
(DROM=I) 

or 
External 

(DROM=O) 

DARAMI:2000h-3FFFh 
JARAM3: 6000h-7FFFh 
DARAM5:AOooh-BFFFh 
DARAM7: EOOOh-FFFFh 

Hex Program 

7FooOO= 
On-Chip 
ARAM0--3 

(OVLY=I) 
External 

7F7FFF I (OVLY = 0) 

7F8000 

External 

7FFFJ:F L...'__----' 

Page 127 
XPC=7Fh 

DARAM5:0IAOooh-QIBFFFh 
DARAM7:0IEOOOh-QIFFFFh 
SARAMl: 02AOOOh-Q2BFfFh 
SARAM3: 02EooOh-02FFFFh 
SARAM5: 03AOOOh-o.3BFFFh 
SARAM7: 03EOooh-Q3FFFFh 
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Table S.3 Processor Bits for Configuring the On-Chip Memories 

PMST Bit Logic On-chip Memory Configuration 

MP/MC 0 ROM enabled 

ROM not available 

OVLY 0 RAM in data space 

1 RAM in program space (except page0) 

DROM 0 ROM not in data space 

ROM in data space 

r> ExampleS.S Repeat Example 5.4 if MP/MC = 1, OVLY = 1, and DROM = L 

Solution a. Since MP/MC = I, TMS320C5416 is in microprocessor mode, the 16K ROM 
is off-chip in the program memory space. 

b. Since OVLY = 1, DARAM is mapped on to the program memory space 
at address 0080h-7fifh. Memory at addresses OOOOh-007fh is reserved for 
memory-mapped registers and the scratch ·pad purpose. 

c. Since DROM = I, 16K ROM is mapped on to the on-chip data memory 
at address cOOOh-fefth and memory from ffOOh-fffih is left for reserved 
purpose. 

5.6 Program Control 


The program control unit of TMS320C54xx processors contains the program 
counter (PC), the program counter-related hardware, hardware stack, repeat 
counters, and status registers. The PC addresses the program memory, either 
on-chip or off-chip, and is loaded in one of several ways, depending on the 
sequence of instructions being executed. These are 

• 	 Sequential: PC <- PC + 1. 

• 	 Branch: The PC is loaded with the immediate value following the branch 
instruction. 

• 	 Subroutine call: The PC is loaded with the immediate value following the 
call instruction. 

• 	 Interrupt: The PC is loaded with the address of the appropriate interrupt 
vector. 

• 	 Instructions such as BACC, CALA, etc.: The PC is loaded with the con­
tents of the accumulator low word. 
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• 	 End of a block repeat loop: The PC is load~d with the contents. of the 
block repeat program address start register. 

• 	 Return: The PC is loaded from the top of the stack. 

The program counter-related hardware PAGEN provides for the above 
options. The stack is used to save and restore the P~ value during subroutine 
calls and interrupts. It can also be used to save and restore the accumulator 
low word cir a data-memory value when required. . 

The TMS320C54xx processors provide hardware support for repetitive exe­
cution of either a single instruction or a block of instructions. Repeat counters 
are used for this purpose. 

A single instruction can be repeated N + 1 times by loading the value N 
in the repeat counter register (RC). Likewise, a block of instructions can be 
repeated N + 1 times by loading the value N in the block repeat counter reg­
ister (BRC). 

5.7 TMS320C54xx Instructions and Programming 

TMS320C54xx architecture supports an instruction set consisting of a large 
number of instructions [6]. Many of these are similar to the instructions for 
general-purpose microprocessors. lIowever, the TMS320C54xx instruction set 
consists ofa number of instructions that are specifically designed to carry out 
the numerically intensive signal-processing operations efficiently. In this sec­
tion, we shall summarize the instruction set of the TMS320C54xx processors. 
In particular, we shall discuss those instructions that are frequently used 
to implement DSP algorithms and illustrate their use by means of sample 
programs. 

5.7.1 Summary of the Instruction Set of TMS320C54xx Processors 

TMS320C54xx assembly language instructions canbe classified into the fol­
lowing categories based on their functions: 

Load and Store Operations 

• 	 Load instructions; Examples: LD, LDM 

• 	 Store instructions; Examples: ST, STM 

• 	 Conditional store instructions; Examples: CMPS, STRCD 

• 	 Parallel load and store instructions; Example: STIILD 
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• 	 Parallel load and multiply instructions; Example:.LDIiMAC 

• 	 Parallel store and add/subtract instructions; Examples: STIIADD, STIJSUB 

• 	 Parallel store and multiply instructions; Examples: STIIMPY, STIIMAC 

• 	 Miscellaneous load-type and store-type instructions; Examples: MVDD, 
MVPD 

Arithmetic Operations 

• 	 Add instructions; Examples: ADD, ADDC 

• 	 Subtract instructions; E:x:amples: SUB, SUBB 

• 	 Multiply instructions; Examples: MPr, MPYA 

• 	 Multiply-accumulate instructions; Examples: MAC, MACD 

• 	 Multiply-subtract instructions; Examples: MAS, MASA 

• 	 Double (32-bit operand) instruction~; Examples: DADD, DSUB 

• 	 Application-specific instructions; Example!!: EXP, LMS 

Logical Operations 

• 	 AND instructions; Examples: AND, ANDM 

• 	 OR instructions; Examples: OR, ORM 

• 	 XOR instructions; Examples: XOR, XORM 

• 	 Shift instructions; Examples: ROL, SFTL 

• 	 Test instructions; Examples: BIT, CMPM 

Program-Control Operations 

• 	 Branch instructions; Examples: B, BACC 
~ 

• 	 Callinstru~tions; Examples: CALL, CALA 

• 	 Interrupt instructIons; Examples: INT:R, TRAP 

• 	 Return instructions; Examples: RET, FRET. 

• 	 Repeat instructions; Examples: RPT, RPTB 

• 	 Stack-manipulating instructions; Examples: PUSHD, POPD 

• 	 Miscellaneous program-control instructions; Examples: IDLE, RESET 

For detailed descriptions of these· and other instructions, the reader is 
referred to the Texas Insttlll\1ents' TMS320C54xx DSP Reference Set, Volume 
2: Mnemonic Instruction Set [6]. We shall nowdiscus~ a few of these in­
structions in dei/iii. 
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Multiply Instruction (MPY) 

This instruction can take several form:s. One such form is 

MPY Xmern, Ymem,dst; where Xmem and Ymem are dual data-memory 
operands and dst is accumulator A or B. 

The instruction multiplies a data-memory value by anQ,ther data-memory 
value and stores the result in accumulator A or B. The register T is loaded 
with the Xmem value In the read-memory phase. . 

dst -I- (Xmem) x (Ymem); T -I- (Xmem) 

In the indirect addressing mode. the instruction can also modify the contents 
of the auxiliary registers used for indirect addressing. 

[> Example 5.6 Describe the operation of the following MPY instructions: 

a. MPY 13, B 

b. MPY #01234, A 

c. MPY:+AR2-, *AR4 + 0, B 

Solution Instruction (a) multiplies the current contents of the T register by the contents 
of the data-memory location 13 in the current data page. The result is placed 
in the accumulator B. 

Instruction (b) multiplies the current contents of the T register by the con­
stant 1234 and places the result in the accumulator A. 

Instruction (c) multiplies the contents of memory pointed by AR2 by the 
contents of memory pointed by AR4. The result is placed in the accumulator 
B. During this instruction execution, register T is loaded with the contents of 
the same data-memory location pointed by AR2. AR2 is then decremented by 
1 and AR4 is updated by adding to it the contents of ARO: 

Multiply and Accumulate Instruction (MAC) 

This instI1lction is an improvement over the MPY instruction. One of the 
several forms that this instruction can take is 

MAC Xmem, Ymem, src, dst; where Xmem and Ymem are dual data­
memory operands and src and dst are accumulators A and B. 

The instruction multiplies a data-memory value by another data-memory 
value and adds the product to the contents of the source, which may be either . 
of the two accumulators A and B. The result is stored in the other accu­
mulator. The register T is loaded with the Xmem value. 

---,.._----­



5.7 TMS320C54xx Instructions and Programming 135 

dst +- (Xmem) x (Ymem) + (src); T +- (Xmem) 

Similar to the ~PY instruction, this· instruction can modify the contents of 
auxiliary registers used in indirect addressing. 

I> Example 5.7 Describe the operation of the following MAC instructions: 

a. MAC * AR5+, #1234h, A 
( 

b. MAC *AR3-, *AR4+, B, A 

Solution Instruction (a) multiplies the contents of the data-memory location pointed 
by AR5 by the constant 1234h and adds the product to the contents of the 
accumulator A. During the execution, register T is loaded with- the content of 
the data-memory.location pomted by AR5. AR5 is then incremented by 1. 

Instruction (b) multiplies the contents of the data memory pointed by AR3 by 
the contents of the data memory pointed by AR4. The contents of the accu­
mulator B are added to the product and the result is placed in the accumula­
tor A. The register T is loaded with the contents of the same data-memory 
location pointed by AR3. AR3 is then decremented by 1 and AR5 is incre­
mented by 1. 

The MAC instruction is used for computing the sum of a series of product 
terms. 

Multiply and Subtract Instruction (MAS) 

This instruction is similar to· the MAC instruction. One form of this instruc­
tion is 

MAS Xmem, Ymem, src, dst; where Xmem and Ymem are dual data-memory 
operands and src and dst are accumulators A and B. 

The instruction multiplies a data-memory value by another data-memory 
vallie and subtracts the product from the contents of the sourc.e, which may 
be either of the two accQmulators A and B. The result is stored in the other 
accumulator. The register T is loaded with the Xmem value in the reaa­
memory phase. 

dst +- (src) - (Xmem) x (Ymem); T +- (Xmem) 

In the indirect inode, in addition to the multiply operation, the instruction 
can modify the contents of the auxiliary registers used for indirect addressing. 

I> Example 5.8 Describe the operation of the following MAS instruction: 

MAS *AR3-,'*AR4+, B. A 
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Solution 	 This instruction multiplies the contents of the data memory pointed by AR3 
by the contents of the data memory pointed by AR4. The product is sub­

. tracted from the contents of the accumulator B and the result is placed in the 
accumulator A. During this instruction, register T is loaded with the contents 
of the same data-memory location pointed by AR3. AR3 is then decremented 
by 1 and ARS incremented by 1. 

The MAS instruction is used for computing butterflies in FFT implementation. 

Multiply, Accumulate, and Delay Instruction (MACD) 

This instruction carries out all the functions of the MAC instruction and, in 
addition, copies the contents of the current data-memory address to the next 
higher data-memory address. However, the two operands of the multiplier are 
required to be a single data-memory value and a program-memory value. This 
feature -is equivalent to implementing the Z-l delay encountered in digital 
signal-processing algorithms. For this reason, the MACD instruction is often 
used for implementing FIR filters .. The format and all other features of the 
MACD instruction are ~e as those of the MAC instruction; 

Repeat Instruction (RPT) 

The format of this instruction is 

RPT Smem Smem is a single data-memory operand 
or . RPT Ilk k ;s a short or a long constant • 

The instruction loads the operand in the repeat counter, Re. The instruction 
following the RPT instruction is repeated k + 1 times, where k is the initial 
value of the RC. 

Due to the dedicated hardware support, the repeat instruction is used to 
repeat an instruction a given number of times without any penalty for JooP­
ing. It may be used to compute the sum·of products as required in the imple­
mentation of FIR filters. . 

I> Example 5.9 Explain what is accomplished by the following instruction sequence: 

RPT #2 
MAC *ARl+, *AR2-, A 

Solution 	 The first instruction loads the register RC with 2. This number is the repeat 
count for the ne~ MAC instruction. The MAC instruction executes three 
times. It multiplies and accumulates in A the data locations contents pointed 
to by the registers ARl and AR2. After each multiply and add the pointer ARl 
is incremented and,pointer AR2 is decremented. 

-.~.--~...---~..•. 
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Block Repeat Instruction (RPTB) 

RPTB instruction has the format 

RPTB pmad, where pmad is the program memory address denoting the end 
of the block of instructions to be repeated. 

This jnstruction is similar to the RPT instruction, except that it repeats a 
block of code a given number of times without any penalty for looping. One 
more than the number of times the block of instructions is to be repeated 
is initially loaded into the memory-mapped block repeat counter register, 
BRC. 

5.7.2 Programming Examples 

We now look at a few sample programs written for the TMS320C54xx signal 
processors. These programs particularly illustrate the use of some of the signal­
processing instructions ,and the addressing modes to access data operands. 

l> Example 5.10 	 Write a program to find the sum of a series of signed numbers stored at suc­
cessive locations in the data memory and place the result in the accumulator 
A, i.e., 

41fh 

A L dmad(i) (5.1) 
i=410h 

" 

Solution 	 The TMS320C54xx program for this example is shown in Figure 5.14. ARl is 
used as the pointer to the numbers and AR2 as the counter for the numbers. 
The program initializes the accumulator to 0, sets ARl to 410h to point to the 
first number and AR2 to the initial count. This will be used to track the num­
ber of processed locations at each step of execution. Sign-extension mode is 
selected to handle signed numbers. The program adds each number in ~urn to 
the accumulator, increments the pointer and decrements' the counter. The 
process is repeated until the count in AR2 reaches O. At the end of the pro­
gram, the accumulator A has the ~um of the numbers in location s 410h to 
41fh. ' 

l> Example 5.11 Write a cprogram to compute the S11m of three product terms given by the 
equation ' 

, y(n) = hox{n) + h1x(n - 1) + h2x(n - 2) (5.2) 

where x(n), x(n - 1) and x(n 2) are data samples stored at three successive 
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**********************.*************'**********************'!r*****' 

* 
* This program computes the signed sum of data memory locations 
* from address 410h to 41fh. The resuit is placed in A. 

* 
* A = dmad(410h) + 1:lmad(41lh)+ •.• dmad(41fh) 

* 
*************************************************************** 

.mmregs 

.global _c_intOO 

•text 

c intOO: 
STM 'lOH, AR2 Initialize counter AR2 = lOh 
STM '41OH, ARI Initialize pOinter ARI =410h 
LD 'OH, A Initialize sum A= 0 
SSBX SXM Select ~ign extension mode 

START: 
ADD *ARl+, A ; Add the next data value 
BANZ START, *AR2- Repeat if not done 
NOP No operation 

.end 

Figure 5.14 TMS320C54xx program for Example 5.10 

data~memory locations and 110. hI> and hz are constants stored at thr~eother 
successive locations in the data memory. The result y(n) is to be stored in the 
data memory. Use direct addressing mode to access the data memory. 

Solution 	 Let 110, hI> and h2 be stored starting at address h, and x(n), x(n. "": 1), and 
x(n - 2) starting at address 310h in the data memory.ProduQt terms hox(n), 
h1x(n - 1), and hzx(n.- 2) are computed using the MPY instruction by mov~ 
ing one of the operands to register T and accessing the other operand directly 
from the data memory. Note that the data~page pointer, DP, needs to be 
initialized before using the direct addressing mode to . access the operand. 
Product terms are computed in A or B and added. When all the three multi­
plications are done, the result accumulated in B is stored in the data memory 
yen). Since yen) is 32 bits long, it is saved at two successive locations labeled 
as y, with the lower 16 bits at memory location yand the higher 16 bits at the 
next memory location. The TMS320C54xx program for this example is shown 
in Figure 5.15. . 
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*************************************************.*'********************** 
* 
* This program computes multiply and accumulate using direct addressing 
* mode. 
* 
* yen) = h(O)x(n) + h(1)x(n-1) + h(2)x(n-2) 
* 
* h(O), h(l), and h(2) are stored in,data-memory locations starting at 
* location hand x{n), x(n-l), and x{n-2) are stored in data-memory 
* locations starting at location x. yen) is saved in data-memory 
* locati~n y (low 16 bits) and y + I (high 16 bits). 
* 
**********************************************************************,,* 

.global c intOO 

x .usect "Input Samples", 3 
y .usect "Output", 2 
h .usect "Coefficients·, 3 

.text 

c intOO: 
SSBX 
LD 
LD 
LD 

MPY 

SXM 
#h, DP , 
@h, T 
lx, DP, 
@x, A 

Select sign extension mode 
Select the data page for coefficients 
Get the coefficient h(O) 
Select the data page for input samoles 
A = x{n)*h(O) 

LD 
LD 
LD 
MPY 

#h, DP 
@h+1, T 
lx, DP 
@x+l, B 

Select the data page for coefficients 
Get· the coefficient h(l) 
Select the data page for input signals 
B = x(n-I)*h(1) 

ADD ' A. B B x(n)*h(O) + x(n-l)*h(l) 

LD 
LD 
LD 
MPY 

#h, DP 
@h+2, T 
lx, DP 
@x+2, A 

Select the data page for coefficients 
Get the coefficient h(2) 
Select the data page for ,input signals 
A = x(n-2)*h(3) 

ADD A, B B x (0) + x(n-l)*h(l) + x(n-2)*h(3) 

LO 
STL 
STH 
NOP 

#y, DP 
B, @y 
B, @y+1 

Select the data page for output 
Save low part of output 
Save high part of output 
No operation 

.end 

_.._----- --, 
TMS320C54xx program tor Example 5.11 
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!> Example 5.12 	 Repeat the problem of Example 5.11 using the indirect addressing mode to 
access data. 

Solution 	 In this example, let us use the auxiliary register AR2 to address the data using 
the indirect addressmg mode. AR2 is initialized to 310h, the location where 
x(n) is storeg,and is advanced to the next address after each multiply opera­

**********************~~+++********************************************* 

* 
* This program computes multiply and.accumulate using. indirect 
* addressing mode. 
* 
* yen) = h(O)x(n) + h(l)x(n-l) + h(2)x(n-2) 
* 
* 	 h(O). hell. and h(2) are stored in data-memory locations starting at 

location h. x(n)~ x(n-l), and x(n-2) are stored in data-memory* 
locations 	31Oh. 311h, &312h resp. yen) is saved in data-memory* 
location 313h (low 16 bits) and 314h ~high 16 bits)* 


* 

************************************************************************ 

.global _c~intOO 

h 	 .int 10, 20, 30 

.text 

c intOO: 
SSBX SXM Select sign extension mode 
STM 131OH, AR2 lnitialize pointer AR2 for x(n) stored at 

310H 
STM Ih, AR3 Initialize pointer AR3 for coefficients 

MPY *AR2+, *AR3+, A A : x(n)*h(O) 

MPY *AR2+, *AR3+, B B = x(n-1)*h(1) 

AOD A. B B = x(n)*h(O) + x(n-1}*h(1) 

MPY *AR2+. *AR3+. A ; A =x(n-2)*h(2) 

ADD A. B ; 8 = x(n}*h(O} + x(n-l)*h(i) + x(n-2)*h(2} 

STl B. *AR2+ ; Save low part of result 
STR B, *AR2+ ;._Save h,igh part of result 
NOP ; .No operation 

.end 

Figure 5.16 TMS320C54xx program for Example 5.12 
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tion. AR3 is used as the pointer to access coefficients starting at h. At the end 
of three multiply operations, AR2 points to 313h, the address at which the 
lower 16 bits of yen) are to be stored. The TMS320C54xx program for this 
example is shown in Figure 5.l6. 

l> 	 E~ample 5.13 Repeat the problem of Example 5.11 by using the MAC instruction. 

************************************************************************ 
1<' 

* This program computes multiply and accumulate using the MAC 
* instruction 
* 
* 	 yen) ~ h(O)x(n) + h(l)x(n-l) + h(2)x(n-2) 

\ 

* 
* 	 where, h(O) ,hO). and h(2) are in the program-memory locations 

starting at h, x(n). x(n-1), and x'(n-2) are in data":memory locations* 
starting at x.y(n) ,is to be saved in location y (low 16 bits) and* 

* y + I (high 16btts). 

* 

************************************************************************ 

.global _c_intOO' 

.data 

:bss x, 3 

.bss y, 2 


h 	 •int 10, 20, 30 

.text 

c intOO: 
SSBX SXM Select s1gn extension mode 
STM #X, AR2 Initialize AR2 to point to x(n) 
STM #h, AR3 Initialize AR3to point to h(O) 
La DOH, A Initialize result in A = 0 

RPT #2 	 Repeat the next operation 3 times 
MAC *AR2+, *AR3+. A ; yen) computed 

STM #y, AR2 ; Se~ect the page for yen) 
STL A. *AR2+ ; Save the low part of yen) 
STH A. ,*AR2+ Save the high part of yen) 
NOP ; No operation 

.end 

Figure 5.17 The TMS320C54xx program for Example 5.13 
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Solution 	 The MAC instruction multiplies the contents of two data-memory locations 
and adds the result to the previous contents of the accumulator being used. 
(Note that only auxiliary registers AR2-AR5 can be used.) This instruction is 
repeated twice using RPT ipstruction. After each MAC instruction the auxil~ 
iary registers, which are being used, should be incremented by 1. Finally, the 
result is stored in the memory location pointed by ''I' using STL instruction 
first for the lower 16 bits and then using STH instruction for the higher 16 bits., 
The TMS32054Cxx program for this example is shown in Figure 5.17. , 

5.8 On-Chip Peripherals 

On-chip peripherals facilitate interfacing with external devices such as mo­
dems and analog-to-digital converters. They also provide certain features that 
are required for implementing real time systems using the processors. All the 
'54xx devices have the same CPU, but different on-chip peripherals are avail­
able in different devices. These peripherals include general-purpose I/O pins, 
a software-programmable wait-state generator, hardware timer, host port in­
terface (HPI), clock generator, and serial ports. Of these, the general-purpose 
I/O and the software-programmable wait-state generator are described in­
Chapter 9 on parallel peripheral devices. The timer, the host port interface, 
clock generator, and serial ports are briefly described below. The tables in 
Appendix A give details of the information required for programming these 
on-chip peripherals.' 	 , 

5.8.1 ' Hardware Timer 

The timer is an on-chip down counter that can be used to generate a signal to 
. initiate an interrupt or to initiate any other process. The timer consists ofthree 

memory-mapped registers-TIM, PRD, and TCR. A logical block diagram of 
the timer circuit is shown in Figure 5.18. The timer register (TIM) is a 16wbit 
memorywmapped register that decrements at every pulse from the prescaler 
block (PSC). The timer period register (PRD)' is a 16-bit memory-mapped 
register whose contents are loaded onto the TIM whenever the TIM decre­
ments to zero or the device is reset (SRESET). The timer can also be inde­
pendently reset using the TRB signal. The timer control register (TCR) is a 
16-bit memory-mapped register that contains status and control bits. Table 5.4 
shows .the functions of the various bits in the TCR. The prescaler block is 
also an on-chip counter. Whenever the prescaler bits count down to 0, a clock 
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PSC 

Borrow Borrow 

SRESET 

TRB 

CPU clock 

TSS 

• ~TmT 

> II> TOUT 

Figure 5.18 Logical block diagram of timer circuit 

(Courtesy of Texas Instruments Inc.) 

pulse is given to the TIM register that decrements the TIM register by 1. The 
TDDR bits contain the divide-down ratio, which is loaded onto the prescaler 
block after each time the prescaler bits count down to O. That is to say that the 
4-bit value of TDDR determines the divide-by ratio of the timer clock with 
respect to the system clock. In other words, the TIM decrements either at the 
rate of the system clock or at a rate slower than that as decided by the value 
of the TDDR bits. TOUT and TINT are the output signals generated as the 
TIM register decrements to O. TOUT can .trigger the start of the conversion 
signal in an ADC interfaced to the DSP. The sampling frequency of the ADC 
determines how frequently it receives the TOUT signal. TINT is used to gen­
erate interrupts, which are required to service a peripheral such as a DRAM 
controller periodically. The timer can also be stopped, restarted, reset, or dis­
abled by specific status bits. 

5.8.2 Host Port Interface (HPI) 

The host port interface (HPJ) is a unit that allows the DSP to interfa.ce(to an 
8-bit or a 16-bit host device or a host processor. The HPI communicates with 
the host independently of the DSP. The HPI features allow the host to inter­
rupt the DSP, or vice versa, when required; The interface contains minimal 
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Table 5.4 . Function of Various Bits in the TCR Registers 

Reset 
B'it Name Value Function 

15-12 Reserved Reserved; always read as o. 
11 Soft o Used in conjunction with the Free bit to determine the 

state of the timer when a breakpoint is encountered in ' 
the HLL debugger. When the Free bit is cleared, the 
Soft bit selects. the timer :mode. 

Soft 9 The timer stops immediately. 

Soft = 1 The timer stops when the co~ter 
decrements to O. 

10 Free o Used in conjunction with the Soft bit to determine the 
state of the timer when a breakpoint is encountered in 
the HLL debugger. When the Free bit is cleared, the 
Soft bit selects the timer mode. 

Free = 0 The Soft bit selects the timer mode. 

Free = 1 The timer runs free regardless of the Soft bit. 

9-6 PSC Timer prescaler counter. Specifies the count for the on­
chip timer. When PSC is decremented past 0 or the 
timer is reset; PSC is loaded with the contents of TDDR 
and the·TIM is decremented. 

5 TRB Timer reload. Resets the on-chip timer. When TRB is 
set, the TIM is loaded with the value in the PRD and 
the PSCis loaded with the value in TDDR. TRB is 
always read asa O. 

4 TSS .0 Timer stop status. Stops or .starts the on-chip niner. At 
reset, TSS is cleared and the timer immediately starts­
timing. 

TSS ~ 0 The timer is started. 

TSS The timer is stopped. 

3-0 TDDR 0000 Timer divide-down ratio. Specifies the timer divide­
down ratio (period) for the on-chip timer. When PSC is . 
decremented past 0, PSC is loaded with the .contents of 
TDDR. 

(Courtesy of Texas Instruments Inc.) 

external logic,' so that a system with a host and a.DSP can be designed without 
increasing the hardware on the board. The HPJ interfaces to the PC parallel 
ports directly. A generic block diagram of the HPJ is shown in Figure 5.19. 
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HPIl6HOST ~ DATA[15:0]. PPD[15:0] : 

HINT 
DMAI I 

Address[l7:0] 
HCNTLO 
HCNTU 
HBIL 

RIW' ­_~=~~;(ASData strobes' HRIW ~.
READY " HRDY HDSl, HDS2, HCS 

~ 
Figure 5.19 A generic diagram of the host port interface 

(Courtesy of Texas Instruments Inc.) 

Important signals in the HPI are as follows: 

• 	 The 16-bit qata bus and the 18-bit address bus. 

• 	 The host interrupt, HINT, for the DSP to signal the host when its atten­
tion is required. 

• 	 HRDY, a DSP output indicating that the DSP is ready for transfer. 

• 	 HCNTLO and HCNTU, control signals that indicate the type of transfer 
to carry out. . the transfer types are data, address, etc. 

• 	 HBIL. If this is low it indicates that the current byte is the first byte; if it 
is high, it indicates that it is the second byte. 

• 	 HR/W, indicates ifthe host is carrying out a read operation or a write 
operation. 

By appropriately using these signals, the DSP device can be interfaced on a 
host such as a Pc. 

5.8.3. Clock Generator 

The clock generator on TMS320C54xx devices has two options-an external 
clock and the internal clock. In the case of the external clock option, a clock 
source is directly connected to the device. The internal clock source option, on 
the other hand, uses an internal clock generator and a phase locked loop 
(PLL) circ)lit. The PLL, in turn, can be hardware configured or software pro­
grammed. Not all devices of the TMS320C54xx family have all these clock 
options; they vary from device to device. 
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5.8.4 Serial 110 Ports 

Three types of serial ports are available on the '54ndevices,'depending on the 
type of the device. These are synchronous, buffered, and time-division multi­
plexed ports. 

The synchronous serial ports are high-speed, full-duplex ports that provide 
direct communication with serial devices, such as codec, and analog-to-digital 
(AID) converters. A buffered serial. port (BSP) is asynchronous serial port that 
is provided with an autobuffering unit and is clocked at the full clock rate. The 
autobuffering unit supports high-speed data transfers and reduces the over­
head of servicing interrupts. A time-division multiplexed (TDM) serial port is 
a synchronous. serial port that is provided to allow time-division multiplexing 
of the data. We will cover serial UO in chapter 10. 

The functioning of each of these on-chip peripherals is controlled by 
memory~mapped registers assigned to the respective peripheral. Figure 5;8(b) 
gives the list of peripheralmemoty-mapped registers along with their ad­
dresses for the TMS320C54xx devices. 

5.9 Interrup~s of TMS320C54xx. Processors 

Many times. when the CPU is in the midst of executing a program, a periph­
eral device may require a service from the CPU. In such a situation, the main 
program maybe interrupted by a signal generated by the peripheral device. 
This results in the processor suspending the main program in order to execute 
another program. called interrupt service routine, to service the peripheral 
device. On completion of the interrupt service routine, the processor returns 
to the main program to continue from where it left. 

Interrupt may be generated either by an internal or an external device. It 
may also be generated by software. Not all interrupts are serviced when they 
occur. Only those interrupts that are called nQnmaskable are serviced when­
ever they occur. Other interrupts, which are called maskable interrupts, are 
serviced only if they are enabled. There is also a priority to determine which 
interrupt gets serviced first if more than one interrupts occur simultaneously. 

Almost all the devices of the TMS320C54Xxfamily have 32 interrupts. How­
ever. the types and the number under each type vary from device to device. 
Some ofthese interrupts are reserved for use by the CPU. Figure 5.20 gives the 
types of interrupts, their locations, and priorities for· TMS320C54xx pro­
cessors. 

A more detailed description of interrupts and how an interrupt is handled 
when it occurs is given in Chapter 9.. . 
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LOCATION 

NAME DECIMAL HEX PRIORITY FUNCTION 

RS; SINTR ·0 00 Reset (hardware and 
software reset) 

NMI, SINT16 4 04 2 Nonmaskable interrupt 
SINT17 8. 08 Software interrupt #17 
SINT18 12 OC Software interrupt #18 
SINT19 16 10 Software interrupt #19 
SINT20 20 14 Software interrupt #20 
SINT21 24 18 Software interrupt #21 
SINT22 28 1C Software interrupt #22 
.SINT23 32 . 20 Software interrupt #23 
SINT24 36 24 Software interrupt #24 
SINT25 40 28 Software interrupt #25 
SINT26 44 2C Software interrupt #26 
SINT27 48 30 Soft;vare interrupt #27 
SINT28 52 3£ Software interrupt #28 
SINT29 56 38 Software interrupt #29 

·SINT30 60 3C Software interrupt #30 
INTO, SINTO 64 40 3 External user interrupt #0 
INT1, SINT1 68 44 4 External user interrupt #1. 
INT2, SINT2 72 48 5 External user interrupt #2 
TINT, SINT3 76 4C 6 Timer interrupt 
RINTO, SINT4 1 80 50 7 McBSP #0 receive 

interrupt (default) 
XINTO, SINT5 84 54 8 McBSP #0 transmit 

interrupt (default) 
RINT2, SINT6 sa 58 .9 McBSP #2 receive 

interrupt (default) 
. XINT2,. SINH 92 5C 10 McBSP #2 transmit 

Interrupt (default) 
INT3, SINT8 96 60 11 External user interrupt #3 

.HINT, SINT9 100 64 12 HPJ interrupt 
RINT1, SJNT10 104 68 . . 13 McBSP #1 receive 

interrupt (default) 
XINT1, SINT11 106 . 6C 14 McBSP #1 transmit 

interrup~ (default) 
DMAC4, SINT12 . 112 70 15 DMA channel 4 (default) 
DMAC5, SINT13 116 74 16 DMA channel 5 (default) 
Reserved 120-127 78-7F Reserved 

Figure 5.20 Table for interrupt locations and priorities for TMS320C54xx processors 

·(Courtesy of Texas Instruments Inc.) 
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5.10 Pipeline Operation of TMS320C54xx Processors 

The CPU ·of'54xx devices has a six-level-deep· instruction pipeline. The· six 
stages of the pipeline are independent of each other; This allows overlapping 
execution of instructions. During any given cycle, up to six different instruc­
tions can be active, each at a different stage of processing. The six levels of the 
pipeline structure are program prefetch, program fetch, decode, access, read, 
and execute. . 

1. 	 During program prefetch, the program address bus, PAB, is loaded with 
the address of the next instruction to be fetched. 

2. 	 In the fetch phase, an instruction word is fetched from the program bus, 
PB, and loaded into the instruction register,IR. These two· phases form 
the instruction fetch sequence. 

3. 	During the decode stage, the contents of the instruction register, IR, 
are decoded to determine the type of memory access· operation and the 
control signals required for the data-address generation unit and the 
CPU. 	 . 

. Figure 5.21 Six-stage pipeline of TMS320C54xx execution 

(Courtesy of Texas Instruments Inc.) 
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l> Example 5.14 

. Solution 

4-. 	 The access phase outputs the read operand's address on the data address 
bus, DAB. If a second operand is required, the other data address bus, 
CAB, is also loaded with an appropriate address. Auxiliary registers in 
indirect addressing mode and the stack pointer (SP) are also updated., 

5. 	 In the read phase the data operand(s), if any, are read from the data 
buses, DB and CB. This phase completes the two-phase read process and 
starts the two-phase write process. The data address of the write oper­
and, if any, is loaded into the data write address bus, EAB. 

6. 	 The execute phase writes the data using the data write bus, EB, and com­
pletes the operand write· sequence. The instruction is also executed in 
this phase. . 

Figure 5.21 shows the six stages of the pipeline .and the event.s that occur in 
eachstage. The following examples demonstrate how the TMS320C54xx pipe­
line works while executing instructions. 

Show the pipeline operation of the following seque~ce of instructions if the 
initial value of AR3 is 80 and the values stored in memory location 80, 81, 82 
are 1, 2, and ,3. . 

LD*AR3+. A 
ADD #lOOOh. A 
STLA. *AR3+ 

Figure 5.22 is the solution to this example problem. 

Exec & 

CYGle Prefetch Fetch Decode Access Read Write AR3 A 

1· LD 80 X 

2 ADD LD 80 X 

3 STL ADD LD 80 X 

4 STL ADD lcD 81 X 

5 

6 

STL ADD 
STL 

LD- LD 
81 
82 

1 
OOOlh 

7 STL ADO 82 1001h 

8 STL 82 1001h 

Figure 5.22 Pipeline operation of the instruction sequence of Example 5.14 
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Exec & 
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81 84 
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LD 83 85 

MPY 83 85 

ADD 83 85 

A T 

1 X 

1 X 

1 X 

1 X 

1 X 

03 06 

03 06 

03 06 

15h 06 

Figure 5.23 Pipeline operation of the instruction sequence of Example 5:'5 

l> Example 5.15 Show the pipeline operation of the following sequence of instructions if the 
initial values of ARI, AR3, A are 84, 81, 1 and the values stored in memory 
location 81, 82, 83. 84 are 2, 3, 4, 6. Also provide the values of registers AR3, 
ARI. T and accumulator, A, after completion of each cyde. 

ADO *AR3+. A 
LD *ARl+. T 
MPY *AR3+.B 
ADD B. A, 

Solution Figure 5.23 is. the solution to this example problem. 

5. 11 Summary 

In this chapter, we have looked at the architectural features of the commercially 
available programmable digital signal processors. In particular, we have studied 
in detail the following features of the Texas Instruments.TMS320C54xx DSPs: 

• 	 Architecture of the processors, consisting of the bus structure, central 
processing unit (CPU), and internal memory organization 
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• 	 ,Addressing modes, conslstmg of immediate addressing, absolute ad­
dressing, accumulator addressing, direct addressing, indirect addressing, 
memory-mapped addressing, and stack addressing 

• 	 Address-generation unit, including single-operand address modifica­
tions, circular address modifications, bit-reversed address modifications, 
and dual-operand address modifications 

• 	 Assembly language instructions, including signal processing-specific in­
structions and programming examples 

• 	 Memory organization 

• 	 On-chip peripherals 

• 	 Interrupts 

• 	 Pipeline operation 
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Assignments 

5.1 	 How will you configure a TMS320C5416 processor to have the following on­
chip memories? Specify the address range in each case. 

On-chip DARAM: for program 

On-chip ROM: for program 

How much RAM for data will be available in the specified configuration? 

5.2 	 Explain the difference between the internal and external modes of clocking 
TMS320C54xx processors. How do you vary the clock frequency in each case? 

5.3 	 Identify the addressing mode of the source operand In each of the follo.:ving 
instructions: 

a: 	 ADD >I- AR2, A 

b. 	 ADD >I- AR2+:, A 
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c. ADD*AR2. + %, A 

d. ADD #Ofih, A 

e. ADD 1234h, A 

f. ADD *AR2+ OB, A 

g. ADD *+AR2, A 

5.4 	 What will be the .contents of accumulator A after the execution of the in­
struction 

LD 	 *AR4,4, A 

if the currentAR4 points to a memory location whose contents are 8bOeh. and 
the ~XM bit of the status register STl is set? .. 

5.5 	 Write a sequence of TMS320CS4xx instructions to configure a circular buffer 
with a start address at0200h and an end address at 021fh with current buffer 
pointer (AR6) pointing to address 020Sh. 

5.6 	 Write a TMS320CS4xx program to compute the equation 

y= mx+ c 

Assume that ~ and c 'are stored in the data memory and m in the program 
memory; The result should be stored in the data memory. 

5.7 	 Write a TMS320C54xx program to implement second~order IIR filter equations 

den) = x(n) + d(n -l)al + den - 2)a2 

y(n) = 	d(n)bo+ den - 1)b1 + d(n - 2)b2 

where ah a2, bo, bI , b2 are filter coefficients (integers), x(n) is the latest input 
sample, y(n) is the filtered output sample, and den) is an intermediate result. 
You may assume that, during calculations, all signals remain within values 
represented by 16 bits. 	 . .. 

S.8 	 Write a TMS320CS4xx program to read the cosine value of a variable from 
a table stored in the program memory and store it in the data memory. The 
variable is located at address VALUE in the· data memory, an.d the cosine 
value should be stored at the same location. The cosine table is stored at 
address TABLE in the program memory. 

5.9 	 Write a TMS320CS4:x::(C program to read .100h words from the input port at 
address INPORT and store them in the data-mem9rystarting at address 
BUFFER. .. . . 

5.10 	. Writ.e a TMS320C54xx program to mask the lower 6 bits of a word stored in 
the data memory and write the modified word back at the same location. 

5.11 	 What is the role of the interrupt pins in il DSP device? Are these the only 
means of interrupting a DSP program? How do you prevent a signal on an 
interrupt pin from interrupting a time-critical program being executed by the 
DSP? . 
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5;12 	 By means ofa figur~, explain the pipeline operation ofthe following sequ~nce 
of TMS320C54xx: instructions if the initialva1ue of AR3 is 80 and the values 
stored in memory location 80,81,82 are 1,2, and 3. 

LD *AR3+, A 
ADD *AR3+. A 
STL A. 	 ,*AR3+ 



Chapter 6. 
Development Tools for Digital 
Signal-Processing Implementations 

6. 1 Introduction 


In the last chapter, we studied TMS320C54x:x DSP's architecture and instruc­
tions, and we wrote a few simple programs to illustrate the use of its instruc- , 
Hons. In this chapter, we introduce a development tool that can be used to 
implement and test DSP algorithms. This tooUs the D.SP System Design Kit, or 
DSK, for TMS320C54n processors. It comes with the development software 
called the Code Composer Studio (CCS). We will briefly describe this tool and 
show how it can be used to develop DSP applications. Specifically, we discuss 
the following topics: . 

The DSP development tools 

The DSP System Design Kit (DSK) 

Software for development 

The assembler and the assembly source file 

The linker and memory allocation 

The C1C++ compiler 

The Code Composer Studio (CCS) 

DSP software development example 

6.2 -The DSP Development Tools' 

A development tool provides a: hardware/software platform to implement and 
test a design. For implementing' TMS3ioC54xx DSP designs,. a range of sys­
tems exist with varying developmental capability and. price tags. The least 
expensive developmental system is the DSP System Design Ki~, or DSK,. and 
the most expensive and also the most capable system is the Emulator. The 

-_._-­

154 
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medium-capability system is the Evaluation Module, or the EVM. Here, we 
limit our discussions to the use of the DSK for implementing and testing DSP 
algorithms. The DSK provides all the capabilities that a beginner needs to start 
implementing DSP schemes using TMS320C54xx DSP devices. 

6.3 The DS' System Design K.it (DSK) 

TMS320VC5416 DSK, or simply DSK, is a low-cost development tool that 
allows a student to explore TMS320C54xx DSP architecture and implement 
signal-processing algorithms. The DSK is specifically suitable for a beginner 
learning DSP -implementations. It comes with a TMS320VC5416-based board, 
and DSK-specific development software. The DSK board can be connected to a 
PC using the universal serial bus (USB) cable, as shown in Figure 6.1. An em­
bedded JTAG emulation logic on the DSK allows for code development and 
debug without the use of an external emulator. Four jacks for analog inputs 
(such as a microphone) and outputs (such as a speaker) provide interface to 
the outside world. 

The board is shown in the block diagram of Figure 6.2. The DSK board IS 

designed around a-16":160 MHz VC5416 DSP processor. The DSP device pro­
vides a 64K-word dual-access program/data RAM, a 64K-word single-access 
program RAM, and a 16K-word program ROM. In addition to the memories, 
it also provides three multichannel buffered serial ports (McBSPs), a DMA 
controller, 8/16-bit host port interface, and a timer. Additional external mem­
ory is provided with a 64K~word S.RAM and a 256K-word flash memory on the 
DSK board. 

The DSK uses the PCM3002 stereo codec consisting of a 16-bit analog~to­
digital converter (ADC) and a 16-bit digital-to-analog converter (DAC). The 
codec provides the capability to convert an analog signal toa serial digital 
signal for the DSP's multichannel buffered serial port McBSP2 and to convert 

DSK PC 
AnalogI II 

USB Port AnalogOut 

.. 

• Microphone 

Port 

Speaker 

USB 

USB Cable 

Figure 6.1 Signal-processing configuration using the C 5416 DSK 

[, 
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ceo;:; 

USB 
IfF 

+5Vin 

Figure 6.2 Block diagram of thgD,SK board 

(Courtesy of Texas Instruments Inc.) 

the digital signal to analog for the analog output port. We consider the details 
of this interface in Chapter 10. 

The other provisions on the board include three expansion connectors for 
memory, peripherals, and h6st interfaces. Four jumpers are provided to con­
figure, the board for various clock frequencies and running the DSP in micro­
processor or microcomputer mode. A reset push button switch is provided to 
reset the board. The board uses 5V dc power supply. For more details on the 
DSK board hardware, the reader should consult reference [I] given at the end 
of this chapter. 

6.4, Software for Devel~pment 

The software development flow chart of Figure 6.3 describes the, various lan­
guages, tools, and libraries that may be employed to develop an application. 
The flow chart also shows the files that are used and created in the deVelop­
ment process. ' 

The tools depicted in the flow chart consist of the compiler, the assembler, 
the linker', and .the dequgger. The utilities that may be neededconsist of the 
archiver, the library· builder, and the hex converter. The files encountered in 
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Figure 6.3 Software development flow 

(Courtesy of Texas Instruments 

the development process consist of source files, COFF object files, and a COFF 
executable file; 

The C compiler translates a source file into a C54ix assembly language 
source file. To create a source file, a tool called the editor is needed. An editor 
maybe any ASCII editor available on the PC, such as EDIT in DOS. The 
assembler translates assembler source files into COFF object files. Source files 
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can contain instructions, assembler directives, and macros. The assembler _ 
directives are employed to control the assembly process, such as the source 
listing format, data alignment, and section contents. The linker combines the 
relocatable COFF object tiles and library modules into a single executable 
COFF object tile. It creates the executable module by assigning symbols to 
memory locations and resolving symbol references. 

The archiver utility collects a group of tiles into a single archive tile. Macros 
can be combined to form a macro library. During assembly, the assembler 
searches the library and uses the needed macros., Archiver can also be used to 
combine a group of object tiles into an' object library. The linker uses the 
object library· to resolve external references during the linking process. The 
compiler package may include the library-build utillty, which can be used 
to build runtime-support libraries. The assembly translation assistant utility 
can be used to convert an assembly language source file containing mne­
monic instructions to an assembly language source tile containing algebraic 
instructions. 
. TMS320C54xx DSP accepts executable COFF tiles as· input. A hex conver­
sion utility is used to convert a COFF object tile into TI-tagged, Intel, Moto­
rola, or Tektronix object formats. The converted tile can be down1oade~ to an 
EPROM programmer. The absolute lister· accepts linked object files as input 
and creates an absolute file as output. The created tile has absolute rather than 
relative addresses. The cross-reference lister uses object tiles to .produce a 
cross-reference. 

The debuggiIlg tool provides a mechanism to download an executable pro­
gram to the board and run it to verify its operation. More important, it is 
used to debug the pro{Wlm by using controlled execution and the monitoring 
support provided in the debugging environment. The DSK debugging tool is 
described in the next section. 

In order to support application development using DSK, the DSK software 
provides host utilities .and board drivers and libraries. The host utilities run 
on the host PC and provide functions to control the DSK board, whereas the 
target libraries are for the DSK board and provide functions to control the 
peripherals on the board. C54xx DSK host utilities provide the user with a way 
to use the board without having to write 'an application from scratch. These 
utilities support C54xx DSK board contiol, such as DSP reset; DS'P application 
loadinga.n,d execution, device configuration, status display, board confidence 
testing. and flash memory programming. The host utilities can be used to load 
and run any application or to configure and monitor the C54xx DSK device 
without writing the application to do it. Stand-alone embedded' executable 
functions can be programmed into flash memory. For more information on 
these utilities, the reader should consult reference [2] given at the end of this 
chapter. 

The board drivers for the C54xx DSK provide the low-level software inter­
face. These dtivers are not intended to be directly accessible for the user-mode 
applications. A Win32 DLL that provides a consistent API across an supported 
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Window platforms hides the details of accessing these dnvers. The purpose of 
the board driver functions is to allow the user-mode DLL to access and con­
trol C54xx DSK. These functions provide a b.asic interface that gives access to 
the board in all supported Windows environments. The Win32 DLL provides 
inte11igentprocessing and control functions that call kernel-mode board 
driver functions to access board re.sources and the PCI configuration data. The 
board libraries provide functions for board initialization as well as initializa­
tion and control of on-board peripherals. 

6.5 The Assembler and the Assembly Source File 

A program written in an assembly language is called an assembly source pro­
gram. An example of such a program is shown in Figure 6.4. This program 
is essentially the same as the one in the last chapter, except that a few new 

****************************************************************** 

* 
* This program computes the signed sum of 16 data memory 
* locations starting at Number. The result ;s to be placed in A. 
*. 

****************************************************************** 

.mmregs 


.global c ;ntOO 


.data. 

Number: 
.int .5, 14. ~7: 22, ~25, 4, 2, 0, 6~ 33, 4, 11, 12, -12, 8, 16 

. text. 

c ;ntOO: 
stm nOh. AR2 1nit counter AR2 = 16 
stm #Number, ARI 1nitpointerARl to first· number 
ld #Oh, A 1nttialize sum A =0· 
ssbx SXM Select Sign extension 

START: 
add *ARl+, A Add the next data value 
banz START,*AR2- Rep~jtifnotdbne 

nop No operation, just for debugging 

.end 

Figure 6.4 An assembly source program for TMS320C54xx 
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directives statements have been added. The directive statements are for the'host 
program that will be used to convert the source program to the machine program 
for executioI). on the processor. The program that does this conversion is called 
an assembler. The statements added in the progli'am in Figure 6,4 are for the 
assembler that comes with DSK. Here, we will briefly discuss these statements. 
However, the reader is advised to consult reference [3] for complete details. 

The .instructions in the program are the processor instructions that we dis­
cussed in the last chapter. The labels such as START in Figure 6.4 refer to the 
memory addresses for the instructions. The statements starting with a star (*) 
are the comments to facilitate program understanding and do not produce 
any converted code. The statements J:4at start with a dot (.) are called direc­
tives. A directive is not a processor instruction; it is an instruction to the 
assembler program to control the assembly process. For instance, the .int 
directive in the program of Figure 6.4 specifies to the assembler to allocate· 
word-size memory locations and initialize them with the data specified after 
the directive. The memory allocation starts at the address to which the label 
"Number" refers. . 

The .mmregsdirective definesmembry-mapped registers of the prQcessor. 
For instance, ARO register refers to a specific memory location after as~ 

· sembling and this reference or definition is provided by the .mmregs direc­
tive. The.global directive declares the specified label visible to other program 
modules. The .data and .textare called section directives. These are provided 

· to define· data and code sections of a program. For instance, starting at .data 
till .text, th~ allocation is to the data section. Starting at .text, the allocation 
is to the code section. Finally, the .end directive specifies the end of the source 
file. . 

There are many other direCtives that faCilitate the aSSembly process of 
converting instructions and allocation of code and data. The reader is advised 
to lookthese up ih reference[3]. 

6.6 The Linker and Memory Allocation 

The linker is another program that is also a part of the development system. 
It is needed to allocate the user program and its sections to actual physical 
me.mory on the target, such as the bSK board. It provides a way by which we 
can use the resources of the hardware in view of the program that we. intend 
to test. Another important use of the linker is to allow a 'programmer to write 

· an application in modules. The linker combines these modules into a single 
machine program for the hardware execution on the DSP deviCe. 

Typically, a command file' is used to define the connection between the 
hardware resources and the program sections. An example of a command file 
for the program in Figure. 6.4 is shown in Figure 6.5. Memory is defined as 
consisting of two pages, PAGE 0 and PAGE 1. PAGE 0 refers to the program 
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/*
* =;====== example6pl.cmd =;;=~=== 

* 
*/ 

MEMORY" 
{ 

PAGE 0: IPROG: origin = OxlOOO. ·len = Ox3000 
PAGE 1: IDATA: origin = Ox400. len = OxlOO 

} 

SECTIONS 
{ 

.text: {} > IPROG PAGE 0 

.data: {. }.> IOATA PAGE 1 

Figure 6;5 ·A command file for the program of Figure 6.4 

memory; it start~at OxlOOO and has a length of 0x3000. PAGE 1 refers to the 
data memory starting at Ox400; it has a length of OxlOO. These are valid 

. memory locations in the DSK board.· The· sections of the program are assigned 
to exist in these two types of pages. For instance,.text is the code section and 
it is assigned to PAGE 0 or the program memory. Similarly, .data section is 
defined to be in the data memory or PAGE 1. For more on linker and memory 
allocation, the reader is advised to cons~1t reference [3]. 

6.7 The C/C++ Compiler 

The PSK comes with a CtC++ compiler that can be used to develop DSP ap­
plications using the high-level languages C and C++. The compiler generates 
an assembly file that can be further converted with the assembler program to 
generate an object file for the linker. For information on developing C or C++ 
programs, the reader is advised to consult an appropriate reference [4]. 

6.8 The Code Composer Studio (CCS) 

The DSK comes complete with the DSK-specific Code Composer Studio (CCS). 
CCS provides an integrated development environment (IDE) for project man­
agement, editing, compiling, debugging, and visualization. Both CtC++ and 
assembly language codes can he developed and debugged. 
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To. use CCS, we need to. kno.w ho.w to. build applicatio.ns and ho.w to. debug 
o.r test them using a target such as the DSK board. These two. aspects are 
co.nsidered in the fo.llo.wing subsectio.ns. 

6.8.1 Building a Project 

A new pro.ject is built by cho.o.sing "New" in the Pro.ject menu. The Project 
Creatio.n windo.w appears, allo.wing o.ne to. specify the pro.ject mime, lo.catio.n, 
and type. The pro.ject type executable generates an .o.ut extensio.n executable 
file. Ending the pro.ject creatio.n takes yo.u to. the Pro.ject View windo.w, where 
files to. be used in the project can be added. These files are the so.urce flIes 
(bo.th assembly and C++), fibrary files, and the command file. Select "Add 
Files" under the Pro.ject menu and -specify the file type and its lo.catio.n to. add 
it to. the pro.ject. The include files are nut added; these are auto.matically added 
by the CCS after scanning the so.urce files. 

A pro.ject co.nfiguratio.n is selected fro.m the Pro.ject to.o.lbar. Two. co.nfig­
uratio.ns, Debug o.r Release, are available fur different phases o.f pro.gram de­
velo.pment. The o.utput generated after the project is built is placed in the 
co.nfiguratio.n-specificsubdirecto.ry in the directo.ry fur the pro.ject. 

Figure 6.6 sho.ws a sample pro.ject file generated by the CCS in respo.nse 
to. selectio.ns and the. files used. This file co.ntains all the info.rmatio.n abo.ut 
the project, such as pro.ject settings, so.urce files, co.mpiler settings, and linker 
settings. The details o.f the settings. fur the co.mpiler and linker are given in 

. refer.ence [2). 
The project is built by cho.osing "Rebuild All" in the Project to.o.lbar. The 

executable file is placed in the appro.priate directo.ry, such as the Debug 
. directo.ry. The executable pro.gram can. be IQaded to. the bo.ard using "Lo.ad 
Pro.gram" under the File menu. The pro.gram can be executed o.r debugged 
using the Debug o.ptio.n in the File menll. The debugging can be do.rie using 
vario.us contro.ls and o.ptio.ns to. run the program and view its results. So.me o.f 
these o.ptio.ns are discussed in the next sectio.n. 

6.8.2 The Debug Options 

The CCS. debugger provides a po.werful debugging capability by permitting 
the executio.n o.f a pro.gram in many different ways and viewing the results in 
many different fo.rmats~ The basic debug capabilities o.f CCS co.nsist o.f pro.vi­
sio.ns to. do.wnlo.ad· a pro.gram to. the DSK bo.ard, run the pro.gram, single-step 
thro.ugh instructio.ns, mo.dify registers ana memo.ry lo.catio.ns, view registers 
and lo.catio.ns, and apply reset to. the pro.cesso.r. In additio.n to. basic capa­
bilities, there are a number o.f advanced debuggirig features pro.vided in CCS. 

, So.me of these features are as fo.llo.ws: 

http:fo.llo.ws
http:lo.catio.ns
http:lo.catio.ns
http:instructio.ns
http:do.wnlo.ad
http:o.ptio.ns
http:o.ptio.ns
http:contro.ls
http:vario.us
http:directo.ry
http:directo.ry
http:selectio.ns
http:directo.ry
http:co.nfiguratio.n-specificsubdirecto.ry
http:uratio.ns
http:subsectio.ns
http:applicatio.ns
http:Implementatio.ns
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; Code Composer Project File, Version 2.0 (do not modify or remove this 

1i ne) 


[Project Settings] 

ProjectDir="C:\ti\myprojects\example6pl\" 

ProjectType=Executable 

CPUFamily=TMS320C54XX 

Tool="Compiler" 

Tool="DspBioiBuilder" 

Tool="Linker" 

Config="Debug" 

Config="Release" 


[Source. Fi 1 es] 

Source=n •• \ •• \ •• \WINDOWS\Desktop\DSPBookPgm\ch6pgms\example6pl.asm" 

Source:;." •• \ •• \ •• \WINOOWS\Desktop\OSPBookPgm\ch6pgms\exampl e6p1.cmd" 


["Compiler" Settings: "Debug "] 

Options=-g -q -fr"C:\ti\myprojects\example6pl\Debug" -d"_DEBUG" 


["Compi] ern Setti ngs: "Rel ease"] 

Options=-q -02 -fr"C:\ti\myprojects\example6pl\Release" 


["DspBiosBuilder" Settings: "Debug"] 

Options=-v54 


["DspBiosBuilder" Settings: "Release"] 

Options=-v54 


["Lin'ker" Settings: "Debug"] 

Opt'ions=-q -c -0". \Debug\example6pLout" -x 


["Linker" Settings: "Release"] 

Options=-q -c -0".\Release\example6p1.out"-x 


Figure 6.6 A sample project file created by the C c.s 

Breakpoints: A breakpoint can be set on' an instruction. Execution of the 
program stops at the breakpoint. giving an opportunity to view the results 
produced by the part of the program that has been executed. 

Watcll Window: This feature allows one to monitor program variables as 
the execution takes place. . , 

Probe Points: By adding a Probe Point on a line of the program. data can 
be transferred either from a file on the host to the DSK memory or from 
the DSK memory to a file on the host. The program execution resumes 
after transferring the data. . 
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Graphing:CCS provides a number of ways to graph the data processed by 
the program. This capability is particularly useful in viewing a signal in the 
frequency and time domains. 

Profiling: A pro filer can be used to determine the number of cycles Ii par­
ticular function or a program takes to execute or how many times the 
function is called. This capability can be used to optimize the program 
performance. 

Real-Time Analysis: The CCS provides tlie capability to monitor and ana­
lyze a real-time program without interfering with its execution. This capa­
bility is provided by way of a DSP/BIOS kernel and-RTDX (real-time data 
exchange) technology. The kernel, which is loaded to the board, uses API 
functions to implement run-time services. These functions can be linked 
into an application and allow a user to implement performance monitoring 
and program tracing. The RTDX provides a link to obtain and'monitor 
target data i~ real time. This capability allows the user to transfer data 
betWeen the host and the target without interfering with the targetap­
plication. RTDX has two components, one of which runs on t.'Qe target to 
provide a link to the target data. On the host platform, RTDX runs in con­
junction with CCS to provide data visualization and analysis. For more in­
formation on this capability, the reader is advised to ron the DSP/BIOS and 
RTDX tutorials available in the CCS environment by invoking the Help 
function. . 

6.9 DSP Software Development Exampl~ 

In this section, we will go through the various steps of building and debugging' 
an application for the DSK using the CCS. These steps will be illustrated llS~g 
the source program of Figure 6.4 and the command file of Figure 65. The 
process illustrated here does not demonstrate the complete power ofthe tools; 
it is a simplified version of the tools an~ illustrates the basic proces~ j)fa1>pli­
cation development. 	 . 

1. 	We start by creating a new project, as shown in Figure 6.7, by selecting 
"New" under the Project toolbar. The project name, exampl~pl, can be 
entered along with its location. The project type chosen will be Execut- . 
able (.out). The target is TMS320C54xx. 

i. The project window after creating and selecting the project is shown in 
Figure 6.8. 

3. 	 The project files are added to the project by selecting "Add Files to 
Project" under the Project toolbar. As shown in Figure 6.9, we add the 
source file example6p1.asm. The process is repeated for the command 
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Figure 6.7 Creating a new project in CCS IDE 

:file example6p1.cmd. While selecting a file, the file location and its type 
must be selected to see the file in the window before it can be added. 

4. 	Figure 6.10 shows the Project window after adding and selecting the 
. source and the command files. 

S. 	 Figure 6.11(a) shows how project build options can be selected for the 
assembling, compiling, and linking. The buil,d options are selected from 
the Project toolbar.Here we can specify options for the assembler, com­
piler, and the linker. Figure 6.11(b) shows where the place for the object 
files is specified. 

6. 	The project is built by selecting the "Build" option under the Project 
toolbar. Figure 6.12 shows the building of the ,project. The lower window., 
shows aliy error if it occurs during the build process. 

7. 	 The built program can be downloaded to the DSK board by selecting 
"Load Program" in the File menu. This is shown in Figure 6.13. 
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Figure 6.8 The project window for the being created 

8. 	After downloading the prograpl, it can be de~ugged, or simply run, by 
choosing the debug features. Restarting the program makes, it l>,egin 
from the first instruction, as shown in Figure 6.14. Tbe, right arrow 
shows the start point. In order to execute it to the end, we may set a 
breakpoint at the last "nop" instruction. The breakpoint is selected from 
the, Debug toolbar. The filled circle on the nop instruction shows the 
breakpoint location. Since the program uses registers, we may view these 
as shown in Figure 6.14. The register window is selected from the View 
menu. Notice that A = 0, ARlO, and AR2 = O. These are the registers 
used in the program. The program adds the numbers starting at the 
location Number. Note that the location Number is at address 400h, as 
the data section is defined in the command file to start at this address. 

9. 	 Executing the program with a run command generates the sum of 16 
numbers in register A. The result is shown in Figure 6.15. It is easy 
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Figure 6.9 Adding files to the project 

to verify that the ARI and AR2 registers also contain the appropriate 
numbers after completing the program execution. To' debug the pro­
gram we also can run the program using single-step execution, in which 

,case one instruction at a time i~ executed. Simultaneously we can view 
the contents of registers as the instructions are executed. 

6.10 Summary 

In this chapter, we introducep an important and inexpensive tool called the 
DSP System Design Kit (DSK) for the C54:xx DSP devices and its associated 
development software called Code Composer Studio Integrated Development 
Environment (CCS IOE). The package can be used to develop DSP applica­
tions. These tools were illustrated using a simple example. 
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illsdgoS416dsk f SpeChWI'I O«)ltal }!CPU~l ~ C54X· Code Cornpo$er Studto 'C5416 OSK Toob - 1~ ~;,; ...~ 't?~ 

Files 
~-SJ GELlie, 
B"iJil Proiects 

8·"; .....pIaSpl.p~ 
H;;:j DSPIBIOS Conlig

··ISI .,.""le£pl.cmd 
""8 GenefClled Files 
-fillnclude 

!,tW Lbafres 
&6:1_ 

;~ample6pl·"I':1 

Figure 6.10 Project window after adding source and command files 
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.p~ 

3cm~ 
exafTl)ieSp1. cmd . 

j.. ii Generaled F'1Iet 
i""Ui Include
F-{iJ LbliRes 
S·IiiJ_ 

:.- ·~~e6p1.a~~1~ 

(a) 

Figure 6.11{a) Selecting project build options 
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GEUies 
Ptojectss-a eoampIe6pl.p;1 
: -£iii DSPIBIOS Conflg 
HJjex_1e6p1.crnd 
f-il::I G""",OledFi\e. 
r·-riiJlnciudo 
: ..t:lll LilIOIie! 
8-61_ 

~~1."Di 

Figure '6.11(b) Selecting project build options 
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This program computes the signed sum of 16 data ",emory 
loco.tions startin"S' at Number. Jhe r€lsul t is to be placed in A . 

•••••• Will •••••,..........iI·•••.••••( ............................... 111.••••••••• 


_c_intOO 

~data 

S. 14. -7. 22. -25. 4. 2. O. 6. 33. 4. ll ••12. -12. 6. -16 

-d "_DEBUG" -Ii!".'/.'/. 

OO'-CGTOOLS'BIN"clSOO" -@"Debug.lkf" 


Complete. _ 

Errors. 0 Warnings. 0 Remarks.­

Figure 6.12 Building the project 
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'l&dgo,;lGdsk [Sp.c"", OIQlti>l )lCf'U_1 . ($\X. Cod..c.>IlI~,';$IU.",·~t, 'i;ll '. . 

• 12. -12. 8, 16 

1>£l"""f'_DEEUG" _@",./,./ • 

.~ 

-~-A~ 

Ranlarks. 

Figure 6.13 Downloading the project to the DSK 
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.,..~ 

SELfi., 
"'o;.ot. 

S·..3l .....pI.6pl.p~ 
.·CJ OSPJBIOS CotJIiIl 
.I!! "'''1'le€pl,cmd 

~l 

i.::J Generated Fi1et/iI 
"alnc~ll' f_. '-0 LbulIie; 

II BCJ..SW/ce.Gi,i_I 
IlEI 

_c_intOO 

.data 

5. 14. -7. 22. -25. 4. 2. O. 6. 33. 4. 1L 12 •. -12. 8. 16 

.text 

stm #lOh. AR2 counter AR2 •. 16 
stm #Numher. ARl pointer AR1 to first number 
Id #Oh. A sum A .. 0 
ssbx SXM Select sign extension mode 

add *AR1+. A ; Add the next data value 
banz START. -AR2- ; Repeat if not done 
nap No operation .. just for debugging 

.end 

STO ­
0000000000 STl' 
0000000000 PMST ­
0000 DP ­

-0 ASM­
• 0000 INn! • 
• 0000 . IMR • 

0000 IFR ­
IPTR. 

Figure 6.14 Debugging the project using a breakpoint 
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_c_intOO 

.data 

5. 14. -7. 22. -25. ~. 2. D. 6. 33. 4. ", 12. -12. e. 16 

; Ini t counte%' AR2 16 
; ,Inlt pointer ARl to first number 

Initialize sum A ... a 
Select sign extansio~ mode 

; Add the next data value 
ban>: START. *AR2 - ; Repeat if not d.one 
nop ; }.Io operatlon .. just for debugging 

.end 

Figure 6.15 Result of executing the project using a breakpoint 
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Laboratory Assignments 

l6.1 	 Build a project to verify Example 5.11 using the following data: 

h(O) = 5, h(1) = 31, h(2) = 13, x(n) = I, x(n- 1) = 5, x(n ...:. 2) = -3. 

L6.2 	 Build a project to verify Example 5.12 using the following data: 

h(O) = 	5, h(I) = 31, h(2) = 13,x(n) = l,x(n - 1) = 5,x(n - 2) = -3. 

L6.3 	 Build a pr.oject to verify Example 5~13 usingthe following data: 

h(O) = 5, h(1) = 31, h(2) :=:: 13, x(n) = 1, x(n - 1) = 5, x(n - 2) == -3. 

L6.4 	 Write a program that computes the square of"the distance between the two 
points with the coordinates (Xl> Yl) and (Xl, yz). Build a project and verify the 
program using a set of points. . 

L6.5 	 Use the program in L6.~ to write another program that computes the distance 
between the points. Build a project and verify the program operation using 
a set of points. You may use the following algorithm to compute the square 
root: 

Square root of N = Nllmber of sequential odd integers starting at 1 that add 
to (or whose total approaches) N. For instance, 25 = 1 + 3 + 5 + 7 + 9, or it . 

. is the sum offive odd integers and 5 is the squareroot of 25. • 



Chapter 7 
Implementations of Basic DSP Algorithms 

7. 1 Introduction 

In this chapter. we deal with implementations of DSP algorithms. Here we 
write programs to implement the_core algorithms only. However. these pro­
grams' can be combined with input/output routines to create applications that 
work with a specific hardware. Specifically, in this chapter, the following 
C54xx implementations using assembly language [5.6,7] are covered: 

Q-notation 


FIR filters 


IIR filters 


Interpolation filters 


Decimation filters 


PID controller 


Ad<ilptive filters 


2-D signal processing 


7.2 TheQ-notation 

DSP algorithm implementations deal with signals and coefficients. To use a 
fixed-point DSP device efficiently, one must consider representing filter co­
efficients and signal saplples using fixed-point 2's c.omplement representation. 
Typically, filter coefficients are fractional numbers. T~ represent such num­
bers, the Q~notation has been developed. The Q-notation specifies the number 
of fractional bits. For instance, Q7 for a 16-bit number means that the most 

116 
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significant 9 bits represent the whole part and the sign of the number and the 
least significant 7 bits are the fractional part of the number. In other words, 
the assumed decimal point lies between bit 6 and bit 7. 

A commonly used notation for DSP implementations is Q15. In the Q15 
representation, the least significant 15 bits represent the fractional part of a 
number. In a processor where 16 bits are used to represent numbers, the Q15 

. notation uses the MSB to represent the' sign of the number and the rest of 
the bits represent the value of the number. In general, the value ofa 16-bit 
Q15 number N, represented as blSb14b13 ... b1bo, can be determined from the 
equation 

N = -blS + bl4Z- l + b13 Z-2 + ... +blZ-14 + bo2-IS (7.1) 

. Thus, the numbers that can be represented by the Q15 notation, using 16 bits, 
range from -1 to 1 - 2-15 • This range is generally adequate to represent filter 
coefficients in DSP algorithms. 

f> Example 7.1 	 What values are represented by the 16-bit fixed point number N 4000h in 
the Q15 and the Q7 notations? 

S91ution 	 4000h = 0100 0000 0000 OOOOb. In the Q15 notation, it represents 0.100 OOOQ. 
0000 OOOOb with the assumed decimal point. Use of Eq. 7.1, to compute its 
value, yields 

N= +0.5 

Similarly, the same number in the Q7 notation represents 0100 0000 0.000 
OOOOb, which, using Eq. 7.1, computes to 

N +128.0' 

Multiplication of numbers represented using the Q-notation is important 
for DSP implementations. Figure 7.I(a) shows typical cases encountered in 
such implementations. For instance, if two 16-bit Q15 numbers are multiplied 
as integers, the 32-bit result is a number in Q30 representation. In other 
words, the two MSBs are the sign bits. If this result is to be used as it is, it is 
important to know where the position of the decimal point is. If the 32-bit 
result is left shifted one bit position and the 16 MSBs are extracted, we have 
the final result in Q15 representation. This procedure of dealing with the 
Q15 numbers can be employed in DSP implementations. Figure 7.1(b) is a 
TMS320C54xx program that illustrates how to'multiply two Q15 numbers and 
produce a Q15 result This program also illustrates how to minimize the error 
due to truncation of the 16 LSBs to obtain a Q15 result. This can be done by 
rounding off the result b~fore truncation. 
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Nl 
...1 

Signed 
Biriary N3N2 .J Multiplier 

N J 
(16 bit) 

Qo 

Qo 

QI5 

N2 
(l6 bit) 

Qo 

QI5 

QI5 

N3 
(32 bit) 

Qo 


. Ql5 


Q30 

Figure 7.1(a) Multiplication of numbers represented using Q-notation 

7.3 FIR Filters 

A finite impulse response (FIR) filter oforder N can be described.by the dif­
ference equation 

m=N-l 

y(n) =2: h(m)x(n - m) (7.2) 
m=O 

or in expanded form we have .. 

y(n) = h(O)x(n) + h(l)x(n -'-1) + ... + h(N --'- 1)x(n{N 1» . (7.3) 

For FIR filter implementation, we use Eq. 7.3 to illustrate howfue DSP code 
can be written. Figure 7.2 shows ablock diagram'for the implementation. To 
compute y(n), we start with the computation and accumulation of tj:le last 
product, followed by 'the one before the last, and so on. The implementation 
requires signal delay for each sample to compute the next output. The next 
output, y(n + 1), is given as 

y(n + 1) = h(O)x(n + 1) + h(I)x(n) + ... + h(N· l)x(n - (N - 2» (7.4) 

Figure 7.3 shows the memory organization for the implementation of the 
filter. The filter coefficients and.the signals samples are stored in two circular 
buffers each of a size equal to the filter. AR2 is used to point to the samples 

. .------------~~ 

http:described.by
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;-------- ---------------------------------------------~-----------
; Program Name: 	 ex7plQxx.asm 

• Description: 	 Thi.s is an example to show how to multiply numbers 
represented using Q-notation. It implements the 
following: 

NlxN2 = Nl* N2 

where 
NIland N2are lo-bit numbers in Q15 notatiol1 
NlxN2 is the 1~-bit result in Q15 notation 

• Author: 	 Avtar Singh'. SJSU 
;-----------------------------------------------------~------------
; Definitions 

.l1II1regs memory-mapped registers 

.data sequential locations 
Nl: .word 4000h N1 = 0.5 (Q15 number) 
N2: .word' 2000h N2 = 6.25 (Ql!) number) 
NlxN2: •space 10h ; space'for N1 xN2 

• text 
• ref _c_intOO 

.sect ".vectors" 
RESET: 	 b _c_intOO ; Reset vector 

nop 
nop 

_c_intOO: 
stm INI. AR2 ; AR2 pOints to Nl 
ld *AR2+. T ; T reg = Nl 
mpy *AR2+. A ; A = Nl * N2 in Q30notation 
add #1, 14. A ; round the result 
sth A, 1, *AR2 save Nl * N2 as Q15 number 
nop 
nop 

;end 

Figure 7.1(b) TMS320C 54xx program to multiply two 015 numbers 
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x(n) x(n-(N-I»x(n-I) 
~--~,----------------

h(N-I)h(O)' , 

yen) 

Figure 7.2 A FIR filter implementation block diagram 

x(n+ 1) 

! 

i] 
x(n-(N-I» 

x(n-(N-2» 

i]

x(n) 

h(N-I) 

h(N-2) 

h(O) 

~./ 


MAC 

yen) 

Figure 7.3 Organization of signal samples and filter coefficients in circular buffers fora FIR 
filter implementation 
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and AR3 to the coefficients. In order to start with 'the last product, the pointer 
register AR2 must be initialized to access the signal sample x(n -' (N - 1», 
and the pointer register AR3to access the filter coefficient h(N - 1). As each 
product is computed and added to the 'previous result, the pointers advance 
circularly. At the end of the computation, the signal sample pointer is at the 
oldest sample, which is replaced with the newest sample to proceed with the 
next output computation. 

Figure 7.4 shows the TMS320C54xx program to implement the FIR filter. In 
this. implementation, it is assumed that the most recent incoming signal sam­
ple is available from a buffer addressed by the pointer ARS. The computed 
outputs are placed in another buffer using the pointer AR6. In a Teal-time DSP 
system, the incoming samples can be from an AID converter and the outgoing 

. samples can be applied to a DIA converter. Such interfaces are covered in 
Chapters 9 and 10. 

7.4 UR Filters 

An infinite impulse response (IIR) filter is represented by a transfer func­
tion, which is a ratio oftwo polynomial~ in z. To implement such a filter,.the 
difference equation representing the transfer function can be derived and 
implemented using multiply and add operation,s. To show such an imple­
mentation, we consider a se't:ond-order transfer function given by 

H(z) = y(z) =bo +b1z-l + b2z-
2 

(7.5)
X(z) 1 - alz-1 - azz..,-2 

A higher-order IIR filter can-be constructed by cascading second-order se<:­
tions [1, 2]. To develop the difference equation for the IIR filter in Eq. 7.5, we 
rewrite it as 

Y(z) Y(z) W(z) 
(7.6)

X(z) = W(z) . X(z) 

where W(z), an intermediate variable, has been introduced to facilitate im­
plementation. Next, we assign the numerator of the transfer function as 

. 	Y(z) Z
W(z) = bo+ b1z-1 + b2z- (7.7) 

which can be represented by, a difference equation as 

y(n) bow(n) + b1w(n- 1) + b2w(n - 2) (7.8) 
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;------------------------------------------~------~---~----------------~~---------
Program: ex7p2FIR.asm 

Description: This is an example to show how to implement an FIR filter. 


It implements the f'Ollowing equation 


y(n)=h(N-l)x{n-(N-l»+h(N-2)x(n-(N-2»+ ••• h(l)x(n-l)+h(O)x(n) 

where 	 N = Number of filter coefficients = 16. 
h(N-l). h(N-2) •••• h(0) etc are filter coeffs (q15 numbers) 
The coefficients are available in file: coef(}ir.dat. 
x(n-(N-l» .x(n-(N-2)j •.•• x(n) are signal samples(integers). 
The input x(n) is received from the data fiie: data_in.dat . 

. The computed output yen) is placed in a data buffer. 

Author: Avtar Singh. SJSU 
;------------------------------------~--------~-----------------------------------

Defi'nitions 

InSamples 

OutSamples 

SampleCnt 


FirCoeff 

Nml 

c intOO: 

.mmregs 


.def _c..;intDO 


.sect "samples" 

;include "data.:.in.dat" 

.bss y.200.1 

.set 200 


.bss CoefBuf. 16. 1 


.bss SampleBuf. 16. 1 


.sect "FirCoeff" 
, .include "coff fir.datU 

. set 15 

.text 

STM #OutSamples. AR6 

RPT #SampleCnt 

ST #.0. *AR6+ 


STM #InSamples. AR5 

STM #OutSamples. AR6 

STM #SampleCnt. AR4 

CALL fi r i nit 

SSBX SXM 


Allocate space for x(n)s 

Allocate space for y(n)s 

Number of samples to filter 


; Memory for coeff circular buffer 
; 'Memory for sample circular buffer 

Filter 	coeff (seq locations) 

: 	N- 1 

Clear output sample buffer 

AR5 pOints to InSamples buffer 
AR6 pOints to OutSample buffer 
AR4 = Number of samples to fil ter 

• 	Init for filter calculatioRs 
Sel,ect sign extension mode 

Figure 7.4 TMS320C54xx implementation of a FIR filter 	 (continued) 
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loop: 
LD *AR5+,A A = next input sample (integer) 
CALL fir_filter Call Filter Routine 
STH A,I,*AR6+ Store filtered,sample (integer) 
BANZ loop,*AR4 M Repeat till all samples fiHered 
nap 
nap 
nap 

;-----------------------------------------------------------------~---------------
; FIR Filter Initialization Routine 
; This routine sets AR2 as the pOinter for the sample circular buffer, and 
; AR3 as the pointer for coefficient circular buffer. 

BK = Number of filter taps - 1. 
j ARO 1 = circular buffer pointer incremento:i 

;--------~------------~-----------~-------------------~-----------------~---~-----
fir init: 

ST #CoefBuf ,AR3 ; AR3 is the CB Coeff Painter 
ST #SampleBuf.AR2 ; AR2 is the CB sample pointer 
STM #Nml,BK BK = number of filter taps 
RPT #Nml 
MVPD #FirCoeff. *AR3+% Place coeff. in circular buffer 
RPT #Nml - 1 Clear circular sample buffer 
ST #Oh,*AR2+% 
STM #l.ARO ARO = 1 =CB painter increment 
RET 
nap 
nap 
nap

j _____________________________________________________ ____________________ M'_____ ~-

FIR Filter Routine 

Enter with A = the current sample x(n) an integer;
M 

AR2 pointing to the location for the current sample x(n), 

and AR3 pointing to the q15 coefficient h(N-l}. 


Exit with A = yen} as q15 number. 

j--------------------------------------------------------------------------------­
f1 r· fi lter: 

STL A, *AR2+0% Place x(n}in the sample buffer 

RPTZ A, #Nml ; A ': 0 

MAC *AR3+0%,*AR2+0%.A ; A = filtered sum (q15) 

.RET ' 

nap 

nap 

nap 

.end 


Figure 7.4 Continued 
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bo 

wen) yen) 

,a l b l 
Delay 

wen-I) 

Delayaz bz 

w(n-2) 

Figure 7.5 A second-order IIR filter 

Similarly, assigning the denominator as 

W(z) ___----,-_---;;­
(7.9)

X(z) ­

gives the difference equation 

w(n) = x(n) + alw(n - 1) + azw(n 2) (7.10) 

Figure 7.5 shows a block diagram of this IIR filter. To compute y(n), we first 
compute w(n) from w(n 1), w(n 2), and x(n). Next, w(n), w(n - 1), and 
w(n - 2) are used to compute y(n). The program in Figure 7.6 shows the 
TMS320C54xx implementation of the second-order IIR filter. The filter co­
efficients are stored in memory in the order bo, bI> bz, al> and az. The inter­
mediate signals are stored in the order w(n), w(n - 1),and w(n 2). Like the 
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;-----------------------.-------~---------------------------------*---~-----------
:,, Program Name: ex7p3IIR.asm 

Description: 	 This is an example to show how to implement anHR filter. It 
implements the transfer function 

H(z) = [bO'+ b1.z**(-1) + b2.z**(-2)]/[I-al.z**(-1)-a2.Z'**(-2)] 

which is equivalent to the equations: 


wen) = x(n) + aI.w(n-I) + a2.w(n-2) 

yen) =~O.w(n).+ bI.w(n-I) + b2.w(n-2) 


where 

w(n), wen-I) ,and w(n-2) are the intermediate varl abl es .used 1 n 

computations (integers). 

a1. a2, bO, bI, and b2 are the filter coefficients (qI5 .numbers). 

xCn) is the input sample (integer). Input samples are placed in 

the buffer, InSamples, from a data file, data_in.dat 

yen) is the computed output (integer). The output samples are, 

placed in a buffer, OutSamples. 


Author: 	 Avtar Singh. SJSU. 

;---------------------------~--------------------------------------------------~--
Definitions 


.mmregs 

.• def _c_intOO 


.sect "samples" 
InSamples .include "data_in.dat" All ocate space for x (n) s 
OutSamples .bss y.200.1 Allocate buffer for y(n)s 
SampleCnt .set 200 Number of sampl es to fi Her 

; Intermediate variables (sequential locations) 
wn .word 0 ;initial wen) 
wnm1 .word 0 ;initial wen-I) = 0 
wnm2 .word 0 ;.initial w(n-2) =·,0 

.sect "coeff" 
Fil ter coeffi cients (sequenti allocations) 

bO .word 3431 ;bO = 0.104 
bi .word -3356 ;bI '" -0.102 
b2 .word 3431 ;b2 =,0.104 
al .word -32767 ;a1 =-1 
a2 .word 20072 :a2 = 0.612 

Figure 7.6 TMS320C54xx implementation of the second-order IIR filter 	 (continued) 
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_c_intOO: 

. loop: 

.text 

STM.IOutSamples, AR6 
RPT #Sampl eCnt 
ST 10, *AR6+ 

STMHnSamples, AR5 
STM NOutSamples. AR6 
STM NSampleCnt. AR4 

LD *AR5+,15,A 
CALL i i r fn'te'r 
STHA,I,*AR6+ 
BANZ loop,*AR4­
nop 
nop 
nop 

Clear output sample buffer 

; AR5 pOints to InSamples buffer 
; AR6 pOints to OutSample buffer 
; AR4 = Number of samples to filter 

; A = next input-sample (qI5) 
; Call Fi lter Routine 
; Store filte.red sample (integer) 

Repeat till all samples filtered 

;-~-~---~--------~~--~---~----~--~-~-----~---------------------------.------------
IIR. Fil ter Subrout i ne 

Enter with A = x(n) asqI5 number 

Exit with A = yen) as qI5 number 

Uses AR2' and A.R3 


;--------------------------------------~------------------------------------------
i i r _ fi 1ter: 

SSBX SXM Select sign extensi.on mode 

;w(n)=x(n)+al.w(n-I)+a2.w(n-2) 

STM Na2,AR2 
STM Nwnm2. AR3 
MAC *AR2-, *AR3-.• A 

MAC *AR2-,*AR3-,A 

STH A,I,*AR3 

; AR2 points to a2 
; AR3 points to w(n-2) 
; A = x(n)+a2.w(n-2) 
; AR2 points to al &AR3 to wen-I} 
; A • x(n}+al.w(n-I}+a2.w(n-2) 
; AR2 points to b2 &AR3 to wen} 
• Save wen} 

;y (n) =bO. w(n)+bl. w(n-l}+ b2. w(n.;.2) 

LD NO,A 
STM Nwnm2,AR3 

MAC *AR2-,*AR3-,A 

DELAY *AR3 

; A = 0 

; AR3 points tow(n-2} 


; A = b2.w(n-21) 

; AR2 poi nts to bi & AR3 to wen-I) 

• w(n-I} -> w(n-2) . 

Figure 7.6 . Continued 

http:extensi.on
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MAC *AR2-,*AR3-.A 

DELAY *AR3 
MAC *AR2,*AR3.A 

RET 
nop 
nop 
nop 

.end 

; A = bl.w(n-1)+b2.w{n-2) 
; AR2 pOints to bO &AR3 to wen) 
; wen) -> wen-I) 
; A ~ bO.w(n)+bl.w(n-l)+b2.w(n-2) 

; Return 

Figure 1.6 Continued 

FIR filter implementation, the incoming sample x(n) is obtained from the 
buffer InSamples. This buffer is set up using samples in the data file data_in.. 
The filtered signal sample is placed in another buffer called OutSamples. The 
program uses linearly addressed buffers and the, delay. instruction in i)nple­
mentation. . 

7.5 Interpolation Filters 

An interpolation filter is used to increase the sampling rate. The interpolation 
process involves inserting samples between the incoming samples to create 
additional samples to mcrease the sampling rate for the output. 

One way to implement an interpolation filter is to ·first insert zeros between 
samples of the original sample sequence. The zero-inserted sequence is then 
passed through an appropriate lowpass digital FIR filter to generate the inter­
polated sequence [4]. The interpolation process is depicted in Figure 1.7. 

x(n) Insert 
(L-1) 
Zeros 

xz(m) y(m)Low pass ..... 
Filter 

Sampling 
Frequency Is Lis Lis 

Figure 1.1 Digital interpolation with interpolation factor::;: L 
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[> Example 7.2 Consider the sample sequence x~n) given by··· 

x(n) [0 2 4 6 8 10] 

Le~ us insert a zero between each two samples to generate the zero-inserted 
sequence xz(n) as 

iz(n) = [0 ·0 2 0 4 0 6 0 8 0 10 0] 

Now, if ~ sequence is convolved with the sequence hen), given as 

hen) [0.5 1 0.5] 

the result is a linearly interpolated sequence yen), given by 

yen) = [0 0 1 2 3 4 5 6 7 8 9 10 5 0] 

The kind of interpolation carried out in the example is called linear inter­
. polation because the convolving sequence hen) is derived based on linear 

interpolation of samples; Further, in this case, the hen) selected is just a 
secon:d-order filter and therefore uses just two .adjacent samples to interpolate 
a sample. A higher~order filter can be used to base interpolation on more 
input samples. To implement an ideal interpolation, it is shown in the lit­
erature that a filter based Qn samples of an appropriate sine function can 
be used. . 

If we assume that the unit sample response of such a filter is available, we 
need to consider only the implementation technique. Figure 7.8 shows how an 
'interpolating filter using a 15-tap FIR filter and an interpolation factor of 5 
can be implemented. In this example, each incoming sample is followed by 
four zeros to increase the number of samples by a factor of 5. The interpolated 
samples are computed using a program similar to the one used for a FIR filter 

. implementation. 
One drawback of usmg the implementatlon strategy depicted in Figure 7.8 .. 

is that there are many mUltiplies in which one of the multiplying elements is 
zero. Such multiplies need not be included in computation if the computation 
is rearranged to take advantage of this fact. One such scheme, based on gen­
eratingwhat are called polyphase subfilters, is available for reducing the com­
putation. For a case where the .number of filter coefficients N is a multiple of 
the interpolating factorL, the scheme implements the interpolation filter using 

. the equation 

NIL-l 

y(m + i) = L h(kL + i)x(n - k) (7.11) 
k=O 

where i = 0,1,2, (L 1) andm nL. 
\ 
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IARll"'" 

x(n+ 1) 
o 
o 
o 
o 

l 
x(n) . =xz (m) h(O) 

o =xz (m-l) h(l)· 
. h(2) o .=xz(m-2) 

o =xz(m-3) h(3) 
o =xz (m-4) h(4) 

x(n-l) =xz (m-5) h(5) 
o ,= xz(m-6) h(6) 
o =xz(m:'7) h(7) 
o = xz (m-8) h(8)
o =xz(m-9) h(9) 

x(n-2) = xz (m-lO) h(lO) 
o =xz(m-ll) h(ll) 
o =xz(m-12) h(12) 
o == xz (m-13) h(l3) 
o == xz(m-14) h(14)IAR21..... 

~/ 
MAC 


~ 

y(m) 

Figure 7.8 Digital interpolation using a FIR filter with interpolation fa~tor = 5 

Figure 7.9 shows a scheme that uses polyphase subfilters to implement the 
interpolating filter .using the IS-tap FIR filter and ali interpolation factor of 5. 
In this implementation, the 15 filter taps are arranged as shown and divided 
into five 3-tap subfiltets. The input samples x(n), x(n 1), and x(n - 2) are 
used five times to generate the five output samples. This implementation re­
quires 15 multiplies as opposed to 75 in the direct implementation of Figure 
7.8. The TMS320CS4:xximplementation for the interpolating scheme of Figure 
7.9 is shown in Figure 7.10. 
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t 
h(4) 
h(9) 
h(l4) 

h(3) 
_h(8) 
h(13) 

h(2) 
h(7) 
h(l2) 

h(l) 
h(6) 
hell) 

h(O) 
h(5) , 

h(lO) 

y(m+4) 

x(n+ 1) 

t 	 y(m+3) 

Delay 

x(n) y(m+2)tx(n-l)i it if t

x(n-2) tI ARl f--+ 

t y(m+ 1) 

t 

y(m)I AR2 ~ 

Figure7.9 	 Digital interpolation implementation using five polyphase subfilters; interpolation 
factor 5, i.e., m = 5n . 

7.6 Decimation filters 

A decimation filter is used to decrease the sampling· rate. The decrease in 
sampling rate can be achieved by simply dropping samples. For instance, if 
every other sample of a sampled sequence is dropped, the sampling rate of the 
resulting sequence will: be half that of the original sequence. The: problem with 
dropping samples is that the new sequence may violate the sampling theorem, 
which requiresthaf the sampling frequency must be greater than two times· 
the highest frequency contents. of the signal. . 

To circumvent the problem of violating the sampling theorem, the signal to 
be decimated is first filtered using a lowpass filter. The cutoff' frequency of the 
filter is chosen so that it is less than half the final sampling frequencY. The 
:filtered signal can -be decimated by dropping samples.· In fact, the samples that 
are to be dropped need not be computed at all. Thus, the implementation of a 
decirilator is juSt a FIR filter implementation in which some of the outputs are 
not calculated. This process can be described by the following ·equation -[4]: 

N-l 

y(m) y(nL) = L h(k)x(nL - k); ,n 0, 1,2,... (7.12)A· 

k=O 

where L is the decimation factor and N is the filter size. 
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.._------------------------------------------------------------------------------­

Program Name: 	 ex7p4INT.asm 

Description: 	 This is an example to show. how to implement an interpolating FIR 

fi lter. The fil terl ength isIS and the interpol at i ng factor-

is 5. It implements the equations 


y(m) = h(10)x(n-2) + h(5)x(n-l) + h(O)x(n) 

y(m+l) = h(1l)x(n-2) + h(6lx(n-l) + h(l)x(n) 

y(m+2) = h(12)x(n-2) :l;: h,(7)x(n-l) + h(2)x(n) 

y(m+3) = h(13)x(n-2} + h(8}x(n-l) + h(3)x(n) 

y(m+4) = h(l4)x(n~2) + h(9)x(n-l) + h(4)x(n) 


where. 

m = 5n. 

h(Ol., h(1} ....etc. are the filter coefficients (q15 numbers) 

stored ,in.data memory in the order: h(4l. h(91. h(14). h(3). h(8), 

h(13)~ ~(2). h(7). h(12), h(l). h(6). hell), h 

x(n). x(n-!), and x(n:-2) are signal samples ~in:tegers) used in 

computing the next five output samples. 

The input samples are obtained from a file and placed in memory 

starting at address InSamples. 

The computed output samples are placed starting at 'data memory 

location OutSamples. 


Author: 	 Avtar Singh, SJSU 

;-----------------------~7---~--------------~--------------------------------------
Def; niti oos 


.rrmregs 


.def c jntOO 


.sect "samples" 
InSamples .include "data_in.dat" Incoming data a file) 
InSampCnt .set 50 sample count 

.bss sample.3,l Input samples: x(n).x(n-l).x(n-2) 

OutSamples .bss y,250,l Allocate space for y(n)s 
SampleCnt .set 250 Number of samples 

Figure 7.10 TMS320C54xx program for an interpolation filter implementation (continued) 
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Coeff 

CoeffEnd 

Nm1 
IFm1 

_cJntOO: 

INTl oop1: 

INTloop2: 

NXTcoeff: 

.sect "Coeff" 

.word 2560. 3072, 512 

.word 2048. 3584, 1024 

.word 1536. 4096. 1536 

.word 1024, 3584, 2048 

.word 512. 3072, 2560 

.set 2 


.set 4 


.text 

ssbx SXM 

rsbx FRCT 

stm #InSamples.ar6 


, stm #InSampCnt-1,ar7 
s-tm #OutSampl es,ar5 
rpt #SampleCnt-1 
st #O,*ar5+ 

stm #OutSamples,ar5 

stm' #sample,ar3 

rpt #Nm1 

st #0. *ar3+ 


stm #CoeffEnd-1.ar2 
stm #IFm1,ar4 

stm#sample+Nm1.ar3 
stm #Nm1,ar1 
ld #O.A 

mac *ar2.... *ar3-.A 
banz NXTcoeff.*ar1­
banz INTloop2.*ar4­
sth A.1.*ar5+ 

stm #sample+Nm1-1. ar3 
rpt #Nm1-1 
delay *ar3­

Filter cQeffs h(4), h(9), h(14) 
Filter coeffs h(3). hea). h(13) 
Filter coeffs h(2). h(7). h(12) 
Filter coeffs h(l), h(6). hen) 
Filter coeffs heO). h(5). h(lO) 

# of coeffjinterp factor-1 
Interpolating factor-1 

Select sign extension mode 

ar6 pOints to the input samples 
ar7 = inpuf sample count - 1 
ar5pOints to the output samples 
Reset output samples memory 

ar5 points to the output samples 
ar3 points to current inpiJt samples 
Reset the input samples 

ar2 pOints to the last coeff 
ar4 Interpolation factor -1 

ar3 points to last sample in use 
ar1 = samples, for use 
A = 0 

Compute interpolcited sample 

Store the interpolated sample 

Delay the sample array' 

Figure 7.10 Continued 
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ld *ar6+,A 
stm /fsample,ar2 
stl A,*ar2 

Get the next sample 

Place it in the sample buffer 

banz INTloop1,*ar7­ Repeat for all input samples 

nop 
nop 
nop 

.end 

Figure 7.10 Continued 

x(n) y(n) y(m)Lowpass Down...~ Digital Sampler
Filter 

Sampling 
Frequency is is islL 

Figure 7.11 Digital decimation with decimation factor L 

Figure 7.11 shows a block diagram of a decimation filter. Digital decimation 
can be implemented as depicted in Figure 7.12 for an example of a decimation 
filter with decimation factor of 3. It uses a lowpass FIR filter with 5 taps. The 
computation is similar to that of a FIR filter. 'However, after computing each 
output sample; the signal array is delayed by three sample intervals by bring~ 
ingin the next three samples into the circular buffer to replace the three oldest 
samptes. The TMS320C54xximplementation of the decimation filter is shown 
,in Figure 7.13. 

7.7 PID Controller 

Abasic feedback control system is shown in Figure 7.14. The signal x(n) is the 
desired plant outpu~ and y(n) is the actual response .. The error, e(n), is the., 
diffe.rence between x(n) and y(n). The PID controller uses the error to gener­
ate input to the phint. In a continuous~timesystem the PID control output is 



194 Chapter 7 Implementations of Basic DSP Algorithms 

x(3n.+3) . 
x(3n+2) 
x(3n+ I) 

I" 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
~ 

h(4) 

"I h(3)x(3n-3) 
I 
I 
I h(2).x(3n-2) I 
I 
I h(l)x(3n-l) I 
I . 
I h(O)x(3n) I 
~ 

.MAC 


y(m) 

Figure 7.12 	 Digital decimation filter implementation or a decimation factor = 3 and a lowpass 
filter of length 5 . 

generated from the equation 

.'J deu(t) = Kpe(t) +Ki. e(t) dt +Kd dt (7.13) 

where Kp, Kj, and Kd are constants that depend upon how the plant is to be 
controlled. The control is based on the error, error integral, and error deriva­
tive, giving it the name PID. 

The continuous-time equation can be digitized using approximations for 
the derivative and the integral. The digital equivalent of Eq. 7.13 can be shown 
to be 

«(n) = u(n -	 1) +Koe(n) +K1e(n ,... 1) +Kae(n - 2) (7.14) 

where Ko, Kh and Kz are new constants that are related to the constants Kp, 
Kil Kd. and the sampling interval. 
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-------_._----------------------------------------------------------------------­
Program Name: 	 ex7p5DEC.asm 

Description: 	 This is an example to show how to implement a decimation filter. 
It implements the following equation 

y(m) =	h(4)x(3n-4) + h(3)x(3n-3) + h(2)x(3n-2) + h(1)x(3n-l) + 
h(0)x(3n) 

followed 	 by the equation 

y(m+l) = h(4)x(3n-l) + h(3)x(3n) + h(2)x(3n+l) + h(l)x(3n+2) + 
h(0)x(3n+3) 

and so on for a decimation factor of 3.and a filter length of 5. 


Where 

h(O), h(l)~ h(2), h(3), and h(4) are the fi)ter coefficients. 

x(3n), x(3n-l). x(3n-2), x(3n-3), and x(3n-4) are signal samples. 

x(3n+l). x(3n+2). x(3n+3) are incoming signal samples. 

y(m), y(m+l) ••• etc. are the output signal samples. 

Signal samples are integers and the filter coefficients are 

q15 numbers. 


Author: 	 Avtar Singh. SJSU 
;--'------------------------------------------------------------------------------­

Definitions 
.tlI1lregs 
.def c intOO 

InSamples 
OutSamples 
SampleCnt 

• sect II samp1es II 
.include "data in.dat" 
.bss y.80,1 
.set 240 

A11 ocate space for x (n) s 
Allocate space for y(n)s 
Number of samples to decimate 

FirCoeff. 
Nml 

.sect "FirCoeff" 

.include "coeff dec.dat" 

.set 4 

Filter coeff (sequential locations) 

Number of filter taps - 1 

.bss CoefBuf, 5, 1 

.bss SampleBuf, 5, 1 
Memory for coeff circular buffer 
Memoryfo'r sample circular buffer 

Figure 7.13 The TMS320C54xx implementation of the decimation mter 	 (continued) 
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.text 
c intOO: 

STM HOutSamples, AR6 Clear output e buffer 
RPT HSampleCnt 
ST HO, *AR6+ 

STM HInSamples, AR5 AR5 points to InSamples buffer 
STM HOutSamples, AR6 AR6 pOints to OutSample buffer 
STM HSampleCnt, AR4 AR4 Number of samples to filter 
CALL dec init ;' Init for filter calculations 

oop: 
CALL dec filter Call Filter Routine 
STH A; I, *AR6+ Store filtered sample (integer) 
BANZ loop,*AR4- Repeat till all samples filtered 
nop 
nop 
nop 

, 	 .-.---------------------------------------------------- -~---------------------------

Decimation Filter Initialization Routine 
Thi s routine sets AR2 as the poi nter for the sample ci rcul ar buffer," and 
AR3 as the pointer for coefficient circular buffer. 

, 	BK = Number of fi 1 ter taps. 
ARO = 1 = circular buffer pOinter increment. 
-~----~------~----------------------~--------------------------------------------

dec init: 
ST HCoefBuf,AR3 AR3 is the CB Coeff Pointer 
ST HSampleBuf,AR2 AR2 is the.CB sample pOinter 
STM HNm1,BK BK = number of filter taps 
RPT HNm1' 
MVPD HFirCoeff, *AR3+% Place coeff in circular buffer 
RPT HNml Clear circular sample buffer 
ST iOh, *AR2+% 
STM #l,ARO; ARO 1 CB nter increment 
RET Return 
nop 
nop 
nop 

;----------------------------------~--------------------~-------------------------
FIR Filter Routine 
Enter with A = x(n), AR2 pointing to the 
circular sample buffer, and AR3 to the 
circul ar coeff buffer. ARO = 1. 

; Exit with A yen) as q15 number., 

;-----------------~.----------------------------------------------------~----------

Figure 7.13 Continued 
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dec filter: 
LO *AR5+.A 

,STL A. *AR2+0% 
LO, *AR5+.A 
STl A. *AR2+0% 
LO *AR5+.A 
STL A •. *AR2+0% 

Place next 3 input samples 
into the signal hUffer 

RPTZ A. #Nml 
MAC *AR3+0%.*AR2+0%.A 
RET 

; A = 0 
A = fi ltered s i gnat 

; Return 
nop 
nop 
nop 

.end 

~ig~re 7.13 Continued 

u(n) y(nx(n) + e(n) 
PID-.. -.. -..Plant+ ,CQntroller

'­-' ­
, 

Figure 7 .14 A PID' controller for a plgnt 

The implementation of the PID controller requires programming the dif­
ference equation 7.14. Figure 7.15 shows the block diagram that can be used to 
write the code to realize the controller. The program for the TMS320C54xx is 
shown in Figure 7.19. Note .that to actually use the program, we need to gen­

, erate the error signal outside the signal processor. Alternatively, we need to 
have desired input and actual output samples that can be subtracted to gen­

, .eratethe error signal. For the real-time implementation, these signals are 
received ·from AID converters, and the computed control is applied to a D/A 
converter. 
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! 
Ko 

u(n)e(n) 

Delay 

u(n J. 1) 

Delay 

Kl 

e(n-l). .., 

Delay I- K2 

e(n-2) 

Figure 7.15 PIO controller implementation 

7.8 Adaptive Filters 

An adaptive filter is a filter whose coefficients can be updated on-line to 
counter varying signal distortions. Figure 7.17 is a block diagram of an adap­
tive filter. The filter in the diagram is typically a FIR filter whose· coefficients 
can be adjusted to minimize some measure of the error signal. The error sig­
nal e(n) is generated by subtracting the actual filter output y(n) from the cle­

-sired output d(n). The desired output is application dependent. A technique 
used extensively to design an adaptive filter is based on minimizing the mean 
square error (MSE) [3]. The following equations can be derived using the MSE 
technique: 

y(n) 
N-l

L bk(n)x(n k) (7.15) 

*"-0 

e(n) = d(n) ­ y(n) (7.16) 
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---------------------------._-------------------------------------------------------­

Program Name: ex7p6PID.asm 

Description: This is an example to show how to implement a PID controller . 

. It implements the following equation 


u(n) = u{n-l) + KO.e(n) + KI.e(n-l) + K2.e(n-2) 

where 

KO, KI, and K2 are controller coefficients (q15 numbers). 

e(n), e(n-l), and e(n-2) are error signal samples (integers). 


T~e error samples are the stored values and the computed control 

values, are also stored in a· buffer. 


,. 	 The program can be modified for a realtime control system using an 
interrup~ invoked at the sampling interval, . reading the next incoming 
error sample from an input port, and applying the. computed control 
through an output port. 

Author: , Avtar Si ngh, SJSU 

;----------------------------------------------------~----~---------~-------------~---
.lJI11regs memory-mapped registers 
.def _c_intOO 

ErrSal1)ples .bss e, 200. 1 Allocate space for e(n)s 
ContSamples .bss u, 200, 1 Allocate space foru(n}s 
SampleCnt .set 200 Sample count 

•data 
• Control and error Signals {seqlfenti all ocati ons) 
un: .word 0 ; computed control u(n) as· integer 
en: .word 1 error samples e(n) as integer 
enml: •wQrd 2 error slimpl es e (n-l) as integer . 
enl)l2: .word 1 error s~mples e(n-2) as integer 

.sect "coeff" 
'; PID Contl"oller coefficients (sequential locations) 
KO:.word 2000h' 1/4 in q15 
Kl: .word 0400hl/32 in q15 
K2: .wora 0040h 1/512 in q15 

Figure 1:l6 TMS320C54xx implementation of a PID. controller 	 (continued) 
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.text 
c intOO: 


STM HContSamples,AR6 Clear control sample buffer 

RPT HSampleCnt 

5T HO, *AR6+ 


STM HErrSamp1es, AR5 AR5 poi nts to InSamp1es buffer ftart 
STM #ContSamRles,AR6 AR6 points to OutSample buffer start 
STM HSamoleCnt. AR4 AR4 = Number of samples to filter 

loop: 

LD *AR5+,B B = next error sample 

CALL PID Call PID Control Routine 

5TH B,*AR6+ Store computed control 

BANZloop,*AR4- Repeat till all sample.s. done 

nop 

nop 

nop 


PID Controller Subroutine 

Enter with B = e(n) as integer 

Exit with B • u(n). as integer 

Uses A, AR2, and AR3 


;-----------------~-~---------------------~-------------------------------------------
PID: 

SSBX SXM . ; Select sign extension mode 
STM #enm2, AR2 ; AR2 pOints to current e(n-2) 
STM #K2, AR3 ; AR3 pOints to current K2 
LD #0, A ; A • 0 
MAC*AR2-, *AR3-, A ; A = K2.e(n-2) 
DELAY *AR2 ; e(n-l) -> e(n-2) 
MAC *AR2-, *AR3-, A ; A = Kl.e(n-l) + K2.e(n-2) 
DELAY *AR2 ; e(n) -> e(n-l) 
STL B, *AR2 ; new e(n) 
MAC *AR2-, *AR3, A ; A = KO.e(n) + Kl.e(n-l) + K2.e(n-2) 
ADD *AR2, 15, A ; A • u(n-l) + KO.e(n) + Kl~e(n-l) + K2.e(n-2) 
ADD #1, 14, A Round the result 
STH A, I, *AR2 • new 
LD *AR2. B B = new control 
REr Return 
nap 
nop 
nop 

.end 

Figure 7.16 Continued 
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d(n) 

x(n) y(n)Filter with adjustable 
coefficients 

e(n) 

Figure 1.11 An adaptive filter 

bk(n + 1) bk(n) + 2pe(n)x(n k) 

= bk(ri) +erf(n)x(n - k) . (7.17) 

where 

erf(n) = 2pe(n) (7.18) 

Equation 7.15 is that of a FIR filter. Here, bk(n) is the kth filter coefficient at 
instant n. N represents the number of filter coefficients. The p in Eq. 7;17 is 
called the coefficient ofadaptation. The adaptation speed and accuracy depend 
upon p. 

The updating scheme for the coefficients is shown in Figure 7.18. Each co­
efficient is updated using the erf(n) which cim be computed in advance using 
Eq. 7.18: The program in Figure 7.19 shows the implementation of a 9-tap 
adaptive filter for the TMS320C54:xx. 

7.9' 2-D Signal Processing 

Consider the example of the N-tap FIR filter discussed earlier. If the values 
of the samples {x(n),x(n 1),x(n 2), . .. ,x(n -N +l)} are considered as a 
vector Xn and the values of the coefficients {h(O), h(l), h(2), . .. , heN l)} are 

. considered as another vector H, the· value of the output sample given by 

yen) = x(n)h(O) + x(n - I)h(1) + x(n 2)h(2) + ... +x(n - N + l)h(N - 1) 
(7.19) 

can be considered as the dot product of the two vectors Xn and H. In other 
words, 
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x(n+l) 

. ~ 1. 
_Ix(n-N:+-l)IAR21­ ~ 

x(n-N+2) 
x(n-N+3) 

[1 x(n)f1I· 

bN_l(n) 
bN_2(n) 
bN_3(n) 

bo(n) 

. 

~ 
,;. 

%~n) 
+ 

bk(n +1); k =(N-l), (N - :l}, >.. ,2, 1,0 

figure 7.18 updating filter coefficients in the adaptive filter implementation 

Y.. X.. ·H (7.29) 

where· d~notes the dot product. Many times in digital signal proc~ssing, one 
or both the operands X and Hmay be two-dimensional, i.e., matribes instead 
of vectors. A typical application is in image processing. In such a case, X may 
represent intensity values of pixelll (picture elements) in the horizontal·and 
vertical directions of a two-dimensional image and H may represent coeffi­
cients in the horizontal and verticaJ directions of a two-dimensional filter. One 
of the most frequently used operations in image processing involves sliding 
the two-dimensional window offilter coeffidents(usuallymuchsmaller in size 
compared to the size of the image) on the image to perform an operation such 
as filtering out an unwanted feature or enhancing a desirable feature. All these 
operations can be basically reduced to multiplication of·rwo matrices .. There­
fore, it becomes essential to know how to write a program to- multiply two 
matrices in order to be able to use the device in· two-dimensional signal-
processing applic.ations. . 

-
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;~--------------~-------------.-~--~-'~--.-----~-----------------------~-~---~----------
Program Name: ex7p7ADP.asm 

; 

Description: 

; 

; 

Author: 
; - - - - --_ - - - -. ­

Definitions 

InSamples 
OutSamples 
SampleCnt 

FilterSize 

This is an example to show how to implement an adaptive filter. It 
implements a 9-t!lP adaptive filter using .the following equations 

yen) = 

'bO(n+l) 
bl(n+l) 

b8(n+l) 

where 

bO(n)x(n) + bl(n)x(n-:-l) + b2(n)x(n-2) + 
b3(n)x(n-3) -I- b4(n)x(n.;4) + b5(n)x(n-4)+ 
b7(n)x(n..:7) + b7(n)x(n-7}+ b8(n)x(n-8) 

= bO(n) + erf(n).x(n) 
= bl(n) + erf(n).xln-l) 

= b8(n) + er:f(n).x(n-8) 

bO(n), bl(n), •.• etc. are filter coeff atn. and bO(n+l). 

bl(n+l), ••• etc. are same filter coeffat n+l. 

These coeffi<:ients are q15 numbers and are stored in a circular buffer 

(CoefBuf). 


x(n). x(n-1}, .... etc. ate input samples (integers) stored ina Signal 

circul ar buffer (Sampl eBuf). . 


y(.n) is the filtered output (integer).­

den) is the desired output (integer). 

e(n) =den) - yen) (integer) 

erfn = e(n) * mu (integer) . 

mu is the adap~ation coefficient (q15 number). 


Avtar Singh, SJSU 
- - - - - - - ---- -- - - - --- - --- - - - '" - ---- - - - ---- ----- - - - -­--_ --..;. -:- - -..;. -_., ­

.mmregs 


.def c intOO 


.sect "samples" 


.include "data_in.dat" 


.DSS y,400,l 


.set 400 


.•bss CoefBuf.9,l 

.bssSampleBuf,9,l 

.set 9 


--..:. -,-- "'If,- ~ 

Input samples to be filtered 
Output samples 
Input sample buffer 'size 

Coeff circular buffer 
Sample circufar buffer 
Filter size 

Figure 7•.19 The TMS320C54xx implementation ofan adaptive filter (continued) 
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mu 

dn 
en 
yn 
erfn 

c 	intOO: 

loop.: 

adaptive_filter: 

.set 328 

.word·O 

.word 0 

.word 0 

.word 0 

•text 

SSBX SXM 
STM 10utSamples, AR6 
RPT ISampleCnt-l 
ST 10, *AR6+ 
STM IOutSamples, AR6 

STM IInSamples, AR5 
STM ISampleCpt-l. AR4 
STM IFilterSize-l. BK 
STM ISampleBuf, AR3 
STM ICoefBuf. AR2 

RPT IFil terSi ze-l . 
ST iOh.*AR2+% . 

RPT IFilterSize-l 
ST IOh,*AR3+% 

CALL adaptive_filter 
BANZ loop. *AR4­
nop 
nop 
nop 

• mu =0.01 (as q15 nlimber) 

; 	Desired Signal den) 
Error Signal e(n) 
Filterea Signal yen) 
erfn = e(n) .mu 

select sign extension mode 
AR6 points to out sample buffer 

Reset the output sample buffer 
Reset output sample buffer pOinter 

; 	AR~ points to input sample buffer 
• AR4 = the sample count 
• BK = filter size ' 

AR3 points to the sampleCB 
; AR2 points to the coeff CB 

Reset coeff buffer (CoefBuf) 

'; 	 Reset sample buffer (SampleBuf) 

Do adaptive filtering 
Repeat for all samples 

; Compute yen) using current filter coefficients 
STM 11. ARO 
RPTZ A. IFilterSize-l 
MAC *AR3+0%, *AR2+0%. A 
STM Ivn. ARl 
STH A, 1. *AR1 
STH A. 1, *AR6+ 

; ARO = 1 for increment 
; yen) bO(n)x(n) ••• b8(n)x(n-8) 

Save y(n) as an integer 
Save filtered signal 

Figure 7.19 Continued 
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Generates den) from the computed yen). 

den) can be generated (or obtained) in many different' ways. 

Generation of den) depends on the problem at hand. 


1ow: 

high: 
end dn: 

LD *ARl, B 
STM #dn, ARI· 
BC high, bgt 
ST #OcOOOh, *ARI 
B end_dn 
ST #4000, *ARl 

Compute the error e{n) 

STM Idn, ARl 

LD *ARI. A 

STM Iyn, ARl 

SUB *ARl, A 

STr.; len, ARl 

STL A, *ARI 


; Update coefficients 
STM T 
MPY *ARl. A 
STM #erfn, ARl 
STH A. I, *ARl 

STM #FilterSize-i. BRC 
LD *ARI, T 
RPTB end_update 
MPY *AR3+0%, A 
ADD *AR2,l5. A 

end_update: 
STH A.I, *AR2+0% 

Obtain new input sample 
L.D *AR5+. B 
STL B. *AR3+0% 

RET 
nop 
nop 

.end 

Figure 7.19 Continued 

; B =yen) 

; ARI points to the den) 

; Btanch to high if yen) > 0 

; d~n) = cOOOh if yen) < 0 


;d(n) = 4000h if yen) > 0 

e{n) = den) - yen) 

erfn =mu.e{n) 

BRC = No of Taps - 1 

T = erfn 

Update coefficients 

A = erfn*x(n) 

Update coefficient 


Save the updated coefficient 

Get the new Input sample 
Put new sample in sample buffer 

Return 
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Cll CI2'" CINall a12'" au. b ll b I2 ••• 

a2l azz ••• an C2l CZl '" cZN. bZ1 bn ··· 
• 

bKl bK2 ••• .CMl CM2'" CMNall an'" au 

where J =K, 1= M, and L.= N 

Figure 7.20 Organization of matrices A, B, and C 

7,9.1 Matrix Multiplication 

Let A(i, j) be an I x J matrix and B(k, I), a K x L matrix. In order to be able 
to multiply the matrix A by the matrix B, J should be equal to K. We call. the 
product matrix C(m, n), with M rows and N colUmns. Since we have multi­
plied an I x J matrix by a K x L matrix (J being equal to K), the resulting 
matrix will have I rows and L columns, i.e., M = I, and N = 1. Figure 7.20 
shows the org~nizationof the matrices A, D, arid C. 

Each element of the matrix C is the dot product· of a vector representing 
a row of the matrix A with a vector representing a column of ma~ D. For 
example. . 

Cll = allbll + a12 b21 + a13b31 + , .. + alJbKI 

CI2 = aU bl2 + a12 b22 + al3b32 + ... + anbK2 

CIN == allbll + al2b21 + al3b31 + '" + alJbKl 

C21 = a21 bll + a22 b21 + a23 b31 + ... + a2JbKl 

C22 = a2l b12 + a22 b21 +a23 b32 + ... + a2J~ 

. cZN a21 bU + aZZ b21 + a23b31 + ... + alJbKl 

CMI= an b l1 +aIlb11 + al3b31 + ... + aIjbKI 

CM2 = allbl2 + al2bzz + al3b32 + ... + aljbK2 . 

CMN = an bn +allb21 + au b31 + ... + anbKl 

In other words. in order to obtain the element Cl1, row 1 of A is multiplied 
with column 1 of B; to get C12. row 1 of A is multiplied by column 2 of D, etc., 
until all the elements of row 1 of C are computed. Then the operation is 
repeated withrow 2 of A to get the elements of row. 2 of C and so on until all 
the elements of C are computed. . . 
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bl!'~--1::1
alZ I bZI 

al3 b31 

---:-:~--I 
aZZ 

a Z3 

1 
1- - ~~; -­

bzz 

b3Z 

---:-~--I I---:~;--
an 

a33 

, a 34 

, 
b23 

b33 

b43 

-I 	ell 

elz 

e l 3 
...... -..... ­

'eZ I 

e2l 

e23 

e 31 

en 

e33 

Figure 7,21 Memory organization for matrix multiplication of a 3 x 4 matrix with a 4 x 3 
, matrix 

In order to implement the matrix multiplication algorithm on the 
TMS320C54xX, the data corresponding to matrices A and B and the resulting 
matrix C should be organized in the DSP memory as shown in Figure 7.21. 
The elements of mattiX A are ordered row by row. those of matrix Bare 
ordered col~ by column. and the elements of the product matrix C are 
stored row by row: Note that Figure 7.21 is an example in which A is a 3 x 4 
matrix, B isa 4 x 3 matrix, 'and therefore. C is a 3 x 3 matrix. 

, ' 

Three pointers are required to keep track of the elements in,the matri~esA. 
B. and C. Let these pointers be arlo ar2. and ar3; respectively. All the pointers 
are initialized to the stiu'ting addresses of the respective matrices. To compute 
Cu. arl has to advance from, an toa14 and ar2 from bn to b41 • To compute Cu. 
arl has to be reset to an and has to go again from au to a14. On the other 
hand. ar2 con.tinues from b12 to b42;'. Thi$ is repeated for all the elements of the 
first row of C. Le.• arl goes from all to' a14 three times while ar2 goes all the 
way from bll to-b34•After computing all the elements of the first row of C. arl 
is set toa21 while ar2 is reset to bn to) compute the elements of row 2 of C in 
the same way as was done for row L This process is repeated for all the rows 
of C. ar3 statl$ at 1(11 and moves to C33 with the computation of each element 
of C. The memory organization for the matrix elements is shown' in Figure 
7.21. The TMS320C54xx program for matrix multiplication is shown in Figure 
7.22; Note that the program uses the repeat-block ~struction to compute the 
dot product used in the matrix multiplication. 



208 Chapter 7 Implementations of Basic DSP Algoritluns 

Program Name: 

Oescription: 

" 

Author: 

RESET: 

matArowl: 
matArow2: 
matArow3: 

matBcol1: 
matBco12: 
matBco13: 

. ex7p8MAT.asm 

This is an example to show how to implement matrix mutiplication. 
It implements the following equation 

C = A.B 

where 
A is a 3 x 4 matrix, 
B is Ii 4 x 3 mqtrix, and 
C is a 3 x 3 matrix 

Matrix Aelements are stored in data memory row after row. 
Matrix Belements are stored in data memory column after column. 
Matrix C elements are stored in data memory row after row. 

All elements are q15 numbers. 

Avtar Si SJSU 

.mmregs memory-mapped. registers 

.ref c intOO 

.sect ",vectori" 

B c intOO Reset vector 
NOP 
NOP 

.data 

.word 1000h,2000h,3000h,4000h row 1 of matrix .A 
~.word 1000h,2000h.3000h,4000h row 2 of matrix A 
.word 1000h.2000h,3000h,4000h row 3 of matrix A 

.word 1000h.2000h,3000h,4000h; column 1 of matrix B 

.,word lOOOh,2000h,3000h,4000h column 2 of matrix B 

.word lOOOh,2000h,3000h.4000h column 3 of matrix B 

Figure 7.22 The TMS320C54xx implementation of the matrix mUltiplication (continued) 



matC: 

Nml 

_c_intOO: 

.word 0.0,0 

.word 0,0,0 

.word';O.O,O 

.set 3 

.text 

ssbx sxm 
stm #matC, ar3 
stm #matArowl, arl 
stm #matBcoll, ar2 
stm' #Nml, .BRC 
ca11 DOTPROD 
5th a,l,*ar3+ 

stm #matArowl, arl 
stm #matBco12.ar2 
stm #Nml, BRC 
call DOTPROD 
sth a.l,*ar3+ 

stm #matArowl, arl 
stm #matBco13. ar2 
stm ilNml. BRC 
ca11 DOTPROD 
sth a.l,*ar3+ . 

stm ilmatArow2, ad 
stm #matBcoll~ ar2 
stm ilNml, BRC 
call DOTPROD 
sth a,l,*ar3+ 

stm #matArow2, arl 
stm #matBco12. ar2 
stm #Nml •. BRC 
ca11 DOTPROD 
.sth a,l,*ar3+ 

stm #matArow2, arl 
stm #matBco13, ar2 
stm ilNml,BRC 
ca11 DOTPROD 
sth a,l.*ar3+ 

row 1 of matrix C 

row 20f matrix·C 

row 30f matrix C 


columns of matrix A-I 

select sign extension mode 
ar3 = matrix C start address 
~rl = matrix ALrow 1 start address 
ar2 = matrix B col 1 start address 
BRC= row/col el~ments - 1 

; find dot product 
save the result as matrix C element 

arl =matrix A row 1 start address 
ar2 =matrix B col 2 start address 
BRC =row/col elements - 1 
find dot product 
save the result as matrixC element 

arl =matrix A row 1 start address 
ar2 = matrix B col 3 start address 
BRC = row/col elements - 1 
find dot product 
save the result as matrix C element 

arl =matrix A row 2 start address 
; 	ar2 =matrix B col 1 start address 

BRC = row/col elements - 1 
find dot product 
save .the result as matrix C element 

arl =matrix A row 2 start address 
ar2 =matrix B col 2 start address 
BRC = row/col elements - 1 
find dot product 

; 	save the result as matrix C element 

arl =matrix A row 2 start address 
ar2 = matri.x B col 3 start address 
BRC =. row/col elements -1 
find dot product 
save the result as matrix C element 

Figure 7.22 Continued 



·stm #matArow3. arl arl = matrix A row 3 start address 
stm #matBcoll. ar2 ~r2 = matrix B colI start address 
stm #Nml. BRC . BRC = row/col elements - I 
call DOTPROD find dot product 
sth a.I,*ar3+ save the result as matrix C element 

stm #matArow3. arl arl = matrix A row 3 start address 
stm #matBco12, ar2 at2 " matrix B col 2 start address 
stm #Nrnl, BRC BRC = row/col .elements - 1 
ca11 DOTPROD find dot product 
sth a.I,*ar3+ save. the result as matrix C element 

stm #matArow3. arl arl =matrix A row 3 start address 
stm.#matBco13.ar2 ar2 =matrix B col 3 start address 
stm #Nml,BRC BRC =rowjcol elements ~ 1 
call DOTPROD find dot product 
sth a.I.*ar3+ save the result as matrix C element 
nop 
nop 
ilop 

;------------~----------------------------------------------------------~------------

Dot Product Routine 

This routine determines the dot product of two. vectors 

Input: 	 arl" pointer to the first element of vector I 
ar2 = pOinter to the first element of vector 2 
BR( " size - 1 for ei ther vector 

.... 
All elements are q15 numbers 

Output: 	 Pi = dot product as q30 number 

'. 	 . 
;-------------------------------------------------------~---------------------------~ 
DOTPROD: 

ld #0, a A = 0 
NXTeleofA: 

rptbend_dotp-l A = sum of arl(i)*ar2(i} for all 
ld *ar2+. t 
mac *arl+. a 

end_dotp: ret return 
nop 
nop 

.end 

Figure 7.22 Continued 
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7. 1 0 Summary 

In this chapter, we have covered some basic DSP implementations with 
the view of using a fixed-point programmable DSP device such as the 
TMS320C54xx. All these . implementations require some sort of multiply and 
accumulate operation on two arrays, typically an array of samples and an 
array of coefficients. In all these implementatipns, memory organization is 
important, as it leads to the specific programming strategy to do the compu­
tations. An<)ther important aspect of these implementations is how signal 
samples and coefficients are represented. The Q-notation is handy when rep­
resenting fractional filter coefficients. However, care must be exercised in 
U$ing the multiply operation on nurribers represented in 'the Q-notation. 

The implementations covered in this chapter iQc1ude FJR filters, IIR filters, 
interpolation filters, decimation filters, ;PID cOf!.4'oUer, adaptive filters, and 
2-D signal processing: In these implementations, it lsassl/.med that the input 
signal samples are available in a memory bpffer or in a data file. The com­
puted output samples are also placed in a mel,llory buffer. HoweVer, to design 
a real-time application requires inclusion of AID and D/A interfacing along 
With the appropriate software to control them for d~ta acquisition. Real-time 
signal processing is considered in Chapters 9 and 10. 

References 

1. 	 Strum, R. D., and Kirk, D. E. First Principles of Discrete Systems and Digital 
Signal Processing, Addison-Wesley; 1988. 

2. 	 Peled,A., and Liu, B. Digital. Signal Processing, John Wiley, 1976. 

3. 	 Stearns, S. D., and Ruth, D. A. Signal Processing Algorithms, Prentice-Hall, 
1988. 

4. 	 Orfanidis, S. J. Introduction to Signal Processing, Prentice"lHall, i996. 

5. 	 TMS320C54xDSP Reference Set, Volume 1, Texas Instruments, 200l. 

6. 	 TMS320C54x nsp Reference Set, Volume 2, Texas Instruments, 1999. 

7. 	 TMS320C54x Assembly Language Tools, User's Guide, SPRU102D, Texas In­
strUments, December 1999. 

Assignments 

7.1. Determine the value of each of the following 16-bit numbers represented using 
the given Q-jtotation~ .. 
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a. 4400h as a QO number 

b. 4400h as a Q15 number 

c. 4400h as a Q7 number 

7.2. 	 Represent each ofthe following as 16-bit numbers in the desired Q-notation: 

a. 0.3125 as a Q15 number 

b. -0.3125 as a Q15 number-

c. ~.125as a Q7number 


. d. ..,-352 as a QO munber 


7.3. 	 Modify the TMS320C54xx program in Figure 7.l(b)so that it can be used to 
multiply a QI5 number with a QO number to obtain the result in QO notation. 

7.4. 	 Modify-the TMS320C54xx program in Figure 7.1(b) so that the rounding is 
done as follows: Use ordinary rounding as in the program except when the 
part to be truncated is exactly equal to half the largest value represented by 
the·dropped bits, in which case the part to be kept is incremented only if. as a 
binary nUmber. it represents an odd. integer. 

7.5. 	 Analyze the' following program to answer the questions at the end. Assume 
that all specified data locations are on the same page starting at aO. 

. data 
ao .word 6000h 
bi .word 2000h 
xn .word 4000h 
yn ;word Oh 
ynmi .word 3000h 

.text 
ld #aO.dp 
ld aO,t 
mpy xn,a 
ld bl. t 
mac ynml. a 
sth a. 1. yn 

Assuming that all memory contents for constants and signals are in Q15 
notation. determine the 

a. decimal values represented by ao. bl. xn, and ynmI, 

b. decimal value of the computed yn and that of the error due to trunca­
tion. 

c. equation for yn implemented by the above program. 

7.6. 	 For the following program determine (a) the difference equation, and (b) the 
transfer function for the· implemented filter. . 
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AGAIN: 
Ld #yn,dp ; Set the data page 
portr inport, xn ; Get the new input x(n) sample 
ld #0, a· 
ld . xnm2, t 
mpy a2, a 
ld xnml, t 
delay xnml 
mac aI, a 
ld xn, t 
delay xn . 
mac aO, a 
ld . ynm2,T 
delay ynm2 
mac b2,a 
ld ynrnI, t 
delay ynmi 
mac bI, a 
ld yn, t 
delay yn 
mac bO,a 
sth a,yn ; Replace y(n) with the computed y(n) 
b AGAIN 

Assume that all signals are integers and stored in the order y(n), yen ­
yen - 2), x(n), x(n - I), x(n - 2) starting at the lowest address and proceed­
ing to the higher addresses on the same page. Note that ynml in the code 
stands for yen - 1) and· similarly other signals are denoted. All coefficients 
such as aO, aI,: .. , etc. are also stored as integers on the same data page. 

7.7.· 	-. An N -tap FIl3- filter has 

h(i) = heN 1 i) 

where i = 0,1, ... , (Nf2) I, for an even value of N. Use the coefficient sym­
metry to rewrite Eq. 7.2 so that the number of multiplies is minimized. Show 
an implementation scheme similar to Figure 7.3 for the filter. . 

7.S. 	 An N-tap FIR filter has 

hO) = heN 1 - i) 

where i = 0, 1, ...• (N - 1)12, for an odd value of N. Use the coefficient sym­
metry to rewrite Eq. 7.2 so that number of multiplies is minimized. Show an 
implementation scheme similllr to Figure 7.3 for the filter. 

7.9. 	 Modify the TMS320C54xx program for the FIR filter implernentationshown in 
Figure 7.4 to implement the symmetrical tap filter in Problem 4 with N = 30. 
Test the filter implementation using an appr9priate set of tap values. 
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7.10. 	 Modify the TMS320C54xx. program for the FIR filter implementation shown in 
Figure 7.4 to implement the symmetrical tap filter in Problem 5 with N 31. 
Test the filter implementation using an appropriate set of tap values. 

7.11. 	 Implement the IIR filter represerited by the following difference equation on 
the TMS320Cc54xx.. Assume that g:15 notation is used to represent the values 
of coefficients and QO to represent the signal' samples. 

y(n).= b(O)X(tl) + b(l)x(n - 1) + a(O)y(n - 1) + a(l)y(n 2) + a(2)y(n 3) 

7.12. 	 Using the program of-Figure 7.6, develop a TMS320C54xx. program toimple­
ment the following FIR filter: . 

H(z) = (0.1 + 0.2z-1 +0.lz-2)(0.5- 0.2z-2
) 

(1 + 0.25z-:-1)(cl 0.15z-1 - 0.5z-2) 

7.13. 	 Determine ·the linearly interpolated sequence from the given sequence 

x(n) =[0 48 12 16 128 4 0] 

for an interpolation factor of 3. What interpolating sequence h(n) can achieve 
the specified interpolation? 

7.14. 	 MQdify the interpolatio~ filter implementation scheme of Figure 7.9 so.as to 
avoid going over the san:J.ple sequence five times: This can be done using more 
memory locations. . . 

7.15. 	 Use the scheme of Problem 11 to write a TMS320C54xx program for the in­
terpolation filter .. Use appropriate data to test the program. 

7..16. if decimation bya factor of 8 is achieved by decimating by a factor of 2 fol­
lowed by another factor of 4, determine the clltofffrequencies of the two low- . 
P8.$S filters that should be used in the decimation scheme. 

7.17. 	 Develop a decimation filter program that can be used to decimate by a factor 
of 2s using a subroutine to decimate by a factor of 2 in !=onjunctionwith 
appropriate filters. 

7..18. 	 In the PID controller of Figure 7.14, K3 = Kl /64, K2 =,Kd8. Modify Eq. 7.14 so 
that a minimum number of multiplies are used for its implementation. What 
processor operation 'can .be used to achieve this? . . 

1..19. 	 Develo~ a TMS320C54xx program for the PIt> controller of Problem 5. 

7.20. 	. Modify, the adaptive filter implementation scheme of Figure 7.18 so that the 
adapQve filter is also an interpolCltion filter with an interpolation factor of 2. 

7.21.. 	 Develop a TMS320C54xx. program for the scheme of the adaptive and inter­
polation filter in. Problem 17. ­

7.22. 	 Develop a TMS320C54xx subroutine to multiply two 3 x 3 matrices. 

7.23. 	 Use the subroutine developed in Problem 19 to develop a TMS320CS4xx. pro­
gram toimplelllent 2-D convolution. Ass1;UDe appropriate ~uesfor the 2.rD 
signal s!lDlplesand the convolutiQn coefficients. 



Chapter 8 
Implementation of FFT Algorithms 

8.1 Introduction 


In this chapter, we cover the implementation· of FFT algorithms for OFT 
computation and related issues. As an example, an 8-point DIT FFT algorithm 
is implemente!i with considerations for computational structure and scaling to 
avoid overflow. The following topics are covered in this chapter: 

An FFT algorithm for OFT computation 

A butterfly computation. 

Overflow and scaling 

Bit-reversed jndex generation 

An 8-point FFT implementation on the TMS320C54xx 

Computation of the signal spectrum 

8;2 An FFT Algorithm for DFT Computation, 

Here we consider the OFT computation using FFT algorithms. We discuss 
these algorithms from the implementation point of view. For a detailed treat­
ment 'of the FFT, we refer the reader to the many available excellent books on 
the subject 

The discrete Fourier transform (OFT) pair is given as 

n=N-l 
X(k) L x(n)e-J2nnkIN; k = 0,1,2, ... , (N 1) (8.1) 

n=O 

and 

215 
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k=N-l 

x(n) = liN :L: X(k)ej2nnklN; n = 0,1,2, ...• (N - 1) (8.2) 
k=O 

where x(n) is the time-domain sequence;X(k) is the corresponding frequency- ' 
domain sequence, and N is the numberofelemEmts ofeach sequence. 

Equation (8.1) is known as the forward transform, or DFT,and (8.2) as the 
inverse transform, or IDFT. Replacing e-j2n1N by WN, we get 

n=N-:-l 

X(k) = L x(n)WN nk
; k = 0,1,2, ... , (N - 1) (8.3) 

n=O 

and 

k=N-l 

x(n) = (lIN) L X(k)WN- nk; n=0,1,2, ... ,(N-l) (8.4) 
k=O . 

where WN"k is known as the twiddle factor. 
Noteihat the direct DFT computation of (8.1) or (8.2) requires N 2 complex 

multiplies and N(N - 1) complex additions., That is, it requires approximately 
N2 complex operations. Let us now consider a few specific cases starting with 
the 2-point DFT. The objecti;ve is~o derive an algorithm for efficient compu­
tation of the DFT and IDFT. 

8.2.1 2-Point DFT Computation 

For N = 2, Equation 8.3 written explicitly for k = 0 and 1 gives 

0X(O) =x(0)W20 +x(l)W2 (8.5) 

X(1) = x(0)W20 + X(I)W2-1 (8.6) 

Note that the,twiddle factor W2() = eO = 1 and W2:-1 =e-j'l< = -1. 
, Substituting for twiddle factors in E9uations 8.5 and 8.6 gives 

X(O) = x(O) +x(I) (8.7) 

XCI) =x(O) - x(l) (8.8) 

The computation represented by thes.e equatioris is shown in the signal flow 
graph of Figure 8.1. This computation is called an in-place computation if 
the computed values X(O), X(1) replace x(O) and x(I), respectively. Note that. 
the 2-pointDFT computation requires only add and subtract operations to ' 
implement. The structure in Figure 8.1 is called a butterfly. 
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x(O) 0::::::: :;;0 X(O) 

x(1)o< ::;. >0 XCI) 
. -1 

. Figure 8.1 Signal flow graph for a2-point DFT computation 

x (0) 0.::;: ;:>" Q;: pX(O) 

x(2) 0"'" ::;'.">.0 t1;: Y fl X(I) 

xCI) 0.::;: ;p If X::;. 1 'b X(2) 

WI
4 

x(3) 0"" >:1 >0 ).? ) >OX(3)1 

'- _v.----~" -" 
stage 1 stage 2 

Figure 8.2 Signal flow graph for a 4-point DFT computation 

8.2.2 4-Point DFT Computation 

Computation of a .i-point DFTcan be shown to yield the structure shown in 
Figure 8.2. Note that now we require a total of four butterflies in two stages of 
computation. The first stage has two butterflies, one operating on x(O) and 
x(2) and the second operating on x(1) and x(3). In the second stage, the first 
butterfly operates on upper outputs of the first-stage butterflies and the sec­
ond one operates on the lower outputs of the first-stage butterflies. Also, note 
that the lower output of the second butterfly of the first 'stage needs to be 
multiplied with the twiddle factor W4 1 • ' 

Further, note that the input samples x(O) through x(3) are required to be 
rearranged in the order x(O), x(2), x(l), x(3) to implement the computation· 
depicted in Figure 8.2. Now, if the naturally occurring input sample indices 0, 
1, ~,3 are represented by their binary equivalents 00, 01, 10, 11 and these 
binary numbers are reversed, we get 00, 10, 01, 11, which are 0, 2, 1, 3, the 
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x(O) 00:: JJ . Q; P Q p X(O) 

x(4) cr= :> '=0 o;:)(;p q \ / p X(l) 

x(2) '" .. :;r.> . of X:>. "0 Q;: \ X I f X(2) 

x(6) 0'" :> >0.:> d' :> "0 '\ X X ;\ fJ X(3) 

x(l) 00:: P 0;: P (\ X· X *:> \i) 

x(5) <::f"" >: >0 0;;;: 
-1 

rf)(:> 'l:> :> d' \ :> b r " 

X.;p :> d / X \:> '0 X(5) 

x(3) Q;: » 

x(7) c;('" ) >0. )rf-1 Wsz ?1 'b>-~~:>7"""d:L...._4-_'
'-.r------' ' . W,' ~1 • X(/) 

\. .J v-­
stage 1 v,)stage 2 stage 3 

Figure 8.3 Signal flow graph for an 8-point DFTcomputation 

indices for the sequence in which the signals must be processed by the com­
putational structure of Figure 8.2. This pro'cess of rearrangement of indices for 
OFT computation is called bit reversing and is further considered ina sub­
sequent section. 

8.2.3 8M Point OFT Computation 

When 8 points are used to compute DRT, the result is the computational 
structure of Figure 8.3. Now we have three computationaLstages, each stage 
requiring 4 butterflies for a total of 12· butterflies. Note. that the input is. re­
arranged following bit-reversed itidices of eight input samples. The relation­
ship between the input indices and the bit-reversed indices required for OFT 
computation .will be explored furtPer in a subsequent section. Further; note 
that now more twiddle factors are needed to compute the OFT. . 

8.2.4 N = 2'" Point FFT Computat.ion 

. The above approach to OFT computation extended to a case of N points, 
where N is a power of 2, yields 10g2 N stages of computation, with each stage 
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requiring N /2 butterflies. This computational structqre is the fast Fourier 
transform, or FFT. 

Another FFT Algorithm 

Two types of commonly used FFTalgorithms are available, decimation-in­
tinie (DIT) and decimation-in-frequency (DIF). If the naturally occurring 
input time~sequence sampl~ indices are. bit reversed and processed by the 
above algorithm, the frequency domain output is in t:he natural order. Such 
a computation is called a DIT FFT algorithm. Another algorithm results if a 
time-d()main sample sequence is used without bit-reversing the indices. The 
latter algorithm is similar to the former, with small changes in the butterfly 
computational structure. The output generated by the latter algorithm has bit- . 
reversed indices. This second approach is called the DIF FFT algorithm. The 
details of the DIF FFT algorithm can be found in most books on DSP funda­
mentals [1] and are left for the reader to explore. 

Zero-Padding 

At times"the sequence to be transformed is appended with zeros before com­
putingthe DFT. This can be done to satisfy the condition that the FFT algo­
rithm requires that the number of points be a power of 2. Another objective of 
zero-padding is to increase the transformed points to decrease the frequency 
interval between adjacent points represented by the X(k) sequence. This leads 
to improvement in frequenq resolution for representing signals in the fre­
quency domain. 

8.3 A Butterfly Computation 

A general DIT FFT butterfly in-place computation structure is shown in Figure 
8.4. Its implementation requires the following computation: 

AR+jAr a 
-.I I 

AR + jAr 

B I 'BI 
R +j r 

WFf +jW{ 

Figure 8.4 A general butterfly computation structure 
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AR' + JAI' = (AR + JAI) + (BR + jBI).(WRr + jWlr) 

= AR + BR WRr - BI Wlr + j(AI + BI WRr + BRWlr) (8.9) 

BR' + jBI' = (AR + jAI) - (BR + jBI)(WRr + jWlr) 

= AR BRWRr +BI Wlr + j(AI - BI WRr - BRWIr) (8.10) 

Equating real and imaginary parts yields 

AR'= AR + BRWRr - BIW{ 

AI' == AI + BI WRr+BR Wlr 
(8.11) 

BR' = AR - BRWR
r + BIWl r 

BI' AI - BI WRr - BR Wlr 

or 

AR' = AR + TMPI 

AI'·= AI + TMP2 
(8.12) 

BR' = AR - TMPI 

BI' AI TMP2 

where 

TMPI = BR WRr - BI WIr (8.13) 

and 

TMP2 = BI WRr + BR WIr (8.14) 

Thus, to compute the butterfly one can use Equations 8.13 and S.14 to first' 
compute TMPI and TMP2 and then use these in Equation 8.12. 

8.4 Overflow and Scaling 

The data must be properly scaled down before or during a butterfly compu­
tation to avoid overflow at any stage of calculations. Overflow leads to a use­
less transformed result. However, excessive scaling leads to precision prob­
lems due to dropping of the least significant bits. Thus, one needs to have an 
idea about the magnitudes of signal values so that scaling is applied only when 
needed. hi essence, the purpose of scaling should be to avoid overflow without 
sacrific~g precision. 
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. Consider the following equation iIi the butterfly computation 

All = AI + BI WRr + BR Wrr (S.15) 

where WRr = cos (}, wIr = sin (}, (}::::;; 27tnklN. Substituting for the twiddle 
factor gives 

AI I = AI + BI cos (} + BR sin (} (S.16) 

The maximum value of All occurs when oAr11M = O. This yields 

OAI'lo(} = -B, sin (} + BR cos (} = 0 

That is, 

tan (} BR/BI (S.17) 

which yields 
BR 

sin·(} = VBR2 +BI2 

BI 
. (S.lS) 

Cos (} = VBR2 + BI2 

Substituting sin (} and cos (} in Equation 8.16 yields 

AI~ax = AI + VBR2 + BIZ . (S.19) 

If we assume that the maximum value of each variable in Equation 8.19 is 1, 
then the maximum possible value that AI' c.an attain is given as 

AI~ax = 1 + V2 2.414 

Similarly it can be shown that the maxima for other computed variables. in 
Equation 8.12 in the butterfly computations are also equal to 2.414. Therefore, 
to avoid overflow each htput variable can be multiplied- by 112.414 = 0.414 
before computing the butterfly. The butterfly computation is modified, by in­
cluding this scale factor, as shown in Figure 8.5(a). If a shift operation, which. 
is simpler to implement, is used to scale the variables, the scale factor to avoid 
overflow should be 0.25. Figure 8.5(b) shows the butterfly computation that 
uses 0.25 as the scale factor. Use. of the shift operation is preferred in pro­
grammable signal processors where it is implemented as part of data transfer 
and requires no additional execution time. However, in such a case we may be 
scaling more than what is absolutely needed and thus compromising the 
computational accuracy. For simplicity we will use shift in the FFT imple­
mentation example considered in a subsequent section. Figure 8.5(c) is the 



222 Chapter 8 Implementation of FFT Algorithms 

Xl 
(1 + $) 

A I °AI-,-- R+J I 

Butterfly Computation 

/(1/1+ $) I__ BRI+ JBI I 

AR +jAI ") 

BR +JBI :> 

1 
W~+jW{ 

Figure 8.S(a) 	 Butterfly computation, where the magnitude of all numbers is limited to less than 
1, using a scale factor = 1/(1 + v?) 

AR +jA y,;­ f---- A:+jA(I ----:);;--­

Butterfly Computation 
y,;­

BR + jB! . ) 	 ~B:+ jB: 
I 

W~+jW{ 

Figure 8.S(b) Butterfly computation where all magnitudes must be less than 1 and the scale 
. factor is apower of 2 . 

A I °AIBFAa+jAI R +J I 

xl. 
4 

B lOBIBR +JBI (WJ +jW[) R +J I 

Figure 8.S(c) A representation for the butterfly computation using a seaIt=! factor of 114 
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representation for the butterfly strucfure that wi.1l be used in the DIT FFT im­
plementation. This representation includes the scale factor as well as the 
twiddle factor. 

8.5 Bit-Reversed Index Generation 

The table in Figure 8.6(a) shows the relationship between the naturaIlyoccur­
ring original input indices and the indices with reference to which DIT DFT is 
computed. The bit-reversed indices, needed for the DI':( FFT implementation, 
can be generated using a reverse carry add operation, as shown in~e example 
of Figure 8.6(b). For instance, if the current bit-reversed index"is 01002 in an 
8~point DFT, then, the next bit-reversed index is obtained by adding 01002 

(half the DFT size) using reverse carry propagation (carry moving to the 
right). 

As discussed in Chapter 5 TMS320C54xx has an addressing mode that al­
lows one to implement bit reversing in a very convenient manner. As the 
naturally sequenced input data is obtained, it is bit reversed before placing in 
memory for FFT computation. 

Original Index Bit-Reverseq Index 

000 000 
001 100 
0·10 010 

'011 110 
100 001 
101 101 
110 011 
111 111 

Figure 8.6(a) Bit-reversedindices in an 8-point DFT computation 

0010 (Carry in) 

0100 (Current bit-reversed index) 


+ 0100 (Half the number of OFT points) 

0010 (Next bit-reyersed index) 
010.0 (Carry out) 

Figure 8.6(b) Bit-reversed index ('!onor:ltinn o":lm"lo 
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·.8.6 	An 8-Point FFT Implementation on the 
TMS320C54xx 

An 8-point DIT FFT implem~ntation structure based on the butterfly of Figure 
8.5(c) is shown in Figure 8.7. The TMS320C54xx program that implem~nts 
the. algorithm is shown in Figure 8.8. The program uses subroutines for bit 

x(O) X(O) 

x(4) 

x(2) 

x(6) 

x(l) 

~x(5) 

. x(3) 	 ­

xlA 

WO 

xlA 

WO 

x1A 

WO 

xlA 

WO 

I--
-

xlA X(l) 

I--
, 

WO X(2) 
:X1A I--

W2 II---'- X(3) 

WO X(4) 

I--
xlA WI X(5) 

. 

WO W2 X(6) 

W2 W3 .-- X(7) 
'---

Figure 8.7 An 8-point FFT implementation structure; scale factor for all butterflies 114 
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Program Name: FFT8.asm 

Description: This program implements an 8-point OIT FFT algorithm. 

Author: Avtar Singh, SJSU 

.mmregs 

.def _c_intOO 

.data 
;--------------------------------------------------------------------­

Transformed .data 
;-----~---------~-----------------------------------------------------
XOR .word 0 Real part ofXO 
XOI .word 0 Imag part of XO 
XIR. .word 0 Real part of Xl 
XlI .word 0 Imag part of Xl 
X2R .word 0 Real part of X2 
X2I .wordO Imag part of X2 
X3R .word ,0 Real part ofX3 
X3I .word 0 Imag part.of X3 
X4R .word 0 Real part of X4 
X4I .word 0 Imag part of X4 
X5R .word 0 Real part of X5 
X5I .word 0 Imag part of X5 
X6R .word 0 Real part of .X6 
X61 .word 0 Imag part of X6 
X7R .word 0 Real part of X6 
X7I .word 0 Imag part of X7 
;--------------------------------------------------------------------­

Input data. It should be replaced with the actual data for which the 
FFT is to be computed 

.. ----- ... - --~-- --- - -,----- ------- ---- ----- - - -------- ------ ---,.,---------­
xO .word 0 
xl .word 23170 
x2 .word 32767 
x3 .word 23170 
x4 .word 0 
x5 .word ~23170 
x6 .word -32767 
x7 .word -23170 

Figure 8.8 FFT implementation program for the TMS320C54xx (continued) 
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;--------~------------------------------------------------------------
Twiddle Factors (q15 numbers) 

;-----------------------~-------------~-------------------------------
W08R .word 32767 ; cos (0) 

W081 .word 0 ; -sin(O) 

W18R .word 23170 ; cos(pi/4) 

W181 .word -23170 ; -sin(pi/4) 

W28R .word 0 ; cos(pi/2) 

W281 .word -32767 ; -5i n(pi /2) 

W38R .word -23170 ; cos(3pi/4) 

W381 .word -23170 : -sin(3pi/4) 

;--------------------------------------------------------------------­

Spectrum Data 

;--------~-------------------------------------------- ----------------
SO .word 0 ; SO = Freq 0.fs/8 contents 
SI .word 0 ; SI = Freq l.fs/8 contents 
52 ;word 0 S2 = Freq 2.fs/8 contents 
53 .wordO S3 = Freq 3.fs/8 contents 
S4 .word 0 54 .-Freq 4.fs/8 contents 
S5 .word 0 55 = Freq 5.fs/B contents 
S6 .word 0 ; S6 = Freq 6.fs/B contents 
57 .word 0 S7 Freq 7.f5/B contents 
;--------~---~~-------------------------~------------- ----------------

Butterfly scratch-pad locations 
;-------------------------------------------------~-~---------~-------
TMPI .word 0 
TMP2 .word 0 

.text 

--------------------------------------------~------------~-----------

Main Program 

This program computes B-point DFT using OIT FFT algorithm. 


'; It cil so computes signal spectrum using the transformed data. 

;--------------------------------~------------------------------------
ntOO: 

SSBX SXM Select sign extension mode, 
CALL _clear Clear FFT data locations 
CALL _bitrey Get bit-reversed input data 

STAGE 1 Butterflies: 

Figure 8.8 Continued 
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; Call BUTTERFLY with AR = XOR, AI = XOI, BR = XIR, BI XII 
Replace XOR, XOI, XIR. XII 

STM IXOR, ARI 
STM IXIR, AR2 
STM IW08R, AR3 
CALL _butterfly 

; Call BUTTERFLY with AR = X2R, AI = X2!, BR = X3R, BI X3I 
; Repl ace X2R, 'X2I, X3RJ X3I 

I 
I 

STM IX2R, ARI 
I

i 
STM IX3R. AR2 ! 

STM ifWOBR, AR3/ 
CALL _butterfly i 

; Call BUTTERFLY with AR = X4R, AI = X4I, 8R = XSR, BI = X5I 
; Repl ace X4R, X4I, XSR~ X5I 

STM IX4R, ARI 
STM #X5R, AR2 
STM IWOBR, AR3 
CALL _but~erflY 

; 	Call BUTTERFLY with AR = X6R, AI = X6!, BR = X7R, 81 = X7I 
Replace X6R, X6!, X7R~ X7I 

STM IX6R, ARI ' 
STM IX7R, AR2 
STM #WOBR, AR3 
CALL _butterfly 

; 	STAGE 2 Butterflies: 

; Call BUTTERFLY with AR XOR, AI = XOI, BR = X2lR, BI = X2I 
ace XOR. XOI, X2R, X21 

STM IXOR, ARI 
STM #X2R, AR2 
STM IWOBR. .AR3 
CALL _butterfly 

Figure S.S Continued 
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Apply Twiddle Factor W28 to X3R, X31 
Call BUTTERFLY with AR = XIR~AI = XII, BR *-X3R, ~I = X3I 
Replace XIR, XII, X3R, X3I 

STM #XlR, ARl 
STM #X3R, AR2 
STM #W28R, AR3 
CALL butterfly 

Call BUTTERFLY with AR = X4R, AI ': X4I, BR = X6R, BI X61 
ac~~4R, X4I, X6R, X6I 

STM #X4R, ARl 
STM #X6R, AR2 
STM #W08R, AR3 
CALL _butterfly 

Apply Twiddle Factor W28 to X7R, X7I 
Call BUTTERFLY withAR = X5R. AI = X5I, BR = X7R, BI X7I 
Replace X5R. X5I. X7R. X7I 

STM #X5R. ARl 
S"fM #X7R. AR2 
STM #W28R·, AR3 
CALL _butterfl y 

STAGE 3 Butterflies: 

with AR = XOR. AI '" X01, BR '" X4R. BI '" X41 
ace XOR, XOI, X4R, X4I 

STM #XOR. ARI 
STM #X4R, AR2 
STM #W08R, AR3 
CALL _butterfly 

Apply Twiddle Factor Wl8 to X5R. X5I 
Call BUTTERFLY with AR = XIR, AI '" XII, BR = X5R, BI X51 
Replace XIR, XII, X5R, X5I 

STM #XIR, ARl 
STM #X5R, AR2 
STM #W18R, AR3 
CALL butterfl y 

Figure 8.8 Continued 
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: 	Apply Twiddle Factor W28 to X6R, X6I 
Call BUTTERFL~ with AR = X2R, AI :: X2I., BR :: X6R, Bl X61 
Replace'X2R, X2I,X6R, X61 

. STM #X2R;;ARl 
STM #XOR, AR2 
STM- #W28R, AR3 
CALL _butterfly 

; 	Apply Twiddle Eactor W38 to X7R, X7I 
Call BUTTERFLY with AR:: X3R, AI X3I, BR = X7R, BI :: X7I 
Replace X3R, X3I, X7R, X7I 

STM #X3R, ARl 
STM #X7R, AR2 
STM #W38R, AR3 
CALL _butterfly 

Spectrum computation 

STM #X.OR, ARl ARl points to transformed XOR 
STM .#SO, AR2 AR2 pOints to spectrum SO 
STM #7, AR3 AR3 ~#of. spectrum points-l 

CALL _spectrum Compute signal spectrum 
nop 
nop 

. . 
;----~------------------------------------------------ ----------------

This subroutine moves the data to the FFT·memory. 
The data is written in bit-reversed order. 

. 	 . . 	 . . 

;------------~-------------~----------~~------------~--------~--------
bitrev: 

STM #xO, ARl ARl pOints to input sample xO 
STM #XOR, AR2 AR2 pOints to FFT data memory start 
STM #8, ARO ARO = FFT order :: 8 
STM #7,AR3 AR3 = FFT order-l ~ 7 

loop: 
LD *ARl+, A Get next input data sample 
STL A, *AR2+0B Store bit-reversed- in FFT memory 
BANZ loop, *AR3- Repeat for all input samoles 
RET 
nop . 

. > 

Figure 8,8 Continued 
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;--~--~------~--------------------------------------~--------------~--
Clear FFT data memory routine 

;---~------------------------------------------------~----------------
clear: 

STM #XOR. AR2 AR2 points to FFT data memory 
RPT #15 .; Clear FFT memory 
ST #0, *AR2+ 
RET 

.	nop 

nap 


;--------------------------------------------------------------------­
This subroutine implements the butterfly computation 

Use ARI as painter to first complex number. 
Use AR2 as pointer to second complex number. 
Use AR3 as pointer to twiddle factor. 

AR <= AR + BR*WR - BI*WI 

AI <= AI + BR*WI + BI*WR 

BR <= AR - BR*WR + BI*WI 


,. Bl <: Al - BR*WR - BI*WI 


Scale Factor: 1/4 

_butterfly: 
MVMM AR1. AR5 AR5" = AR1 
STM #IMP!, AR4 AR4 pOints to TMP1 

LD *fl,R5, -2, A 
STL A, *AR5+ Replace AR with AR/4 
LD *AR5, -2, A 
STL A, *AR5- Replace AI with AI/4 

LD *AR2. -2, A 
STL A, *AR2+ Replace BR with BR/4 
LD *AR2, -2. A 
STL A. *AR2- ~eplace BI with BI/4 

LD *AR5+. A 
STL A, I, *AR4+ Store AR in TMP1 
LD *AR5-, A 
STL A, I, *AR4- Store AI in TMP2 

Figure 8.8 Continued 
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;AR <= AR + BR*WR - BI*WI 
LD #0, A ; A = 0 
MPY *AR2+, *AR3+, A A = BR*WR 
MAS *AR2-, *A~3, A A = (BR*WR) - BI*WI 
ADD *AR5, 15, A A = (BR*WR - BI*WI) + AR 
ADD #I,14,A Round the result 
STH A, I, *AR5+ ; Save computed AR 

;AI <= AI + BR*WI + BI*WR 
LD #0, A : A = 0 
MPY *AR2+, *AR3-, A A = BR*WI 
MAC *AR2-, *AR3, A A = (BR*WI) + BI*WR 
ADD *AR5, 15, A A = (BR*WI + 'BI*WR) + AI 
ADD #I,14,A Round the result 
STH A, I, *AR5- Save computed AI 

;BR <= AR - (BR*WR - BI*WI) 
LD *AR4+, A ; A = AR 
SUB *AR5+, A ; A = AR-(BR*WR ~ BI*WI) 
STL A, *AR2+ Save computed BR 

;BI <= AI ~ (BR*WI + BI*WR) 
lD *AR4-, A ; A = AI 
SUB *AR5-, A ; A = AI-(BR*WI + BI*WR) 
STL A, *AR2: ; Save computed BI 
RET 
nop . 
nop 

-------------~-------------------~-------~------------ ---------------
This subroutine computes the spectrum of the transformed data. 

Use.ARI as pointer to the transformed data. 
Use AR2 as pOinter to the spectrum data. 

S(k) = (I/N)*IX(k) 1*IConj(X(k)) I 

~-----------------------------------------~----------- ---------------

_spectrum: 
LD #O,A ; A = 0 
LD #O,B B = 0 
SQUR *ARl+,A Square X(k) real 
SQUR *ARl+,B Square X(k) imaginary 
ADD B,A A = IX(k) I. IConj(X(k)) I 

Figure 8.8 Continued 
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STH A.l.*AR2 
lO *AR2.13,A 
STH A, *AR2+ 
BANZ _spectrum, *AR3­
RET 
nop 
nop 

divide by 8 
Store the spectrum result 

.end 

Figure 8.8 Continued 

reversing and butterfly computation, as described earlier. For programming 
details see references [2, 3], The program is written to carry out computation 
stage by stage, starting from the left and proceeding to the right. For simplic­
ity, the implementation uses the butterfly routine including the scaling within 
the butterfly. More accurate implementations are possible that exploit scaling 
only when needed. For instance, the scale factor of 0.25 in an 8-point FFT 
computation results in overall scaling of 0.253 = .015625. However, the re­
quired scaling is = 0.4143 0.07l. If we apply a scaling of 0.25 to the first two 
stages and none to the third, the overall scaling will be 0.0625, which is ade­
quate to avoid an overflow. Similarly; other scaling strategies can be devel­
oped, and these are left as exercises to explore. The implemented scale factor 
can be accounted for in the interpretation of theiransformed data or it can be 
used to scale the result back to obtain the true transformed result. 

The program in Figure 8.8 can be extended to transform any x(n) sequence 
with numbers that are powers of 2. A sequence that does not satisfy this con­
dition can be extended to the next power-of-2 number by appending it with 
zeros. 'The zero-appended sequence can then be processed to compute~e 
transform. These extensions are left as exercises. In order to extend tlle pro­
gram to a higher number of points, such as 16 ,or 32, we need to include more 
calls to additional butterflies. A simple extension of the program based on 
adding more calls makes it unmanageable. In such a case, the program should 
be restructured to incorporate nested loops. In such an implementation the 
computation will proceed similarly for each stage, computing the butterfly in 
the innermost loop. This, however, requires storing all the twiddle factors, 
including WN O, in sequential memory locations. Such an implementation is 
left as an exercise for the reader.' , 

8.7 Computation of the Signal Spectrum 

The spectrum of a signal describes the power associated with each frequency 
content. of the signal. The spectrum estimate for an N-point .transform is given 
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by [1] 

. S(k) (l/N)X2 (k) == (lIN)X(k)X*(k) . (8.20) 

where k = 0, 1,2, ... , (N - 1). If (liN) is absorbed ina scale factor, then 
Equation 8.20 can be computed from 

S(k) == (Real(X(k)))2 + (Imag(X(k»)2 (8.21) 

, 
Figure 8.~ includes a subroutine to compute the signal spectrum. using the 
result of the 8-point FFT. 

8.8 Summary 

This chapter is about the implementation ·of an FFT algorithm on the fixed­
point signal processor TMS320C54xx. The FFT computation structure is de­
scribed. The butterfly and bit-reversing aspects ate covered from an imple­
mentation point of view. The implementation issues, such as overflow and 
scaling, are discussed. The chapter includes an implementation example for an 
8-point DIT FFT algorithm. The example also includes spectrum computation 
using the FFT result. 
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Assignments 

1. 	 Determine the following for a 128-point· FFT computation: 

a. number of stages 

b. number of butterflies in each stage 

c. number of butterflies needed for the entire computation 

d. numbe,r of butterflies that need no twiddle factors 
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e. number of butterflies that require real twiddle factors 

f. number of butterflies that require complex twiddle factors. 

2: 	 What minimum size FFT must be used to compute a DFT of 40 points? What 
must be done to the samples before the chosen FFT is applied? 

3. 	 How many add/subtract ttl) and multiply (M) operations are needed to im­
plement a general butterfly similar to the one described in Section 8.3? 

4. 	 Show that the butterfly computation of Section 8.3 can also be implemented 
using the following equations: . 

ARI AR + BR WRr 
- BI wrt 

All = AI + Br WRt + BR Wl
f 

BRI 2AR ARt 

BIII2AI -Ar 

5. 	 Compare the butterfly implementation in Problem 3, with that in Problem 4 in 
terms of multiply, add, and shift operations. . 

6. 	 Compare the following specific cases of b,utterfly implementation using the 
equations in Section 8.3: . 

a. Al Br 0, WR f + jWI f = 1 

b. WR 
f + jWrt 1­

c. WR
r + jWI r =j 

7. 	 Derive equations, similar to the ones in Section 8.3, to implement a butterfly 
encountered in a DIF FFT implementation. Such a butterfly is represented by 
the following equations: 

ARI + jAr I (AR + jAr) + (BR+ jSr) 

BRI + JBII = «AR + jAr) (BR + jBd)(WR 
r + jWI r ) 

8. 	 Derive the optimum scaling factor for the DIF FFT butterfly. 

9. 	 How can the program of Figure 8.8 be modified so that scaling is done only 
when needed? 

10. 	 Rewrite the program in Figure 8.8 using nested loops so that there is just one 
CALL statement to call a butterfly routine. 

11. 	 Modify the program in Problem 10 so that it can be used to compute a FFT for 
any number of points that are powers of 2 .. 

12. 	 Modify the program in Problem 11 so that it can be used to compute a FFT fer 
points that are not powers of 2. 

13. 	 A time-domain sequence of 73 elements is to be convolved with another time­
domain sequence of 50 elements using DFT to transform the two sequences, 
multiplying them, and then doing IDFT to obtain the resulting time-domain 
sequence. To implement DFT or IDFT, the DIT-FFT algorithm is to be used. 
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Determine the total number of complex multiplies needed to implement the 
convolution. Assume that each butterfly computation reqUires one complex 

. multiplication. 

14. 	 The computation in Problem 13 is to be implemented on a fixed-point signal 
processor that takes 10 ns to do a real integer multiplication. Determine the 
convolution computation time. If the convolution is to .be implemented for a 
real-time signal and each time a new sample is received the transform is to be 
calculated; determine the highest frequency signal that can be handled by the 
signal processor. 
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Chapter 9 
Interfacing Memory and Parallel 1/0 
Peripherals to Programmable DSP Devices 

9.1 Introduction 

In previous chapters, we studied the architectures of digital signal processors 
and learned about -their instruction set and programming techniques. Iri a 
complex DSP system, in addition to the processor, there are also external 
peripherals, such as memory and input/output devices. In order to interface 
such peripherals, we need to understand variou$ interfacing DSP signals and 
the techniques for using them. Peripherals can be interfaced to a processor 
either in serial or in parallel mode. In the serial mode, data transfer takes 
place bit by bit; in the parallel mode transfer takes place word by word. The 
choice is based on the nature of the peripheral and the desired data transfer 
rate. 

In this chapter, we consider the interfacing signals of the TMS320C54xx 
processors and use of these signals for parallel interfacing of memory and· 
peripherals. These topics are covered under the following headings: 

Memory space organization . 


External bus interfacing signals 


Memory interface 


Parallel I/O interface 


Programmed I/O 


Interrupts and I/O 


Direct memory access 

9.2 Memory Space Organization 

The TMS320C54xx devices each support a basic memory space (internal and 
external) of 192K 16-bit words. This consists of 64K words of program mem­

------~----

236 
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Hex Page 0 Program Hex Data 

Memory-Mapped I 

Registers I 

Scratch-Pad 
RAM I 

On-Chip 
DARAM0-3 
(32Kx 16-bit) 

On-Chip. 
DARAM4--7 
(DROM=l) 

or 
External 

(DROM=O) 

Page 0 Program Hex 
Reserved 0000 

(OVLY=l) 
005FExternal 

(OVLY=O) 0060 
On-Chip 007F 

DARAM0-3 0080 
(OVLY=l) 

External 

(OVLY=O 
 7FFF 

External 8000 
On-Chip ROM 

(l6Kx 16-bit) 


Reserved 

Interropts 
(OncChip) FFFF 

MPIMC=O 

0000 


007F 

. 0080 


7FFF 

8000 


FF7F 


FF80 


FFFF 


Reserved 
(OVLY=l) 

External 
(OVLY=O) 

External 

Interrupts 
(External) 

0000 

007F 
0080 

7FFF 
8000 

BFFF 
COOO 
FEFF 
FFOO 
FF7F 
FF80 
FFFF 

DARAM!: .2000h.o:3FFFh 

DARAM3:6000h-7FFFh 

DARAM5: AOOOh-BFFFh 

DARAM7: EOOOh-FFFFh 


Figure 9.1 Memory map of TMS320C5416 

(Courtesy of Texas Instruments I~c.) 

ory. 64K words of data· memory. and 64K words of 110 space. Program and 
data memories can comprise of both internal (on-chip) and external (off-chip) 
memories. ·The actual amount of memory depends. upon the particular DSP 
device of the family. 

Depending on a specific C54xx device. the on-chip program memory can 
be ROM, DARAM, SARAM, or combinations of these types. The on-chip 
memory of a device is mapped to the space by three CPU status register bits­
MP/MC. OVLY, and DROM. AS shown in Figures 9.1 and 9.2, the on-chip 
memory of the TMS320VC5416 processor consists of 16K ROM, 64K DARAM. 
and 64K SARAM [1]. 

Devices with boot loader ROM. lookup tables such as a sine table, and an 
interrupt vector table are also available for applications that .needthese capa­
bilities. In some of the C54xx devices. the program memory can be extended 
up to 81!12K words by providing external memory-addressing capability. For 
the implementation of external memory systems these devices may be pro­
vided with up· to 23 address lines to access the memory. For example, the 
C5416 provides 23 address lines that provide the capability of addressing up to 
8192K of memoxy space in 128 64K word pages, as shown in Figure 9.2. . 

Data memory can also be both on-chip and off-chip. As shown in Figure 
9.1, the on-chip DARAM of the C5416 can be mapped as on-chip program 
and/or data memory. The on-chip ROM can be mapped as on-chip program· 

MP!Mc=l 
(Microprocessor Mode) (Microcomputer Mode) .. 

Address ranges for on-chip DARAM in data memory are; DARAMO; 0080h-lFFFh; 
DARAM2: 4000h-5FFFh; 
DARAM4: 8000h-9FFFh; 
DARAM6; COOOh-DFFFh; 
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Hex Program Hex Program 
040000' 

On-Chip 
7FOOOO~'

On-Chip 
IDARAM0-3 ARAM0-3 
(OVLY=I) 

External 
047FFFI(OVLY=0) 

(OVLY= 1) 
External 

7F7FFF I(OVLY = 0) 

048000 7F8000 

External . External 

04FFFFL, __--l 7FFFFF L'___...J 

Page I Page 3 Page 4 Page 127 
XPC= I XPC=3 XPC=4 XPC = 7Fh 

Address ranges for on-chip DARAM in program memory are: DARAM4: 018000h-019FFFh; DARAM5: OIAOOOh-OlBFFFh 
DARAM6: O}COOOOh-OIDFF DARAM7:01EOOOh-OIFFFFh 

Address ranges for on-chip SARAM in program memory are: SARAMO: 028000h-029FFFh; SARAMl: 02AOOOh-02BFFFh 
SARAM2: 02COOOh-02DFFFh; SARAM3: 02EOOOh-02FFFFh 
SARAM4: 038000h-039FFFh; SARAM5: 03AOOOh-03BFFFh 
SARAM6: 03COOOh-03DFFFh; SARAM7: 03EooOh-03FFFFh 

Hex Program 
010000 i 

On-Chip 
'ARAM0-3 

(OVLY=I) 
External 

Ol7FFF I(OVL¥ =0) 

Hex Program 
020000 

On-Chip 
'ARAM0-3 

(OVLY=I) 
External 

Hex Program 
030000' 

On-Chip 
'ARAM0-3 

(OVLY=I) 
External 

037FFFI (OVLY = 0) 

Figure 9.2 Extended memory map of TMS320C5416 

(Courtesy. of Texas Ins.truments Inc.) 

memory, or this sp$l.ce can be in the external memory. These flexibilities are 
provided to support applications with different types of needs. 

On-chip memory is faster than external memory and has no interfacing 
requirements because it is within the chip. It cons1l1lies less power compared 
to external memory and enables higher performance of the DSPbeca~e of 
better flow within the pipeline of the central arithmetic logic unit. However, 
external memory provides a large memory space and hence is used when large 

, . memory size is required. 

9.3 External Bus Interfacing Signf'l~ 

A DSP device can be interfaced to a wide variety of peripherals by means of its 
address bus, data bus, and a set of control signals. Important external inter­
facing signals ofTMS320C5416 devices are given in Table 9.1. The useofmany 
of these signals should become evident when we discuss memory and I/O 
interfacing later in this chapter. 

9.4· Memory Interface 

In the processor architecture, separate on-chip data and· program memories 
are provideq to enhance the speed of program execution by using parallelism. 
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Table 9.1· Memory and 1/0 Interfacing Signals of the !MS320C5416 Device 

Signal Description 

AO-A19 20-bit Address Bus 


DO-015 16-bit Data Bus 


DS Data Space Select 

PS Program Space Select 

IS 110 Space Select 

RJW ReadlWrite Signal 

MSTRB Memory Strobe 

IOSTB 110 Strobe 

READY Data Ready Signal 

HOLD Hold Request 

HOLDA Hold Acknowledge 

MSC MiCro State Complete 

IRQ Interrupt Request 

lACK Interrupt Acknowledge 

XF External Flag Output 
).

BIO Branch Control Input 

. Due to this parallel configuration and their dual-access capability. up to four 
concurrent memory operations can be performed in one cycle. These include 
three reads and one write operation. In spite of the advantages of on-chip 
memory, size constraints may require the designer to use external memory. 

The external memory interface of the C54xx processors consists of a 16- to 
23-bit address bus (depending on the device), a 16-bit data bus. and interfac­
ing control signals. The interfacing signals are used to generate chip select 
(CS), output enable (OE), and write enable (WE) signals required for accessing 
the memory for data transfer [3]. Figure 9.3 shows a block diagram for the 
memory interface of the C5416 processor. Notice that the job of the interface 
is to use the processor signals and generate the appropriate signals for setting 
up communication with the memory. 

9.4.1 Timing Sequence for External Memory Access 

The timing reference' for the external memory access is provided by the 
CLKOUT signal of the C54xx devices. Depending on the operation performed. 
the external memory .requires a number of clock cycles. During the entire 
memory read and write operations,. MSTRB remains low and the PS and 
DS are. active while program memory and data memory, respectively. are 
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TMS320C5416 Memory . 

Vee 

AO-A22 

00:"015 

PS,DS 

MP/MC MSTRB 

R/W 

23 

16 

2/ 

Memory 
Interface 

(x+l) 

16 

AO-Ax 

DO-DI5 

Figure 9.3 Memory interface block diagram for the TMS320(5416 processor 

accessed. The R/W signal is used to specify the direction of data transfer. 
Figure 9.4 shows the TMS320C54n signals during two memory reads and a 
memory write operation. The strobe signal, MSTRB remains low for both read 
and write operations. RlW is high for the read operations and becomes low 
for the write operation. Note that the write operation requires two cycles. This 
is because, in the example, the write operation is. for· an external memory 
location. Also note that during the read operation, is low since the read 
locations are in the program space. Likewise, during the write operation, DS is 
low, indicating a write operation with the data memory. 

9.4.2 Wait States 

The TMS320C54xx nsp can be interfaced to slower off-chip memories' and 
I/O devices by introducing wait states. Software programmable wait states 
are easily incorporated without any external hardware. The user-accessible 
memory-mapped 'software wait state register (SWWSR) controls the internal 
software wait state generator. Program and data memory spaces have two 
pages each of 32K, and for the I/O, a single page of 64K that can be pro­
grammed to have software-generated wait states. This is done by means of a 
three-bit field, for the corresponding space and address range, in the SWWSR: 
000 corresponds to no wait state and III to seven wait states. Memory devices 
that require more than seven wait states have to be interfaced using the hard­
ware READY signal. An external device uses the READY signal to indicate its 
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CLKOUT 

M"~~ 
1'----" I 1'\......J 1 . 1 '\......J 1 I'---/ I . 1'----"1 

: *:: * : :: *'----1­
-	 : ~ Rood H Road ~ i . ~ ~rire"'7 »)1-1---+_ 

- II I' \'. 1 I I /1 1 
RIW 	 1 I I I . 1 1 I . I 

I I I' 1 1 1 " I . I 
1.-4 I 'I!J I I I & i 

PS_ 1 I I I I I I '\ ! 
I I I I I I I I 

- I I I I '-l I I I Y I 
DS 	 I I I I 1\ I I I !L. ! 

I 1 1 1 1 I' I I I 1 

MSTRB~: I V i 'l i )' II 
I I I I I II I I I 

Figure 9.4 Memory interface signals for a read-read-write sequence of operations 

(Courtesy of Texas Instruments Inc.) 

readiness for the bus transaction. The processor checks the READY signal 
during each bus cycle and completes the bus cycle only when the signal be­
comes logic 1.­

The primary goal of a DSP is to make external memory access as fast as 
possible. The interface hardware introduces. signal delay and thus slows the 
memory accessing. One solution is to design the interface without any device. 
Such an example is shown in Figure 9.5. There is no address decoding to 
generate chip-select signals. This means that the entire addressing space is 
used by just one 8K x 16 SRAM device. For instance, the memory not only 
responds to the address range 0000-lFFFh, it also' responds to all the ranges 
generated by all possible combinations of the unused address bits A13-A19. 
The P'S and DS signals are not combined with the R/W signal to generate the 
WE signal-only PJW is connected to WE. This means that the SRAM is in­
distinguishable as a program or data RAM.. 

One subtle point to remember is tha~ only the program· memory can be 
pa~ed in TMS320C54xxprocessors. The DS pin will never go low above the 
OFFFFh address. Paging in program memory is controlled by the XPC register. 
It allows paging of seven extra address lines in program space. For example, if 
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TMS320C5416 SRAM 

AO-A12 
1~ 

'"' AO-A12/ 

DO-015 

MSTRB 

16:;,­
~ 00-015 

CS 

/ 

." 
R/W 

MPIMC 

OE 

Vee 

GND 

Figure 9.5 An example of a no-decode external memory interface 

A17 of the memory device with storage of 256K x 16 RAM is connected to PS, 
only 192K words can be accessed. This is because 64K words of data memory 
(corresponding to PS high) will be lost, since data memory cannot be paged 
beyond 64K words;program memory can be paged for the full 128K words. 

A disadvantage of external memory is that it may be slower than the pro­
cessor and may not be able to keep pace with the processor. However, it can 
be accessed using wait states to slow the processor for transactions with the 
slow memory. 

A way to access the program memory with zero wait state is to run the 
code from the internal memory. For this, t;he OVLY bit in the PMS'f register 
has to be set. This, however, causes the. internal data memory (SRAM or 
DARAM) to overlap the program memory region, thus reducing the available 
memory space. 

I> Example :9.1 Assuming that the SRAM in Figure 9.5 is to be used to hold a program, how 
many address ranges', exist for the TMS320C5416 processor to access this 
memory? 

Solution The address lines A13-A22 for the C5416 can take any binary value from 
0000000000 to 1111111111. Any Qfthese values combined.with· the specific 
value of AO-A12 generates the address for the same specific location. Since 
there are 10 bits that are doti't cares, there exist 210 or 1024 valid addresses for 
each location. For instance, the first location in the memory can be acce~~ed 
using address OOOOOh, or address 12000h, or address 24000h, etc. Thus, 1024 
address ranges exist for the memory in Figure 9.5. 
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9.4.3 Memory Design Examples 

We now consider some simple examples to illustrate interfacing external 
memory devices with the TMS320CS4xx signal processors. 

I> Example 9.2 Design an interface to connect a 64K X 16 flash memory to a TMS320CS4xx 
device. The processor address bus is AO-AIS. 

RP 

WP 

VPP 

DO-DIS DO-DlS 
28F400B 

AO-AIS 
TMS320CS4xx 


DSP 

DS 
 CE 

MSTRB 
WE

RiW 


MPIMc
Vee OE 
XF 

Figure 9,6 An el<ample of a flash memory interface for the TMS320C54xx DSP 

(Courtesy. of Texas Instruments Inc.} 

Solution 	 Figure 9.6 shows an interface between the TMS320C54xx device and the 
64Kx 16 flash memory [4], The 16 address lines (AO-AI5) are used to ad­
dress the 64K flash memory. Writing into flash memory for programming re­
quires wait states, while reading from it does not. Under program control, XF 
is driven low in the read mlt)de and high in the write mode. In this example, 
external memory does not use the READY signal to interface with the DSJ>. 
Wait states may be introduced by appropriately loading the SWWSRregister. 
The R/W signal is used along with MSTRB to provide the write-enable signal 
to the memory for programming purposes. For reading the memory, MSTRB 
is used along with the XF signal to enable the output of the chip. 
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[> Example 9.3 	 Design a data memory system 'with address rangeOOO800h"':OOOFFFh for a 
CS416 processor. Use 21< x 8 SRAM memory chips. 

DO-DIS ~DO-DIS 

I SRAM 
SRAM 

D8-DIS1\.1\­ DO-D7 
DO-D7 x: DO-D7 

~ 
AO-AJO AO-AI0~ ,I AO-AlO AO-AlO AO-AlO

11 
DS ,.... - -

MSTRB I ."\.J WE ,-WE 

RJW 

I~ oE 8 OE 
-

CS CS 
TMS32OCS4l6 .,.. () ( 

MPIMC 

All 
1 Decode '""' 1· 
I . logieI . 

" 

Vee 

A22 

Figure 9.7 Schematic of a 2K x 16 SRAM memory system for Example 9.3 

Solution 	 Figure 9.7 shows the memory interfaCe. The width of the data bus for memory 
chips is 8 bits, but the width of the data bus for the processor is 16 bits. Hence, 
DO-D7.of the processor is connected to DO-D7 of the first memory chip and 
D8-DIS to DO-D7 ofthe second memory chip to create the 16-bit data bus. 
Output enable and write enable for the memory chips are generated by com­
bining. the DS, MSTRB, and RlW signals of the TMS320CS416 processor. 
Address lines All...;A22are used in the decode logic to generate chip-select 
signals for the memory devices. These must all be logic 0 to generate the chip 
select for th.~ two devices so that the memory responds to the desired address 
range. 

"-'--~'" •..._-_. _. 

http:DO-D7.of
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. [> Example 9.4 Interface an 8K x 16 program ROM to the CS416 DSP in the address range 
. ~ 7FEOOOh-7FFFFFh.· '. 

Vee 

. 1\ ' . 
AO-A12 AO"-'A12 AO..:..A12 . 

v 

.' 

II 16c bit data bus 
DO-DI5 l\r DO-DIS 

TMS320C5416 ROM 
I 

MSTRB ,
PS 

d. ."­ OE 
RIW 7'-" . .. , ., 

MPIMC 
-
CS 
~ 

'.1\ 
l-. 

r 

. A22 -
Decoder l?$ic 

Figure 9.8 Schematic of an 8K x 16 ROM memory interface circuit for Example 9.4 

Solution 	 Da~aflow takes place in only one direc~iou' whil~interfacing a ROM to a pro­
cessor. Hence, genenltingonly the output-enable signal is required for the 
memory device. Address lines A13-A22 a~e used to generate the chip-select 
control signal. Figure 9.8' shows the meIUory interface. 

: .,' r;".. 	 . 

9.5 Parallel.I/Olnteriace 


Parallel 1/0 ports are used for interfacing external deviCes, such as AID and 
D/A converters, to the DSP processor. Accessing I/O ports requires the use of 
PORTRand PORTW instructions. The'PORTR (port read) instruction is used 
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Add='=* ::: * : : : *: : :*=

I I 

( 
L-l II 1 I I 1 J I 1 

Data 

I 1 r----r I I' I' I ' I' I 11 Ir 

.,... I I 1 I, \ I I I j,l I I I 
RIW 	 I 1 I 1 I I I I I I I 

I ,I 1 I I I I I I I I I I 
_--{ I I I I I 1 I I, I 1 1 Y­
IS 1 I' I I I I I I I I I Jf 


I I I I· I I I I I I I I I
- HI 1'1 I I I II In 

IOSTRB I I I, I '\ I I I '\ I I 

II I I I I I I I I I . I I 

CLKOUT 
1'--' I 1'------' I I'--' I 1'--'I I'--' I I'------'I I 

Figure 9.9 I/O interface signals for a read-write-read sequence of operations 

(Courtesy of Texa,s Instruments Inc.) 

to read a peripheral connected to an input port. The data so read is placed in 
the specified data memory location. Similarly, the mstruction PORTW (port 
write) is used to ,send the contents of the specified data memorvlocation to an 
output port. 

The timing diagram in Figure 9.9 shows the signals that are involved in an 
I/O transaction. This timing diagram is similar to a memory timing diagram 
except that a few different cqntrol signals are involved. The processor uses the 
IS signal to indicate an I/O ,operation. At least two dockcydes are required 
for performing the I/O read and write operations. During these operations, the 
IOSTRB signal remains low. This signal can be used to. control the output 
enables of the external devices used to implement the I/O ports. Similar to 
a memory interface circuit, wait states can be inserted to interface slow 
peripherals. 

We talk about three types of parallel 110. operations ,with a processor. These 
are unconditional I/O, programmedllO, and interrupt 110. Unconditional I/O 
is the simplest of the three types. This technique is us~ with devices that do 
not Jtave any handshake signals. Programmed 110 and interrupt I/O are more 
sophisticated approaches, as these involve special signals and capabilities. In 
the next two sections, we discuss details ?fthe programmed and interrupt 110. 
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9.6 Programmed 1/0 

TMS320C54xx 

In this method, the CPU,keeps polling the external device until it is ready for 
transmitting or receiving data. Software polling is used in programmed I/O to 
ascertain the readiness of the e1tternal device for a data transfer to or from the 
processor. C54x:x devices have dedicated pins for this purpose. Control signals 
are sent and received via, these pins by software. In addition, C54x:x has two 
registers, named GPIOCR and GPIOSCR. GPIOCR is a general-purpose I/O 
register that is used to program the signals for I/O interfacing. GPIOSCR is a 
status register used to read the status of the handshake signals. Although these 
dedicated pins vary from one device to another, every version .of the C54x:x 
family has at least two dedicated pins for performing the I/O operations •. 
These signals, as shown in Table 9.1, are BIO and XF. BIO is an input to the 
processor and XF is the output. 

Using software, BIO can be used to monitor the status of an external 
peripheraL The XF signal is' used' to control the peripheral. This mode of 
communication using BIO and XF signals is asynchronous and is helpful in 
making the processor communicate with devices that are slower than the 
processor itself. Data length can be 8 bits or 16 bits. On detecting a low 
the processor reads the peripheral data using the PORTR instruction. In turn, 
it informs the peripheral via XF about the completion of the transaction, 
allowing the processor to initiate the next transfer. 

Figure 9.10 shows an example of an interface between an AID converter 

AJD converter 

AO-A15 
·tOR3 

RDIS 
FJW 

Analog signal 
DO-DI5DO-DI5 
,. 

SOCXF 

BIO 

SOC-Start Of Conversion 

EOC-End Of Conversion 


Figure 9.10 An AID converter interface in the programmed 1/0 mode 
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, Set XF'=1, wirit, set XF == 0 
, (Start ADC) . 

No 

Yes (ADC is done) 

Read, sample from 'ADC, store, , 
, process, and save ,processed sample 

I 

Wait for sampling interval 

Figure 9.11 	 Flow chariof the diagram for software polling for the programmed 110 interface 
of Figure 9.10 

and the TMS320C54xx processor in the programmed I/O mode. Notice that 
XF is used to start the AID conversion and BIO is used to determine its com­
pletion before the data is read. 
, The ftpw chart of the algorithm to implement the:! software polling used by 

the processor to communicate with the AID converter is shown in, Figure 9.11. 
The critical consideration in the implementation of this scheme is to control 
the time between any two consecutive XF or SOC pulses. This time is the 
sampling interval and must remain constant for all samples. 

9.7 Interrupts and 1/0 

An interrupt is the signal that' a nsp prOcessor receives requesting it to exe­
cute a specific interrupt subroutine called a service routine. If certain con­
ditions'are satisfied, the processor suspends its current program and branches 
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to execute the interrupt service routine. It resumes its previous activity after 
completing the service routine. Interrupt signals can be external or internal to 
the processor. Typically, these are requests for data exchange between the 
processor and a peripheral, such as a convertet or another processor. 

. An interrupt request initiates a special processing by the processor. The 
request may be in the form of an electrkal signal applied to the processor 
or may be by execution of an interrupt instruction. An interrupt instruction 
initiates what is called a software interrupt. The electrical interrupt signal 
initiates a hardware interrupt. 

The table in Figure A;lO in Appendix A, called an interrupt vector table, 
lists all the interrupts that TMS320C5416 is capable of handling. As can be 
seen from the table, interrupt numbers are assigned· to on-chip peripherals 
and to interrupt request signals. Each interrupt is assigned a priority and a 
memory location in the table. Priority is used to service the interrupt with 
higher priority when two requests are received simultaneously. The interrupt 
locations are used to branch to the service routines. 

An example of a software interrupt is the instruction SINT18. In the 
TMS320C5416, this corresponds to software interrupt #18. The program 
counter branches to the software interrupt #18 at address location och. After 
executing the subroutine, it gets back to the suspended program. Hardware 
interrupt requests come from devices both external and internal to the pro­
cessor. For instance, timer interrupt is an internal hardware interrupt; whereas 
INT2 is an external hardware interrupt. 

Interrupts are also c1assifiedas maskable and nonmaskable. Maskable in­
terrupts are the ones that can be masked by software; and as a result, the 
CS4xx DSPjgnores the. requests for these interrupts and continues with its 
current task.. However ·nonmaskable interrupts cannot be masked and the 
processor has to service these requests; In the case of the TMS320C54xx pro­
cessors, the hardware interrupts RS and NMI are nonmaskable interrupts. 

9.7.1 Handling of Interrupts 

A flow chart of the interrupt handling by the C54xx processors is shown in 
Figure 9.12. Interrupt handling is done in three phases: receiving the interrupt 
request, acknowledging the interrupt request, and executing the interrupt ser­
vice routine. 

Servicing an interrupt depends on the pending interrupt status indicated by 
the bits of the memory-mapped register IFR (interrupt flag register), masked/ 
unmasked status as indicated by the corresponding bit in the memory­
mapped register IMR (interrupt mask register), and the global enable INTM 
bit in the status register STI. The memory-mapped register IFR has bits cor­
responding to various interrupts. Whenever an interrupt request is made, the 
corresponding bit in IFR is set until the CPU recognizes the interrupt. IFR 
. shows the pending external and internal interrupts. IMR is a register that is . 
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Interrupt service routine run 

Return instruction restores PC 

Figure 9.12 A flow chart of interrupt handling by the processor 

(Courtesy of Texas Instruments Inc.) 

used for masking external and internal interrupts. An interrupt is unmasked 
by making 1 the corresponding bit in the IMR. The INTM bit in STl enables 
or disables all interrupts globally~ If INTM is 0, the, processor does not recog­
nize any maskable interrupt. ­



TMS32OC54xx 

9.7 Interrupts and 110 ~$1 

As the processor receives the 'int~~rupt. request, the corresportcl.ing·bh in 
IFR is set high. An interrupt request is acknowledged depending upon certain 
conditions. First! if the interrupt is nonmaskable. it is acknowledged immedi­
ately. Maskable interrupts are first checked for priority. and then the INTM bit 
in the STI is checked to see if all the interrupts are globally enabled. The cor­
responding bit in IMRis then checked to see if it is masked or not. If the 
INTM is 0 and theIMR mask bit is 1. the processor sends acknowledgment by 
nieansof the lACK signal. 

To service the intetrupt, the program counter's ctirr~rit contents are pushed 
into the stack. This provides the mechanism for the execution to return to the 
interrupted program. The INTM bit is set to 1 to disable interrupts during the 
service routine. The instruction execution control transfers to the interrupt 
request location in the intefrupt vector table. In the interrupt vector tabie, 
we write it branch instruction to transfer. the execution control to the corre­
sponding interrupt service routine (ISR). After completion of the execution of 
the ISR; the saved contents of the PC are popped from the stack and 1001d~d 
back onto the PC. In this way, the CPU then starts executing the suspended 
program. Also, the return instruction in the semceroutine re-enables the 
mterrupts by clearing the INTM bit. . 

TLC1550 

T:; r-=r;: I:ART 
CLKOUT I ...1eLKIN 

DO-D9 

IOS1RB' • " 

.-----11 RD 

es 
DO-D9 

ADC 

DO-D7 
WR 

Analog In 

DAC 
OUTl "< • I 

Address ~I10Addressl. Ies ,/ 
AO-Al5 'r---vl Decoder IOW07H TLC7524 

OUT2 ,,'£'''---,--; 

~FB 

Figure 9.13 Circuit for interfacing TlC 1550 (ADC) and TLC7524, (DAC) to the TMS320C54;xx 
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!> Example 9.5 Interface the TMS320C54xx to a IO-bit ADC (TLCI550) and an 8..:bit DAC 
(TLC7524): The sampled signal read froIn theADC is to be written to the DAC 
after adjusting its size. The start of the conversion is to be initiated by the 
TOUT signal ofthe timer~ 

Solution The ADCand the DAC <;an be connected to the DSP as shown in Figure 9.13. 
, ' 

The rate Of generation of TOUT is the sampling frequency for the ADC. Con­
version is initiated by TOUT, and as s()on as it is completed, INT goes low and 
the DSP receives the interrupt request on INTI. DSP suspends its current 
program and services the interrupt by initiclting the execution of the ISR for 
INTI. The interrupt service rou,tine involves the reading of the sampled data 
from the port for theADC data,and writing it to the portJor the DAC. Before 
writing the data to the output port,it is shifted to the (ight by 2 bits, because 
the output from the ADC is a lO-bitwo:r;d, whereas the DAC can receive only 
8-bit .words. 

Enter to service 
Start ,the Ihtell1lpt 

Disable Interrupts 

Process the sample 

Save processed sample 

'Return from 
Interrupt 

(b)(a) 

Figure 9.14 	 Flow charts, for the main program (a) and the interrupt service routine (b) 
for Example 9.5 

~-- .._--­
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***************~;*****,********,****,*****,,,,*******************'11**************************** 

* 
* PROGRAM FOR EXAMPLE 9.S (File: ex9pS.:asm) 
* 
* DESCRIPTION: 	 This CS4xx program reads an tnput signal applied to theADC and outputs 
* 	 it to the DAC. The ADC is,read and the data is written to the DAC in 
* the interrupt service routine for INTI. 
* 
* AUTHOR: 	 Avtar Singh, SJSU 
* 
*****************************,*****************************r-li,*****************'******,***** 

.ref _c_intOO 

.mmregs memory mapped reg definitions 
: .: 

buffer: .bss sample, 1 data buffer 

. text 
c intOO: 

stin #OxOSOO, sri i nit SP to OxOSOO 
ssbx nUM " ; disable all interrupts 
call init_DSP init DSP processor 
call init timer i nit timer 

,stm #OxFFFF. IFR clear any pending interrupt 
orm 10002h, IMR unmask INTI interrupt 
rsbx INTM' enable'all interrupts 

wait main: 	 ;You may insert code'here to be executed during interrupt wait 
b wait_main " ; wait for ,an INTl interrupt' 

;~--------------------~-~-~---------~--------~-------------------------------------~~-~
Processor Intialization Routine 

-------.----------------------------------------------.------------------------------­
PMST VAL .set 00A0h Interrupt vect at 80h, 

MP/(MC*) = 0, OVLY = 1 
BSCR VAL .setOOOOh 64K mem bank, no extra cycles 

between consecutive reads 
SWWSR VAL .set 2000h ; I/O wait states = 2 clocks 

.text 
init DSP: 

ld 10, DP 'nata page 0 
stm 10, CLKMD 
stm #0, CLKMD 
stm IOx4007, CLKMD Processor speed Sxcrgst.Freq. 

Figure 9.15 Program.for Example 9.5 	 (continued) 
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stro #PMST_VAL. PMST Init Processor Mode Status Reg 
stm #BSCR_VAL. BSCR Set Bank Switching Wait States 
stm #SWWSR~VAL. SWWSR Set S/W Wait State Reg 
ssbx OVM Saturate on overflow 
ssbx SXM Select sign extension mode 
ret .Return 
nop 

nop 


;~---.-----------~---------------------------------.------------~~-~~--------------~--~ 
.; Timer Initialization Routine 
; Timer out (TOUT) frequency = CPU Clock/(PRO+l) = sampling freq 
; .. __ .... ...... __ .. ______ - __ .... __ .... _ .. __ - ___ .... _"'!" .... __ .. _ .................... "'!' ______ ...... _.l. ...... _ .... __ .. ___;....... _ .... ___ .. _ .. __ .... __ .. ......
_~ _ 

PRO value .set 9999 '. PRO value for 8 KHz TOUT 
TCR_value .set 0000 TCR value to start timer 

.text 
;nit_timer: 

stm PRO_value. PRO init PRO register 
stm TCR_value. TCR start the timer 
ret return 
nop 
nop 

, ' ," - . ~ -'._---------------------------------------------------- -------------------~-------~-----
; Interrupt Service Routine 
• This reads the 10-bit AOC sample. converts it to an 8-bit sample an~ 

; writes it to the 8-bit OAC. . 


;--------------------~--------r~-------"'!"-------~-~-------------"'!"-----~--~-----------~--
AOC_Oata_In .set 05h AOC data-in I/O address 

OAC~Oata_Out .set 07h ; OAC data-out I/O address 


.text 
INTl_ISR: 


portr AOC_Oata_In. sample read the AOC data 

id sample. -2. A convert 10-bitdata to-8 tit 

st.,l A. sample save as 8-bit data 


Place for any OSPalgorithm 

portw sample. OAC_Oata_Out ;. write data toOAC 
ret ;. return' 
nop 
nop 

Figure 9.15 Continued 
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----------_............... -- ... --- ' .. _--_ ... ----_... --- ... --_ ... ---_ ............... --------_ ...... ---'---_ ... --_ ... -_ ... _... --... -_ ......... 

Interrupt Vector Table 

----------~---~-----------------------------------------------------------------------
• sect " • vectors '!, 

RESET: B ntOO Reset vector 
NOP 
NOP 

NMI: RET Nonmaskable Interrupt vector 
NOP 

,NOP, 

NOP 
.space 4*15*16 Space for unused vectors, 

INT1: B INTl ISR INn Vector 
NOP 
NOP· 
.space 4*12*16 Space for unused vectors 

.end 
r " 

Figure 9~15' " Continued 

Figure 9.14(a) and 9.14(b) show the flow charts ot the main program and 
the interrupt service routine, respectively. Figure 9.15 shows the program for 
the application. Notice in the program that we need to initialize the processor 
and the timer-. The timer is initialized for generating the TOUT signal at the 
sampling frequency. We also must set up the, interrupt vector table to servi~e 
the INTI request, As shown in the program, the service routine uses a mem­
ory location "san;lple"to save the sample value before sending it to the DAC. 

9.8 Direct Mern~ry Access (DIVI~) 

Direct memory access (DMA) is the method of data transfer between regions 
in the memory space, or between memory and a peripheral, without any in­
tervention by the CPU; Transfer of data can he to and,from internal memory, 
iJ1ternal peripherals, or external devices. DMA works in the bacltgrotind of the 
CPU operation. ADMA controller, which may be a part ,ofthe DSP device, 
manages the DMA operation. In this way, the' DMA speeds t:J.pthe overall 
processing as the two activities; signaItransfel( and the processing in the CPU, 
are carried out simultaneously. . 

TMS320C54Xx: devices have up to six' independent programmable DMA 
channels for direct data transf~r.Each channel connects a source location 
and a destination location, Therefore, six different source locations can be 
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connected to thecorrespondirig six destination locations. However; at a given 
time during the DMA operation, only one of the six channels can be used for 
signal transfer. Each· channel has to be enabled before it qU1 be used and each 
is assigned a priority. A high-priority DMA channel is serviced before a low­
priority channel if they both request service at the same thne. When multiple 
channels are enabled and have the same priority level, then the enabled 
channels are serviced in a circular pattern. As transfer of data involves read 
and write operations, it is necessary to specify the source and destination 
address locations for each channel separately. Transfer is in the form of blocks 
of data where each block consists of frames. Each frame consists of data ele­
ments, which can be 16 or 32 bits each. The sizes of the. block, ftame, and 
elements are programmed for each channel. DMA transfer for a channel can 
be programmed to be triggered by some specific event,' such as the transmit 
interrupt. 

The total number ofCPU dock cycles required to complete a DMA transfer 
depends on the source and destination locations, external interface conditions 
such as wait states and bank-switching cycle etc., and the number of active 
DMA channels. A single data element transfer between'two internal memory 
locations takes four CPU d,ock cycles, two cycles. for read and two for write. 
In cases where external access is required, data transfer depends on the ;con.­
ditions of the external interface. 

9.8. r DMA Oper~tion Configuration 

Prior to transfer of data, the DMA registers have JO be configured suitably. 
Configtiration involves'spedfyingdetans such as which channel is to be used 
for transfer, mode of transfer, sourc~ and destination addresses, assignment 
ofprloritiesto different channels, and the.Sizesoftheblock, frame, and data 
element. A number ·of registers need to be programmed with configuration 
information. These registers along with their addresses are shown in the table 
of Figure A.9 in Appendix A. '. _ , _ . 

The most important registers tobe configured ~re the DMA channel pri­
ority and enable control register (DMPREC) and the channel context registers. 
The 16~bitPMPREC controls the enabling of the DMA channels and channel 
priorities. Six bits of this register are used to ~ssign channel priorities and 
another six to enable each-of the channels; , . 

Each DMA.channelhas a 'setoffive channel context registers to c.onfigure 
the, operation of that .channel .• These are the channel source address register 
(DM8SEC), the channel destination address register (DMDST), the channel 
element count register (DMCTR), the channel sync select and frame count 
register (DMSFC), and the channel transfer code control register (DMMCR). 

The DMSRC and DMDSTof each channel hold the source and the des­
tination addresses, respectively, for that channel. The DMCTR holds the 
number of data elements to be transferred in a frame. The DMSFC determines 
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which synchronization events will be used to trigger the DMA transfers, the 
word size (16 bit or 32 bit) for the transfer, and the frame count. The DMMCR 
is, a 16-bit register that controls the transfer mode and is used to ipecify the 
sou.rce and destination spaces, such as program memory,data}llemory, or 1/0 
spa.ce. The user s~oUld consult the Reference Set to determine the contents to 
be programmed into the DMFC, DMMCR, and DMPREC registers [2]. 

9.8.2 Register Subaddressing 

",Register subaddressing is the technique used for configuring the DMA reg­
isters. As shown Figure 9.16, the stack of subaddressed registers is the set of 
DMA registers. To configure 'a DMA register, its code for configuration is 
loaded onto one of the two subbank ac;cess registers (DMSDI or. DMSDN). 
'Each DMA register has a unique subaddress. 'rhe'subaddress of the DMA 
registerto'be configured is loaded into the·subbank address register (DMSA). 
This directs the multiplexer to connect the subbaxik access registers (DMSDI 
of DMSDN) to the desired physical location, as shown in the figure. DMSDI is 
used when an automatic increment ofthe subaddless.is required after each 
access. Therefore, DMSDI can' be used to configure the entire set of registers. 
DMSDN is used if a single, register access is desired. In this manner, just 
two memory-mapped registers, DMSPI and DMSDN, enable the user to have 

, al=cess to all DMAregisters, However, addressing becomes a two-step process, 
one to setup the DMSA a,nd the othe,r totead or write to eitherDMSDN .or . 
DMSDI. 

/'" 

SUBBANK {
ACCESS • 
REGISTERS 

I ,DMSDI I .... '" ... 
" .... 

'r-+-

'" ... 

I DMSDN : .... '" '" 

l ' 
I DMSA I 
SUBBANK 
ADDRESS' 
REGISTER' 

.......--
'-""" 

... 

, 

:::;::::::: 
Subaddressed 
registers 

figure 9.16 Register subiilddressing technique fo'rconriguring DMA operation 

(Courtesy of Texas Instruments Inc.) 

http:subaddless.is
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[> Exampi'e 9.6 ' 	Write code to show how the. DMA channel 2 soUrce address register can be 
initialized with the value lilih. ' 

Solution 	 Since a single register is to ,be modified, subbaIik register DMSDN can be used. 
The TMS320C54xx code to achieve this IS as follows: . 

OMSA .set 55h ; subbank ~ddress register address 
OMSON .set 57h ; subbank , . 

access . register address -. 
OMSRC2 .set OAh f;' ~ubaddress 

STM OMSRC2, OMSA ; OMSA = address of OMSRC2 
STM #l1llh, OMSON "~write llUh to DMSRC2 

I> Example .9.7 Write TMS320C54xx code tosho~ how the DMA channel 5 context registers 
can be ·initialized. Choosearbitr.aryvalues to be written to the registers . 

• ,< ". ." • . 

Solution Since. this isa case ofconfigqripg a set of registe,rs, a subbaIik access register 
withautojncremept CQMSPI) is llsedin this example. The code to achieve 
this is as follows. Note that only.first subaddress in the sequential addresses of 
the context registers is needed. ,; . 

OMSA 
OMSOI 
OMSRC5 
OMOST5 
OMCTR5 
OMSFC5 
OMMCR5 

.set 

. set 

.set 

.set 

.set 

.set 

.set 

55h 
56h. 
19h 
IAh 
IBh 
ICh 
lDh 

subbank address register address 
subbank access register address 
subaddress Of OM$RC5 

STM 
STM 
STM 
STM 
STM 
STM 

OMSRC5. OMSA 
#2000h. OMSOI 
#3000h, OMSOI 
#OOIOh, .DMSDI 
#0002h, DMSDI 
#00001), DMSDI 

; OMSA = first sub address 
; write 2000hto OMSRC5 
; write 3000h to DMOST5 
; write 10h toDMCTR5 
; wri tE!' 2h to DMSFC5 
: write Oh to DMMeR5 

I> Example 9.S. 	 Write a TMS320C54xx code to transfer a block of data from the program 
memory to the data memory. Following are the specifications: 

Source address: 26000h in program space (extended memory page 2) 

Destination address: 07000h in data space 

Transfer size: 1000hsingle (16-bit) words 
: 

Channel use: DMA channel #0 
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Solution - The following code assumes that DMA registers have been defined with ap­
propriate directives. 

STM DMSRCP. DMSA ; _set source program page 
STM #2h, DMSDN 
STM DMSRCO, DMSA ; set source program address to 6000h 
STM #6000h, DMSDI DMSA points to DMDSTO 
STM 	 #7000h, DMSDI ; set- destina~ion address to 7000h 

DMSApoints to DMCTRO 
STM #(lOOOh-l), DMSDI set for lOOOh transfers 

DMSA poi nts to DMSFCO 
STM 1I00000h, DMSDI configure DMSFCO 

DMSA points to .DMMCRO 
STM 1I00l05h, DMSDI configureDMMCRO 

DMSA points to DMSRCO 
STM 	 1I00l01h, DMPREC ; configure DMPREC 

9.9 Summary 

In this chapte~, we looked at the signals for parallel interfacing of memory 
and peripherals and studied various interfacing circuits for memory and data 
converters. _Under memory interfacing, we considered -various memory op­
tions such as SRAM, ROM, and flash. We also studied various types of I/O 
interfacing methods, including programmed I/O, interrupt I/O, and direct 
memory access. 
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Assignments 

1. 	 What is the range of addresses that can.be decoded if A19 is pulled low in a 
processor with 20 address lines? 

2. 	 Up to what limit can the program memory be. extended in a processor with 20 
address lines? How must the extended-memory be organized for addressing 
by a C54xx processor? 

3. 	 How many address lines are required to access' all locations of an 16K x 16 
SRAM? 

4. 	 If TMS32GC54xx is reading a memory word operand from address FFFOOh in 
an SRAM, specify the logic levels of the following signals while the read oper­
ation is being performed: AO-A19, R/W, DS, PS, IS, MSTRB, and IOSTRB. 

5. 	 Design a circuit to interface a 4K x 16 and a 2K x 16 memory chip to realizE 
program memory space for the TMS320C54xxprocessor in the address ranges: 
03FFFFh-03FOooh and 05F800h-05FFFFh, respectively. 

6. 	 Design a circuit to interface 64K words of .the program memory space from 
OFFFFFh to OFooooh for the TMS320C5416 processor using 16K x 16 memory 
chips. 

7. 	 Write an assembly language program for the system in Figure 9.10 using the, 
programmed 110 approach as shown in the Figure 9.11. 

8. 	 Describe methods to implement the signal-processing subroutine block in 
Figure 9.11 so that a uniform sampling interval can be realized. 

9. 	 What are the various classifications of interrupts for the TMS320C5416 pro­
cessor? 

10. 	 How does the interrupt handling in the TMS320C54xx DSP differ for a soft­
ware and a hardware interrupt! 

11. 	 Redraw the circuit of Figure 9.13for a 16-bit ADC and a 16-bit DAC. Use INt~ 
for the signal sample transfer. 

12. 	 Write a program for the circuit of Problem 9.11. Let the sampling rate be, 
'll4096th of the processor dock. The DAC output (at the same sampling rate) 
is to be generated by averaging the immediate four input samples as received' 
from the ADC. 

,13. 	 How does DMA help in increasing the processing speed of a DSP processor? 

14. 	 For TMS320C54xx DSP operating at a clock frequency of 100 MHz, how many 
16-bit data elements can be transferred between two internal memory: loca­
tions per second in the DMA mode? . 

15. 	 Write a TMS320C54xx code to initialize the DMA channelS destination reg­
, ister 	to #5555h without using auto increment. Rewrite the code using auto­

increment for the saine operation. 
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16. 	 Write a TMS320C54xx code to transfer a block of data frolD the program 
memory to the data memory. Following are the specifications: 

Source address: 6000h in program space 

Destination address: 8000h in data space 

Transfer siZe: 800h single (16-bit) words 


Channel use:· DMA channel #1 




Chapter 10 
Interfacing Serial Converters to a 
Programmable DSP Device, 

1O. 1 Introduction 


In the preVious chapter, we studied the parallel peripheral interface of pro­
grammable DSP devices. In a DSP system, in addition to the parallel interface, 
there is provision to interface serial peripherals. In the serial interfacing mode, 
data transfer takes place bit by bit. The serial data transfer may be synchro­
nous or asynchronous.' Synchronous serial transfer allows faster data com­
munication but requires a clock signal as the timing reference. 

In this chapter, we study the synchronous serial interface as provided in the 
TMS320C5416 DSP. This device provides three muitichannel buffered serial 
ports (McBSP). We also study how to·interface the DSP to an audio CODEC 
PCM3002 that provides a serial analog-to-digital converter (ADC) and a serial 
digital-to-analog converter (DAC). This is the device-that is used on the C5416 
DSK board. Specifically, the following topics are ,conSidered: ' 

SYI4.chronous serial interface 

A multichannel buffered serial port (McBSP) 

McBSP programming 

A CODEC interface circuit 

CODEC programming 

A CODEC-DSP interface example 

10.2 Synchronous Serial Interface 

The synchronous serial interface of the C54xx DSP [1] allows it to communi­
cate with the serial peripherals. Suchan interface is shown in Figure 10.1 for a 
device called an analog input/output CODEC. The CODEC consists of AID 

262 
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C54xx CODEC 

..DX .. PIN 

DR DOUT 

FSX FS*
IFSR 

CLKX SCLK 
I

CLKR 

Figure 10.1 Synchronous serial interface between the C54xx and a CODE.,C device 

and D/A converters. The signals used in the interface are sh~wn in Figure 10.1. 
On the DSP device theDX data line transmits the serial data to the CODEC, 
and the DR receives it from the CODEC. The receive data is timed with refer­
ence to the clock signal CLKR, and the transmit data with respect to the clock 
signal CLKX. The. start ofthe respective data (the first bit) is synchronized to 
the frame sync signals FSR and FSX. Similar to the DSPdevice, the corre­
sponding signal pins are provided on the CQDEC device. 

Figure 10.2ta) is the timing diagram for the receive operation for the inter­
face. Data reception starts with the FSR pulse. A bit is received.for each clock 
pulse of the CLKR. After receiving all bits,. 8 in this case, the processor gen­
erates a RRDY signal to indicate. that the word of data is ready in the data 
receive register of the serial port. The status signalRRDY can be read by the 
processor to determine if ~ word of data has been received. . 

Similar to receive timing is the transmit timing shown in Figure lO.2(b). 
. Here the transmission starts with FSX and the completion.is indicated by 
XRDY changing from'logic 0 to logic 1: The XRDY indicates. that the pre­
viously placed data word has been transmitted and the port is ready to trans- .. 
mit the next word, if so desired. 

http:completion.is
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I 
CLKR 

I 
. RRDY I I' 

RBRl to DRRl copy(A) Read from DRRl(A) RBRI to DRRl copy(B) Read from DRRl(B) 

(a) 

Figure 10.2(a) Receive operation timing for the SSI 

(Courtesy of Texas Instruments Inc.) 

DXRl to XSRl copy(B) Write to DXRl(C) DXRl to DXRl copy(C) Write to DXRl 

(b) 

Figure 10.2(b) Transmit operation timing for the SSI 

(Courtesy of Texas Instruments Inc.) 

10.3 A Multichannel Buffered Serial Port (McBsP) 
, 

McBSP is a full-duplex synchronous serial port. Three such ports are provided 
on the TMS320C5416 DSP. McBSP can be used to interface synchronous serial 
peripherals such as a CODEC. The block diagram of Figu.re 10.3 shows the 
structure of this port. We will briefly discuss the McBSP here. For detail~, the 
reader is advised to read the manual referenced at the end of this chapter [2]. 

The incoming data enters the port through the DR line into the receive 
shift register, RSR, where it is assembled into a word that is transferred to re­



Clock and 
frame-sync 
generation 
and control 

Multichannel 
selection 

SPCR 

RCR 

SRGR 

PCR 

MCR 

RCER 

XCER 

""----"~--~ ~~. -------­

10.3 A Multichannel Buffered Serial Port (McBSP) 265 

XINT. "" Interrupts to CPU RINT~ 

}" Synchronization~~~ 
REVTA ---t--+ events to DMA 

XEVTA -++ 

Figure 10.3 Block diagram of the McBSP of C54xx 

(Courtesy of Texas Instruments Inc.) 

ceive buffer register, RBR. From the buffer register it is transferred to the data 
receive register, DRR. The DSP processor reads the data from the memory­
mapped register DRR using an internal peripheral data bus. The port informs 
the processor about the data in DRR using receive interrupt request, RINT, or 
using the DMA signals. The DRR status is recorded in the serial port control 
register 1, as the RRDY bit, so that the processor can determine when the data 
is ready for transfer. The DSP can send the data to the outside world using the 
memory-mapped data transmit register, DXR. The data written to DXR is 
transferred to the transmit shift register, XSR, for shifting out 1 bit at a time. 
The port informs the processor about the data in DXR using transmit inter­
rupt request,XINT, orusing the DMA signals. The DXR status is recorded in 

"the serial port control register 2, as the XRDY bit, so that the processor can 
determine when the data has been transmitted. 

nR~ 

DX"~ 

CLKX 
CLKR 

FSX 
FSR 

CLKS 

16-bit 
peripheral 
bus 
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There are six memory-mapped registers associated with each port. These 
registers with their addresses ~re shown in the table of peripheral 'memory­
mapped regis~ers in Appendix A. Each register is of 16-bit length. There are 
two receive registers to enable re~eived data lengths up to 32 bits. Similarly, 
there are two transmit registers for each port. There are two more registers­
SPSA for address and SPSD for data-associated with each port. It is by using 
these two registers that we can access subbank control registers for program­
ming the serial port. The control registers are shown in the table for McBSB 
control registers and subaddresses in Appendix. A. For instance, to write data 
to receive control register 2 (RCR22) of McBSP2 whose subaddress is OXO003h, 
we write OxOO03h to register SPSA2 at memory address Ox0034h and the data 
to memory-mapped register SPSD2 at address Ox003sh. A similar sequence 
must be used while reading a subbank register. 

10.4 McBSP Programming 

In order to configure the McBSP, om; needs to write appropriate data to the 
control registers. The functions of the bits of these registers are described in 
the manual (see chapter reference [2]), which should be consulted to pr9gram 
the port. A sample program is shown in Figure lOA. This program configures 
the McBSP2 to work with serial 20-bit input data and serial 20-bit output data 
and will be used in the example at the end of this chapter; -' 

From the· manual and Appendix A, we can see that the control register 
SPCR12 enables or disables the receiver. Similarly, SPCR22 serves to enable or 
disable the transmitter function. The control register RCR12 selects the.20-bit 
data mode for the receiver, and RCR22 specifies that FSR will be used to start 
receiving the data bits. Similarly, the control registers XCR12 and XCR22 se­
lect the corresponding functions for the transmitter. Finally, the PCR2 defin~s 
clocks and frame sync pulses to be external and active high. This registeI also· 
specifies other functions of the pins of the serial port,. as indicated in the pro­
gram of Figure lOA. 

1 0.5 A CODEC Interface Circuit 

The PCM3002 [4]is a device that can be directly connected to the synchronous 

serial port of the nsp. It provides l6/20~bit oversampling sigma-delta AID 


. and D/A converters~ The maximum sampling rate that can be implemented 

with this device is 48 KHz.. Figure 105(a) shows the building blocks of the 

CODEC device. The detailed block diagram of Figure 10.S(b) shows. the inter­

nal .architecture of the }>CM3002. As you can see from the block diagram, the 

device provides stereo ADC and DAG with single-ended voltage input and 

output for the 'left and right channels. The CODEe can be programmed for 
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****************************************************************** 
* 
* initMcBSP2.asm 
* 
* This module initializes .the serial port McBSP2 on the C5416 OSK. 
* 
* Author: Avtar Singh,·SJSU 
* 
****************************************************************** 

. i ric1ude "regs.asm" 

.def initMcBSP2 

* Define the default values for the registers of McBSP2. 

Serial Port Control Register 1 (0010 0000 0010 0000) 

Bitl5 = 0: Oigltal loopback disabled 
Bit14*13 = 01: Right-justify, sign extend 
Bit12~11 = 00: Clock stop disabled 
Bit10-S = 00: Reserved 

.Bit7'= 0: OX enabler off 
Bit6 = q: A-bis mode disabled 
BitS-4 = 10: RINT driven by frame sync 
Bit3 = 0: No sync error 
Bit2 = 0: ·RBRs not in overrun condltion 
Bit!. = 0: Receiver not ready 
BitO = 0: Receiver in disabled and in reset state 

VAL_SPCRI .set 2020h 

Serial Port Control Register 2 (0000 00000000 0000) 

BitlS-10: = OOh: Reserved 
Bit9 = 0: Free running mode disabled 
BitS = 0: Soft mode ~isabled 
Bit7 =0: Frame sync not generated 
Bit6 = 0: Oisablesample rate generator 
BitS-4 = 00: XINT .driven by XROY 
Bit3 = 0: No sync erl'or 

.' 	 Bit2 = 0: XSRs empty 
Bitl = 0: Transmitter not ready 
BitO = 0: Transmitter in disabled and in reset state 

Figure 10.4 A program to initialize the McBSP2 . 	 (continued) 
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VAL_SPCR2 .set OOOOh 

Receive Control Register 1 (0000 0000 0110 0000) 

; ,Si U5 = 0: Reserved 
; Si tl4-8 = 0000000: . 1 word per frall1E! 

Sit7-5 = 011: 20 ·bit receive word 
; S;t4;..0= 00000: Reserved 

VAL RCR1 .• set 0060h 

Receive Control Register 2 (0000 0000 0110 0001) 

Bit15 = 0: Single phase frame 
BitI4-8= OOh: 1 word per frame 
Bit7-5-= 011: 20 bit receive word 
Bit4-3 = 00: No companding 

• Bit2 = 0: Receive frame sync pulses not ignored 
• BiU-O =01: I-bit data delay 

VAL RCR2 .set 0061h 

; Transmit Control Register 1 (0000 0000 0110 0000) 

; BiU5 = 0: Reserved 
; Bit14-8 =OOh: 1 word per frame 
i Bit7-5 = 011: 20 bit transmit. word 
• Bit4-0 = Oh: Reserved 

VAL_XCR1 .set 0060h 

; Transmit Control Register 2 (0000 0000 0110 0000) 

BiU5 = 0: Single phase frame 
Bit14-8 = OOh: 1 word per frame 
Bit7-5 =011: 20 bittrailsmit word 
·Bit4-3 = 00: No companding 
Bit2 =0: Transmit frame Sync.pulses not ignored 
BiU-O = 00:. O-bit data delay 

VAL_XCR2 .set 0060h 

Pin Control Register (0000 0000 0000 1100) 

Figure 10.4 Continued 
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Bitl5-14 = 00: Reserved 
Bit13 = 0: DX, FSX, and ClKX are serial port pins 
Bit12 = 0: DR, FSR, ClKR, and ClKS are serial port pins 
Bit11 = 0: External transmit frame sync 
Bit10 =0: External receive frame sync 
Bit9 = 0: External transmit clock 
Bit8 0: External receive clock 
Bit7 = 0: Reserved 
6it6 0: ClKS status 
Bit5 '" 0: DX status 
Bit4 - 0: DR status 
Bit3 = 1: FSX active high 
Bit2 = 1: FSR active high 
Bitl = 0: Transmit data sampled on rising edge of CLKX 
BitO 0: Receive data sampled on rising edge of ClKR 

VAL PCR .set OOOCh 

* This procedure initializes the McBSP2 for use with the PCM3002 codec 
* on the C5416 DSK. 

• text 

i nitMcBSP2: 
stm ISPCR1, MCBSP2_SPSA . : Disable McBSP2 RX 
ldm MCBSP(SPSD, A 
and 10FFFEh, A 
stlm A, MCBSP2_SPSD 

stm #SPCR2 ,MCBSP2_SPSA ; Disable McBSP2 TX 
ldm MCBSP2_SPSD, A 
and #OFFFEh, A 
stlm A, MCBSP2_SPSD 

stm #SPCR1, MCBSP2_SPSA ; Set SPCR1 
stm #VAl_SPCR1, MCBSP2_SPSD 

stm #SPCR2, MCBSP2_SPSA ; Set SPCR2 
stm IVAl_SPCR2, MCBSP2_SPSD 

stm #RCR1, MCBSP2_SPSA : Set RCRI 
stm #VAl_RCRl, MCBSP2_SPSD 

Figure 10.4 Continued 
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stm 
stm 

IRCR2, MCBSP2_SPSA 
IVAL_RCR2, MCBSP2_SPSD 

: Set RCR2 

stm 
. s.tm 

IXCR1, MCBSP,_SPSA 
IVAL_XCR1, MCBSP2_SPSD , 

: Set XCRl 

stm 
stm 

IXCR2, MCBSP2_SPSA 
IVAL_XCR2, MCBSP2_S~SD. 

; Set XCR2 

stm 
stm 

IPCR, MCBSP2_SPSA 
IVAL_PCR, MCBSP2_SPSD 

; Set -PCR 

ret 

Figure 10.4 

Lchin v 

Rchin 

LchOut 

RchOut 

Continued 

digital de-emphasis. digital attenuation, soft mute. digital loop-back, and the 
power~doWn mode for the ADC and the DAC. ' 

An analog signal is applied to the combination of a delta~sigma modulator 
and a decimation filter to convert it to Ii. corresponding digital signal. The 
input signal is salnpled at a 64X oversampling rate, eliminating the need for 
a sample-and-hold circuit and also simplifying the need for an antialiasing 
filter. A. decimation filter is used to reduce th~ digital data· rate t!) the sampling 
rate before generating ~e output bit~tream. A bighpass filter removes the',dc 
components of the signal. 

The delta-sigma modulator in conjunction with an interpolation filter 
forms the DAC, which converts the serial digital signal to the correspon9ing 
analog signal. The interpolation filter is used to increase the sampling tate :to 

--=.o!' Qigiml'Out 

Modulator 


Delta-Sigma 

Serial Interface Digitalin 
and 

Mode Control Multilevel Serial Mode Control Delta-Sigma 
Modulator , System Clock 

(a) 

Figure 10.5(a) Block diagram for the PCM3002CobEC 

(Courtesy of Burr-Brown Corporation) 
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(2) DEMO, DEM!, 20BIT, PDAD, and PDDA are for PCM3003 only. 

(b) 

Figure 10.5{b) Details of the PCM3002 CODEC 

(Courtesy of Burr.....Brown Corporation) 

the one needed by the modulator. The converted signal is filtered with an 
analog lowpass filter to generate the analog output. 

AS shown in the Figure.IO.5(b). there are two distinct parts of the CODEC 
device: one tQ handle the serial data ttansfers. and the other for its initializa­
tion and to set it to work in the desired mode. The two blocks. the serial data 
interface and the mode controlinterface. handle these two functions. 

A block diagram of how th:e PCM3002 CO DEC device is used in the C5416 
DSK board is shown in Figure 10.6. The CPLD on the DSK provides the system 
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IIPl 

12.288 MHz ~ 
OsdUator 

TMS320VCS416 ft PCM3002 .... 
. "'1 Mux DIN 

McBSP2 .. ... DOUTData Interface.... L ,.... 
... LRCIN 

DSPBus ~ ':: 
BCLKIN...
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., 
V 

CPLD 
.... SYSCLK... 

/ .... Control/ ... 
ML,MC,MD Interface 

Figure 10.6 Block diagram showing the PCM3002 interface to the TMS320VC5416 in the DSK 

(Courtesy of Spectrum Digital Inc.) 

dock and the other timing signals for the mode control interface. It also con­
'trois the choice of using the McBSP2 port on the DSP for connection either to 

the host PC (HPI) or to the PCM3002. The CPLD has User-accessible registers 
that can be loaded to define ~ various parameters of the CODEC. data and 
control interfaces [3]. 

The system dock for generating various timing signals for the CODEC is its 
SVSCLK. This clock must be 256/s, or 384fs, or 512/s, where /s is the sampling 
frequency. The CODEC detects the system clock and uses it to generate the 
internal clo<::k at 256/s for the digital filters and delta-sigma modulators. In 
the C5416 DSK board, the SYSCLK is supplied by the CPLD-generated dock 
CODEC_SYSCLK, which is generated from the 12.288 MHz CODEC_CLK. 

The data interface of the CODEC and the DSP is by way of DIN for data 
input, DOUT for data output, BCION for data bit dock, and LRCIN for frame 
sync signal for the left and: right channels. The data bit dock and the frame 
sync signals are generated by the CPLD from the CODEC_CLK and applied to 
the CODEC and the DSP. The timing for the data\input and output is shown 
in Figure 10.7 for the four possible data formats. The frequency of the LRCIN 
signal is the ADC/DAC sampling frequency. The bits are trusferred using the 
bit dock BCLKIN. In the CPLD, the BCKINand LRCIN are generated from 
the 12.228-MHz oscillator dock caIled the CODEC_CLK,which is aJlso'the 
default CODEC_SYSCLK, applied to the CODEC device. The corresponding 
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FORMAT 0: PCM2002/3003 

DAC: 16-Bit, MSB-First, Right-JuStified 
I I I 

LRCIN L-ch IR-ch-J I 
BCKIN ==IJt========] I1111 tr======rnIIIIIt=========lJ 11111 [=====rrmnrt= 

DIN ==JRJ========== 1112131 --=======-'1411511(========= 1112131 =========]141151161: '\ ",: '\ ,: 
, "MSB LSB' MSB LSB ' 

ADC: 16-Bit, MSB-First, Left-Justified 
I I I 

LRCIN L-ch R-ch-J L- I 
BCKIN====11111111_=====~=======.==-1mmr=====~==========1I 
DOUT ====~=========]14115~61=====~==--! 1{2131-========- 114115~61 =========fD 

, MSB LSB ' MSB LSB ' 

FORMAT 1: PCM2002/3003 

DAC: 20-Bit, MSB-First, Right-JuStified 
I I I 

qtCIN -J " L-ch 1 R-ch I 
BCKIN --ll~------JJIIJJIr:-~-------~'-rrrr~------rTTT1lllr-----------'-rrrrrr~--__ "L_____ ".. ___________ .lLUUUL _____LLLl.l..l.lJ _____ ~_~ ___ JJ.LLuul __ 

DIN ==~====== 1112131::============]181191201_====] 112131::============]181191201_=
I '\ ,: . '\ ,: 

MSB LSB' MSB LSB 

ADC: 20-Bit, MSB-First, Left-Justified 
I I I 

LRCIN -J L-ch . 1 .R-ch I 
BCKIN ====11111111 ========J1IJlTJI======:t 1111111 __ === __ ==JIIIIlIT=======lI

18 
DOUT ====~============= 19,°1 ======~TII============= 1 

18\l9Ijol::=====tTI ,1 1 

, MSB LSB' MSB LSB' 

Figure 10.7 Data transmission formats for the PCM3002 CODEC (continued) " 

(Courtesy of Burr-BroWn Corporation) 

default bit clock BCLKIN frequency is" 3.0122 MHz (or one-fourth of the 
CODJ;:C_SYSCLK), and the sampling frequency is 48 KHz. The default fre­
quencies can be changed by dividing the CODEC_CLK by 2, 4, 6, or 8. This 
provides the capability to change the sampling rate toone of five rates, the 
smallest being 6 KHz and the largest 48 KHz. 



274, Chapter 10· Interfacing Serial Converters to a Programmable nsp Device 

FORMAT 2: PCM3002 Only 

DAC; 20-Bit, MSB-First, Left-Justified 
I 	 I' , 

LRCIN -J .L-ch ,I R-ch . I 
BCKIN ----1JJIIm::---------llllIJI[-------t1"1""'T"""TT1-C----------rrrrrTTr-------J.]-____ . 	 __________ . _____ .:. __ lJD..LI..L _________ ..J..LULLW ________ l _ 

DIN ==== 1112131 ============= I1S1191201 ====== 111213 [============ !1s!t9120C=====iTI:, 	 ,,:, ,: 
,MSB LSB' MSB LSB' 

ADC: 20-Bit, MSB-First, Left-Justified 
1 1 	 1 

LRCIN.-J ." lrch 	 I. . R-ch I 
BCKIN ----1IIIJJJJ[---------~------~--------~-------hr____ . 	 _________.- . ___.____ . _~ _______ .. , ____ .:___LL 

.OOUT ====tmTIl=============]18119~01 ====== 1112131 ============]1sI19~OI======t!J~':\ 	 ,.: 
,MSB 	 . LSB ' MSB . LSD ' 

FORMAT 3: PCM3002 Only 

DAC: 20-Bit, MSB-First, Ps 	 . . .' 
LRcnc-L i 	 L<h ·1 i R~ ~ 
BCKIN ==blJJJJJ.1T-==========llllIJI[=== =.]lITIILLC== ========1ITITII.[,===-: 

DIN ===-1112IiC============= ilsI1912@_.===== 1112131 ==============]lsI19120[=====::, ,:, 	 ,: 
,MSB LSB' MSB LSB' 

ADC: 20-Bit, MSB-First, FS 
IRaN-i j .. ~ jiM ~ 
BCKIN==billlll·' t_=========JJIJIJJI==== ]~==========~===- :.. 	 .~ " 'I 

I· 	 "1OOUT ==== 123=============== I1sI19~OC==== I 123 ===============USI19~OI==='===:
1- - I . 	 I ~ "MSB . LSB 'MSB 	 LSB I 

Figure 10.7· Continued 

. I> Example 10.1 	 Determine the timing parameters fora 16-bit data communication in a D.SK 
configured for a clock divisor of 6: the oscillator clock (CODEC_CLK) isat 
12.288 MHz. 

Solution CPLD input clock (CODEG_<;:LK) = 1:2.288 MHz 

CPLD.output clock for the PCM3002 (CODEC_SYSCLK) = 12.288 MHz/6 = 
2.044 MHz 

http:lJJJJJ.1T
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Sampling frequencY'ls =·2.044 MHz/256.= S KHz . 

. Sampling interval = 1/SK = 125 msec 

Bit clock frequency (BCLKIN) 2.044 MHz/4 = 511 KHz 

Bit dock period = 1I511K = 1.96 I!sec 

Time to communicate It). bits of data 16 x 1.961!= 3131 !!Sec 

Thus, in each 125 msec of time, the data is communicated just for 2 x 31.;H 
I!sec for both channels. 	 ' 

10.6 CODEC Programming 

To configure the CODEC we send control data using .the mode control inter­
face signals as shown in the timing diagram of Figure 10.S. The mode bits 
represented by the signal MD are . sent 'using the mode dock signal MC. The 
mode load signal ML 'defines the start and end of latching the bits into the 
CODEC device. In the DSK these signals are generated in the CPLD frOJll 
the oscillatortlock. The 16-bit mode control data that is transferred comes 
from the CPLD and is placed into one of the four registers of the CODEC 
device to program it. 

The four program registers of the PCM3002 are ,shown in Figure 1O.9(a). 
The description. of the various bits of these registers is shown in Figure 
10.9(b). For a detailed description the reader is advised to consult the data 

~, 	 sheetfor the CODEC device (see reference 4 at the end of this chapter). In the 
program regisiersthe two bits indicated as AIAO specify the register to which 
the data in other bits refer. For instance, for register 0 these bits are 00. Reg­
ister 0 cail be loaded tocontrol the attenuation to be applied to the DAC for 
the left channel. Similarly, register 1 can be loaded with the attenuation data 
for the DAC' of the right channel. The number loaded in the S bits of either of 

. these two registers applies the attenuation to the two channels according to 
the equation 

ml 	 r 
Me 

MD JBl5~3fBI2IBllIB1()[B9[B8T137F~6JB51 13r[mrm[B1] 130 I 

Figure 10.8 Modecontrol interface signal timing for the PCM3002 CODEC 

(Courtesy of Burr-Brdwn Corporation) 
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B15 B14 B13 B12 Bll BIO 89 B8 B7 86 85. B4 B3 B2 BI BO 
REGISTER 0 I «;~ I re~ I res I res I res , Al I AO I LDL I AL7 I AL6 I AL5 I AU I AL3 I AL2' ALl I ALO I 
REGISTER I I res I res res, res I res I Al AO I LDR' AR7 I AR6 I AR51 AR41 AR3 I ill I ARI I ARO I 
REGISTER 2 I res I res I res I res I res I Al AO IPDADIBYPslpDDAj ATC I IZD lOUT InEMIIDEMq MDT I 

REGISTER3 I res I res I res I res I res. I Al AO I res I res I res I LOP I res JFMTlIFMTOI LRP I res I 

Figurf,! 10.9(a) Program registers for the PCM3002 CODEC 

(Courtesy of Burr-Brown Corporation) 

REGISTER BIT 
NAME NAME DESCRIPTION 

Register 0 

Register 1 

Register 2 

Register 3 

A (1:0) 

res 
LDL 
AL (7:0) 

A (1:0) 
res 
LDR 
AR (7:0) . 

A (1 :0) 
res 
PDAD 
PDDA 
BYPS 
ATC 
IZD 
OUT 
DEM (1.:0) 
MUT 

A (1:0) 
res 
LOP 
FMT (1:0) 
LRP 

Register Address "00" 

Reserved, should be set to "0" 

DAC Attenuation Data Load Control for Lch 

Attenuation Data for Lch 


Register Address "01" 

Reserved, should be set to "0" 

DAC Attenuation Data Load Control for Rch 

DAC Attenuation for Rch 


Register Address "10" 

Reserved, should be set to "0" 

ADC Power~Down Control 

DAC Power-Down COl1trol 

ADC High-Pass Filter Operation Control 

DAC Attenuation Data'Mode Control 

DAC Infinite Zero Detection Circuit Control 

DAC Output Enable Control 

DAC De-emphasis Control 

Lch and Rch Soft Mute Control 


Register Address "11" 

Reserved, should be set to "0" 

ADCIDAC Analog Loop-Back Control 

ADC/DACAudio Data Format Selection 

ADC/DAC Polarity of LR-dock Selection 


Figure 10.9(b) Definition of the bits,ofthe program registers of the PCM3002 CODEC 

(Courtesy of Burr-Brown Corporation) 
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Attenuation = 20 log(ATTI255) 

·----.-~--.. .. -.-•...-.-. --_. 

where ATT is the value represented by the 8 attenuation bits in register 0 'or 
register 1. 

Either the LDL bit in register 0 or the LDR in register 1 can use the atten­
uation data to control the two channels. 

The bits in register 2 are meant to select the power down mode for the 
ADC and DAC, the ADC highpass filter bypass control, DAC attenuation 
channel control, DAC infinite zero detection circuit control, DAC output en­
able control, DAC deemphasis control, and the DAC soft mute control. To 
enable or select a mode, the corresponding bit or bits are made 1. For the 
deemphasis control, the two bits used. are as follows: 00 selects deemphasis 
44.1 KHz, 01 deselects deemphasis, 10 selects 48 KHz deemphasis, and 11 se­

, lects 32 KHz deemphasis. . 
Register 3 provides ADC/DAC loopback control, audio data format selec­

tion, and polarity selection for the LRCIN signal. A 1 in the LOP bit enables 
the loopback. A 1 in the LRP bit selects the left channel when LRCIN is low 
and the right channel when it is high. The data format is selected by the two 
bits FMT1 and FMTO. The 00 on these two bits selects the format 0 for the 
data as received frpm the ADC or applied to the DAC. These data formats are 
shoWn in Figure 10.7 and provide four different ways to communicate data. 

The CPLD that· provides data for the four program registers and other 
controls on the DSK board has eight registers accessible from the DSP. These 
registers are shown in Figure 10.10. These registers are each 8 bits wide and 

. are locatediil the I/O space of the C5416. For instance, the registers at I/O 
addresses 2 and 3 hold the CODEC programming data. For details of the bits 
of these registers, the reader should consult the DSK manual [3], which is' also 
available in the DEBUG environment of the CCS. The most significant bit in 
the miscellaneous register at the I/O address 6 must be checked each time any 
new data is written to the CPLD registers for programming the CODEC. 

The sampling frequency can be changed by loading the divisor, for the 
CODEC dock, to the CODEC-CLK register at the I/O address 7. The sequence 
of steps that need to be followed is: stop the dock. load the divisor, start the 
dock, and select the divisor. The bits· of the CODEC-CLK regist~r need to be 
loaded appropriately to accomplish these steps. The other CPLD registers are 
there' for configuring the memories and for communicating with the user 
switches and the LEDs of the DSK. . . . 

,10.7 A CODEC-DSP Interface Example 

In this section, we write. a simple application that involves configuring 
McBSP2and the PCM3002 on the DSK board. The configured system is used 



1/0 
Add Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

'0 

I 

I 1 

USER­
REG 

DC_REG 

USR_ 
SW3 
R 

DC 
, DET 

R 

'USR_ 
SW2 
R 

DC_ 
• ID_CTl' 

,I ~/W 

USR­
SW1 
R 

DC_ 
STAT1 
R 

USR_ 
SWO 
R 

DC­
STATO 
R 

! USR­
lED3, 
R/W 
o (Off) 

DC_ 
RST 
R/W 
o (No Reset) 

USR_ 
lED2 
R/W 
o (Off) 

0 

USR­
LED1 
R/W 
o (Off) 

DC­
CNTl1 
RlW 
o (Low) 

USR_ 
lEDO 
R/W 
o(Off) 

! DC 
• CNTLO 

I R/Wo (low) 

2 CODEC_L CODEC_l_CMD [7 .•0] 
R/W 
0 

3 CODEC_H CODEC_H_CMD [15 .. 8] 
R/W' 
0 

4· VERSION CPLD_VER [3~.0] 
R 

0 BOARD..:VER [2 .. 0] 
R 

5 DM­
CNTL 

DM­
SEL 
R/W 
o (internal) 

MEM 
TYPE_DS 
R/W 
o(FLASH) 

MEM 
TYPE_PS 
R/W 
o (FLASH) 

DM_ 
PG4 
R/W 
o(Page 0) 

DM­
PG3 
R/W 
o (Page 0) 

DM_ 
'PG2 
R/W 
o(Page 0) 

DM-
PGl 
R/W 
o (Page 0) 

·I:)M-
PGO 

'R/W 
o(Page 0) 

6 MISC CODEC_ 
RDY 
R 
o (Ready) 

0 0 0 0 DC_ 
WIDE 
R/W 
0(18 bits) 

DC32-, 
DDD 
R/W 
o(Even) 

BSP2_ 
SEl 
R/W 
o(CODEC) 

7 CODEC_ 
clk 

0 0 0 0 DIV_ 
SEl 
R/W 

CLK_ 
STOP 
R/W 

ClK_ 
DIV1 
R/W 

ClK_ 
DIVO 
RIW 

Figure 10.10 CPlD register definitions in the DSK5416 

(Courtesy of Spectrum Digital Inc.) 
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Start here 
following reset. 

+ 

Initialize stack pointer. 

Disable all interrupts. 


~ 

Initialize the processor. 

(iniC5416) 

~ 

, 

Initialize the serial port. 
(iniCMcBSP) 

~ 

Initialize the AlC. 
(iniCPCM3002) 

~ 

Enable serial port transmitter. 


Enable serial port receiver. 


+ 

Clear any pending interrupt. 


Unmask serial port receive interrupt. 

Enable all interrupts. 


+ 

Wait here for a 

serial interrupt to 
occur 

Figure 10.11(a) Main program flow chart for the signalloopback program 

to implement a signalloopback by reading a signal applied to the ADC and 
writing it to the DAC. The application can be easily extended to include any 
kind of processing on the signal read from the ADC before sending it to the. 
DAC. The Bow chart of the main program is shown in Figure 1O.11{a). 

The main' program starts by initializing the stack pointer and disabling 
the interrupts. Establishing the stack allows using subroutines. The disabled 
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Figure 10.11(b) 

Enter 

--­ .. 
Read sample from McBSP2 

Data Receive Registers 

~ 
Process the sample 

+ 
Write processed sample 

to McBSP2DXR 
Data Transmit Registers 

+ 
Enable interrupts and return 

Receive service routine flow chart 

interrupt system ensures that during initialization interrupts will be ignored. 
This is followed by three subroutines that initialize the processor, the serial 
port, and the PCM3002. After the initializations are done, the serial port trans­
mitter and the receiver are enabled. Next, any pending interrupt is cleared and 
the receive interrupt is unmasked before enabling the interrupts. At the end, 
the processor waits for the receive interrupt to occur. 

When a receive interrupt occurs, the corresponding service routine is exe­
cuted. In the service routine, the DRR registers are read into the accumulator. 
The word so read is written back to the DXR after formatting it for the DAC. 
The return from the service routine, with interrupts enabled, makes the pro­
gram wait for the next interrupt, which occurs after the ADC provides the next 
sample to the port. It is in this routine that any signal processing on the 
received signal can be implemented. The receive interrupt service routine flow 
chart is shown in Figure 1O.11(b). . 

The entire program, shown in Figure lO.ll(c), consists of the main module 
signalLBmain.asm; interrupt vector module C5416vec.asm; initialization mod­
ules initC5416.asm, initMcBSP2.asm, andinitPCM3002.asm; and the module 
regs.asm that defines various constants used in the program. Notice that some 
of the definitions in the regs.asm module are specific to the DSK-implemented 
r~isters, such as DSP_CPLD_CODEC_L. These registers are described in the 
DSK manual [3] and in the Help facility of the DSK software Code Composer 
Studio (CCS). 
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****************************************************************************************. 

* 
* signalLBmain.asm 
* 
* This progr!im reads an input signal from the ADC and writes it to the DAC· on the 
* DSK5416 board. This mairl module includes the entry-point fQr the program. 
* 
* Author: Avtar Singh. SJSU 
* 
**************************************************************************************** 

ude "regs.asm" 
.ref initC5416 
.ref initMc~SP2 

.• ref in itPCM3002 
.def c intOO 
.def brint2 isr 
.ref sampleJeceive 
.ref sample_transmit 

VAL SP .set Ox0500 	 initial stack address 

.data 

sample_upper_word •wor<! o received sampl e . 
sample_lower_word .word o 

. text 

* The entry-point for the program 

c 	intOO: 
stili iVAL SP. SP Define the stack 

, ­
ssbx INTM 	 Disable all interrupts 

call inHC5416 Init the DSP processor 
call initMcBSP2 Init the McBSP2 port 
call i ni'tPCM3002 Init the DSK CODEC 

stm #SPCRI. MCBSP2_SPSA Enable McBSP2receiver 
orm #OQOlh. MCBSP2_SPSD 

stm #SPCR2. MCBSP2_SPSA Enable McBSP2transmitter 
onn #OOOlh •. MCBSP2_SPSD 

. Figure 10.11(c) A signalloopback implementation program for the DSK5416 
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stm 
orm 

flOFFFFh, IFR 
fl040h. IMR 

.; Clear pending interrupts 
Unmask McBSP2 RX int 

rsbx INTM ~ Enable all interrupts 

wait main: idl e 
b 

1 
wait maln 

Wait for an RX interrupt 

nop 
nop 
nop 

* Interrupt service routine for McBSP2 Receiver 

brint2 isr: 
call 
nop 
call 
rete" 

sampleJeceive 

e transmit 

Receive the sample 
Process the sample 
Transmit the sample 

* This procedure receives a 20-bit value from the ADC 
* Return with A (LSBs) = 20 bit received sample 

sampleJeceive: 
ARS 

ldm MCBSP2_DRR2, B Ret ri eve upper 16 bi ts . 
stm flsample_upper_word, ARS 
stl B; *ARS+ Save upper bits locally 

ldm MCBSP2_DRRl, A Retrieve lower 16 bits 
and flOFFFFh, A 
stl A. *ARS Save lower bits locally 

sftl B. 15 
or B, 1, A Construct the sample in A 

popm ARS 

ret 

* This procedu're sends a 20-bit value in A (LSBs) to the DAC. 

Figure 1D.11(c) Continued 
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sample_transmit: 
stlm A, MCBSP2 DXRl Transmit lQwer 16 bits 
sfta A. -16 
stlm A, MCBSP2_DXR2 Transmit upper bits 

,ret 

.end 
**************************************************************************************** 
* 
* initC5416.asm 
* 
* This module initializes t~e processor • .., 
* Author: Avtar Singh, SJSU 
*, 
**************************************************************************************** 

•inclu,de "regs.asm" 

.def initC5416 

* Define values for the DSP registers. 

ProcessoJ1 Mode Status Register (0000 0000 1110 1000) 

IPTR'= 000000001: Vector table resides at address 0080h 
MPfMC* = 1: Enabl e mi croproc.essor mode 
OVLY = 1: On-chip RAM addressable in data space, but not in 

program space 
AVIS =0: Address visibility mode 
DROM = 1: On-chip ROM not mapped into data space 
CLKOUT '1',0: CLQCKOUT off 
SMUL = 0: Saturati,on ,onmultiplic~tion 
SST =0: Saturation on store 

-VAL]MST , .set OOE13h 

Software Wait State Register (0111 111lIlli 1111) 

XPA = 0: Extended program address control bit 
I/O = 111: Base wait states for I/O accesses 
Data = 111: Base wait states for upper external data access 
Data = 111: Base wait states for lower external data access 
Program = 111: Base wait states for upper extern prog access 
Program = 111: Base wait states for lower extern prog access 

Figure 10.11(c) Continued 
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VAL SWWSR .set 7FFFh 

.text 

initC5416: 
ld #0, DP ; Data page = 0 
stm #4007, CLKMD DSP clock = 5xPLL 

stm #VAL_PMST, PMST Init PMST 
stm #VAL_SWWSR. SWWSR ; Init SWWSR 

ssbx SXM Enable sign extension 

ret 
**********************************************************************************w***** 

* 
* initMcBSP2.asm 

* 

* This module initializes the serial port McBSP2 on the C54t6 DSK. 


* 

* Author: Avtar Singh. SJSU 


* 

**************************************************************~************************* 

.; ncl ude "regs.asm" 


.def initMcBSP2 


* Oef; ne the defaul t values for the regiSters of McBSP2. 

Ser:;al Port Control Reg;ster 1 (0010 0000 0010 0000) 

Bit15 =' 0: 'Digital loopback disabled 
Bit14-13 =01: 'Right-justifY f sign extend 

=00: Clock stop disabled 
BitlO-8 =00: Reserved 
Bit7 = 0: OX enabler off 
Bit6 = 0: A-bis mode disabled 
Bit5-4 = 10: RINT driven by frame sync 
Bit3 = 0: No sync error 
Bit2 = 0: RBRs not in overrun condition 
Bi t1 = 0: Recei ver not ready 
BitO = 0: Receiver in disabled and in reset state 

Figure 10.11(c) Continued 

, 
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VAL SPCR1 


VAL SPCR2 

VAL_RCR1 

VAL RCR2 

.set 2020h 

Serial Port Control Register 2 (000000000000"0000) 

Bit15-10: = OOh: Reserved 
Bit9 =0: Free running mode disabled 
Bit8 = 0: Soft mode disabled 
Bit7 =0: Frame sync not generated" 
Bit6 = 0: Disable sample rate generator 
Bit5-4 =00: XINT driven by XRDY 
Bit3 = 0: No sync error 
Bit2 =0: XSRs empty 
Bitl = 0: Transmitter not ready 
BitO = 0: Transmitter in disabled and in reset state 

.set OOOOh 

Receive Control Register 1 (0000 0000 0110 0000) 

Bit15 = 0: Reserved 
• Bitl4-8 	 0000000: 1 word per frame 

Bit7-5 = 011: 20 bit receive worq 
Bit4-0 ? 00000: Reserved 

.set 0060h 

Receive Control Register 2 (0000 0000 0110 0001) 

Bit15 = 0: Single phas'e frame 
Bit14-8 = OOh: 1 word per frame 
Bit7-5 = 011: 20 bit receive word 
Bit4-3 = 00: No companding 
Bit2 = 0: Receive frame sync pulses not ignored 
Bit1-0 = 01: I-bit data delay . 

.set 0061h 

• Transmit Control Register 1 (0000 0000 U110 0000) 

Bit15 = 0: Reserved 
Bi t14-8 OOh: 1 word, per frame 
Bit7-5 = 011: 20 bit transmit word 
Bit4-0 Oh: Reserved 

figure 10.11(c) Continued 
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VAL XCRl .set 0060h 

Transmit Control Register 2 (0000 0000 0110 0000) 

; Bitl5 = 0: Single phase frame 
; Bitl4~8 = OOh: 1 word per frame 
; Bit7-5 all: 20 bittrahsmit word 

, ; Bit4-3 = 00: No' companding 
Bit2 = 0: Transmit frame sync pulses 'not ignored 
Bit1-0 = 00: a-bit data delay 

VAL XCR2 .set 0060h 

Pi n Control ,Regi ster (.0000 0000 0000 nOO) 

Bit15-l4 =00: Reserved 
Bitl3 =0: OX. FSX. and ClKX are seial port pins 
Bitl2 = 0: DR, FSR, ClKR. and elKS are serial port pins 
Bitll = 0: External transmit frame sync 
BitiO = 0: External receive frame sync 
Bit9 = 0: External transmit clock 
,BitS = 0: Exter:nal receive clock 
Bit7 = 0: Reserved 
Bit6 = 0: ClKS status 
Bit5 = 0: OX status 
Bit4 = 0: DR status 
Bit3 = 1: FSX active high 
BH2 = 1: FSR active high 
Bit! = 0: Transmit data sampled on rising edge of ClKX 
BitO = 0: Receive data sampled on rising edge of ClKR 

VAL PCR .set OOOCh 

* This procedure initializes the McBSP2 for use with the PCM3002 codec on theC54I6 OSK • 

•text 

initMcBSP2: 
stm HSPCRl, MCBSP2_SPSA Disable McBSP2 RX 
ldm 'MCBSP2_SPSO. A 
and HOFFFEh.' A 
stlm A. MC~SP2_SPSO 

Figure ,10.11(c) Continued 
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stm #SPCR2, MCBSP2_SPSA ; Disable McBSP2 TX 
1dm MCBSP2_SPSD, A 
and #OFFFEh, A 
stlm A, MCBSP2_SPSD 

stm #SPCRl, MCBSP2_SPSA Set SPCRl 
stm #VAL_SPCRl, MCBSP2~SPSD 

stm .. #SPCR2, MCBSP2_SPSA Set SPCR2 
stm #VAL_SPCR2, MCBSP2-,-SPSD 

stm #RCRl. MCBSP2_SPSA Set RCRI 
stm #VAL_RCRl, MCBSP2_SPSD 

stm #RCR2, MCBSP2_SPSA. Set RCR2 
.stm #VAL_RCR2, MCBSP2~SPSD 

stm #XCRl, MCBSP2_SPSA SetXCRl 
stm #VAL_XCRl, MCBSP2_SPSD 

stm #XCR2, MCBSP2_SPSA Set XCR2 
stm #VAL_XCR2,MCBSP2_SPSD 

stm #PCR, MCBSP2_SPSA Set PCR 
stm #VAL_PCR, MCBSP2_SPSD 

ret 
**************************************************************************************** 

* 
* initPCM3002.asm 
* 
* This module initializes thePCM3002 codee on the C5416 DSK. 
* 
* Author: Avtar Singh, SJSU 
* 
**************************************************************************************** 

.helude . "regs.asmu 

.def initPCM3002 

.def sampling_rAte_set 

* Define values for the codec clock register {in the CPLD} and the control registers of 
* the PCM3002 cqdec. 

Figure 10.11Ic) Continued 
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~ Codec clock Register (0000 1010) 

Bi t7·04 = 0000: Reserved 
Bit3 = 1: Clock divisor selected 

0: No divisor, 48 KHz sampling rate 
Bit2 = 0: Clock enabled 
B,t1-0 = 00: Clock .divisor for 24 KHz· sampling rate 

01: Clock divisor for 12 KHz sampling rate 
10: Clock divisor for 8 KHz sampling rate 
11: Clock divi.sor for 6 KHz sampling rate 

VAL CLK REG .set 12h 

; Register 0 (0000 0001 1111 1111) 
Bit15~ll .= 00000: Reserved 
Bit10-9 = 00: Register address 0 
Bit8 = 1: Enable DAC attenuation data LDL 
Bit7-0 =11111111: 0 dB left channel attenuatt6n 

VAL REGO .set 01ffh 

; Register 1(0000001111111111) 

; Bitl5-11 = 00000: Reserved 
; Bit10-9 = 01: Register address 1 
; Bit8 = 1: Enable DAC attenuation data LOR 
; Bit7-0 = 11111111: 0 dB right channel attenuation 

VAL_REG 1 .set 03ffh 

• Reg; ster 2 (0000 0100 1000 0010) 

Bit15-11 = 00000: Reserved 
Bi tlO-9. = 10: Regi steraddress 2 

. I 

Bit8 =0: Disable ADC power-down control (PDAD) 
Bit7 ::: 1: Bypass hi gh-pass fi lter 
Bit5 = 0: Individual channel attenuation control 
Bit4 =0: Infinite zero detection disabled 
Bit3 =0: DAC outputs enabled 
Bit2-1 = 01: De-emphasis off 
BitO =0: Mute disabled 

Figure 10.11(c) Continued 
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VAL REG2 .set 0482h 

; Register 3 (0000 0110 0000 1000) 

; Bit15-U = 00000: ,~eserved 
BitlO-9 = 11: Register address 3 
BitS-6 = 000: Reserved 
BitS =0: Loop-back disabled 
Bit4 = 0: Reserved 
Bit3-2 = 10: Format 2 
Bitl = 0: Left is H, Right is L 
BitO = 0: Reserved 

VAL REG3 .set 060Sh 

.text 

* This procedure initializes the PCM3002 codec on the C5416 DSK via the CPLD. 
* The procedure uses location 60h as scratch pad 

initPCM3002: 
portr DSK_CPLD_MISC, 60h Select codec 
andm #OFFFEh, 60h 
portw 60h,'DSK_CPLD_MISC 

call sampling_rate_set Set Sampling rate 

ld #VAL_REGO, A Program codec regO 
call CPLD write 

ld #VAL_REG1, A Program codec re.g1 
call CPLD write 

ld #VAL_REG2, A Program codec reg2 
can CPLD write 

ld #VAL_REG3. A Program codec reg3 
call CPLD_write 

ret 

Figure 
~ 

10.11(c) Continued 
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* This procedure sets the clock for the PCM3002 codec. 
* The following sequence is specified: 
* 
* 1. Set the ClK STOP bit to 1. 
* 2. Set the ClK-DIYl and Cll< DIYO bits to the sampling rate value. keeping the ClK STOP 
* . bit as 1. 
* 3. Reset the ClK_STOP bit toO. 
* 4. Set the DIV_SEl bit to. 1. 

* 
* -Enter with A = #VAl_ClK_REG to specify the sampling rate. 

* 
* The procedure uses location 60h as scratch pad 

sampling_rate_set: 
portr DSK_CPlD_COOEC_ClK. 60h Stop the clock 
orm 104h, 60h 
portw 60h, DSK_CPlD_CODEC~ClK 

ld IVAl_ClK_REG.Ai ; Get Sample'rate value 
bc NoDivisor, AEQ ; Check if highest rate 

and 103h, A ; Select the divisor bits 
or H04h. A . ; Keep the clock stopped 
5tl A, 60h ; Set the clock divisor 
portw 60h, DSK_CPlD_CODEC_ClK 

andm HOFBh, 60h Resume the clock 
portw 60h, DSK.:.CPlD_COOEC_ClK . 

orm HOSh, 60h Select the divisor 
. portw 60h, DSK_CPlD_CODEC_ClK 

b sampling_rate_done 

NoDivisor: 

st HOOh, 60h Resume the clock 

portw 60h, DSK_CPlD_CODEC_ClK 


sampling_rate_done: 

ret 


Figure 10.11(c) Continued 

http:IVAl_ClK_REG.Ai
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* This procedure transmits a 16-bit control word to the PCM3002 via the CPLD. 
* The procedure uses location 60h as scratch pad 

* 

* Argument A: 16-bit control word 

CPLD write: 

stl A, 60h Write low control byte 

portw 60h, DSK_CPLD_CODEC_L 


stl A, -8, 60h write high control byte 
portw 60h, DSK_CPLD_CODEC_H 

. CODEC WAIT: 
. ­

portr DSK_CPLD_MISC, 60h 
andm #80h, 60h Get the CODEC RDY bit 
ld 60h, A 
bc CODEC_WAIT, ANEQ ~ wait till all bits sent 

:-et 
**************************************************************************************** 
~ 

* C5416vec.asm 

* 

* This module contains the interrupt vector table for the signal loopback program. 

* 

* Author: Avtar Singh, SJSU 

* 

**************************************************************************************** 

te Nonmas kab 1 e I nterrupt vector 

Figure 10.11(c) Continued 
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14*4*16 	 Space for unused s/w interrupts.space 

.space 6*4*16 	 Space for unused h/w interrupts 

BRINT2: 	 b brint2 isr Receive ,Interrupt Vector 
nop 
,nQP 

Transmit Interrupt VectorBXINT2: 	 rete 
nop. 

nop 

nop 


.space 16*4*2 
**************************************************************************************** 

* 
* regs.asm 
* 
* Thi s modul e defi nes constants for the TMS320C54xx DSP ,and the C5416 DSK Board. 

* 
* Adapted from regs1.h availab;e in TI literature 

* 
* Author: 	 Avtal" Singh. SJSU 
* 
**************************************************************************************** 

.mmregs 

* 
* McBSPO Registers 

* 

MCBSPO DRR2 .set 0020h McBSPO Data Rx Reg2 

MCBSPO DRR1 .set 0021h McBSPO Data Rx Regl 

MCBSPO DXR2 .set 0022h McBSPO Data Tx Reg2 

MCBSPO DXR1 .set 0023h McBSPO Data Tx Regl 

MCBSPO SPSA .set P038h McBSPO Sub Bank Addr Reg 

MCBSPO SPSD .set 0039h McBSPO Sub, Bank Data Reg 


* 
* McBSPl Registers 

* 

MCBSPl DRR2 .set 0040h McBSPl Data Rx Reg2 

MCBSPl DRR! .set 004lh McBSPl Data Rx Reg! 

MCBSPl DXR2 .set 0042h McBSPl Data Tx Reg2 


Figure 10.11(c) Continued 
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MCBSPl DXRl 
MCBSPl,-SPSA 
MCBSPl SPSD 

.set 
• set. 
.set 

0043h 
0048h 
0049h 

; MeBSPl Data Tx Regl 
; MeBSPl Sub Bank Addr Reg 
; MeBSPl Sub Bank Data Reg 

* 
* MeBSP2 Registers 
* 
MCBSP2_DRR2 .set 0030h ; McBSP2 Data Rx Reg2 
MCBSP2:..DRRl .set 003lh ; McBSP2 Data Rx Regl 
MCBSP2 DXR2 .set 0032h ; McBSP2 Data Tx Reg2 
MCBSP2 DXRl .set 0033h ; MeBSP2 Data Tx Regl 
MCBSP2 SPSA .set 0034h ; MeBSP2 Sub Bank Addr Reg 
MCBSP2_SPSD .set 0035h ; MeBSP2,Sub Bank Data Reg 

* 
* MeBSPO, McBSPl and MeBSP2 Subbank Addressed Registers 
* 
SPCRl .set OOOOh Ser Port Ctrl Regl 
SPCR2 .set OOOlh Ser Port Ctrl Reg2 
RCRl .set 0OO2h Rx Ctrl Regl 
RCR2 .set 0OO3h Rx Ctrl Reg2 
XCR1 ' .set 0OO4h ; Tx Ctrl Regl 
XCR2 .set 0OO5h ; Tx Ctrl Reg2 
SRGRI .set 0OO6h Sample Rate' Gen Regl 
SRGR2 .set 0OO7h Sample Rate Gen Reg2 
MCRl .set 0OO8h Multichan Reg! 
MCR2 .set 0OO9h Multichan Reg2 
RCERA .set OOOAh Rx Chan Enable Reg Part A 
RCERB .set OOOBh Rx Chan Enable Reg Part B 

,XC ERA .set OOOCh Tx Chan Enable ,Reg Part A 
XCERB .set OOODn Tx Chan Enable Reg Part B 
PCR .set OOOEh Pin Ctrl Reg 

* 
* CPLD Regi-sfers (DSK54l6) 
* 
DSK_CPU}_USER_REG .set OOOOh User LEOs' and Switches Reg 
DSK_CPLD_DC)~EG .set OOOlh / ; Daughter Card Register 
OS K_CPLO_CODEC_L .set 0OO2h CODEC_L_CMD Register 
DSK_CPLD_CODEC_H .set 0OO3h CODEC_H~CMD Register 
DSK_CPLD_VERSION .set 0OO4h Version Register 
OSK_CPLD_DM_CNTL .set 0OO5h Memory'Control Register 
DSK_CPLD_MISC .set Miscellaneous Register 
DSK_CPLD_CODEC_CLK .set 0OO7h CODEC Clock Register 

Figure 10.11(c) Continued 
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/**************************************************** 

* 
* Slgnalloopback program command file (signalLB.cmd) 
* 
*********~******************************************/ 

MEMORY 
{ 

PAGE 0: ,DARAMV: origin =0080h, length =0080h 
PAGE 0: DARAMP: origin = 1000h, length = 1000h 
PAGE 1: DARAMD: origin = 4000h, length = OBOOOh 

SECTIONS· 
( 

.text > DARAMP PAGE 0 

. vectors > DARAMV pAGE 0 

.data > DARAMD PAGE 1 

FiguretO.11(d) The command file, for the loopback program 

To build the program for the DSK, the command file shown.ip Figure 
IO.l1(d) can be used. 

To test the program functionality, a signal can be applied to the micro­
phone input on the DSK. A speaker connected to the analog output should 
receive the signal when the program is loaded to the board and run. A PC can 
provide this test. setup if its speaker output is applied to the microphone input 
of the DSK (using an appropriate cable) and the speaker output of the DSK is 
connected to another speaker or the one disconnected from the PC. Any audio 
file played on the PC with the DSK program running can. be heard on the 
speakers. The program can also be tested with an input signal from a signal 
generator. There are also programs available that can be run to generate a test 
signal on the PC. One such program can pe downloaded from the site in the 
reference at end of this chapter [5]. 

10.8 Summary , 

In this chapter, we looked at the serial peripheral interfacing using the multi­
channel buffered serial port (McBSP). We also considered a specific serial· 
peripheral, PCM3002, that provides 16-bit synchronous serial ADC and DAC. 
The chapter ends with an eKample of the DSK to illustrate the interface. and 
the associated program. 

http:shown.ip
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Assignments 

10.1 	 'Frame sync is generated by dividing the 8.192-MHz dock by 256 for the serial 
communication. Determine the sampling rate and the time a 16-bit sample 
takes when tran~mitted on the data line. 

10.2 	 What is the address for the PCR register of McBSP2? Write an instruction 
sequence to write to it data defined by PCR_VAL. 

10.3 	 Write an instruction sequence to reset and disable the transmitter and re­
ceiver for the McBSP2. 

10.4 	 Which registers and which bits need to be changed to implement an 8-bit 
trllflsmission and reception for the McBSP2? 

10.5 	 A PCM3002 is programmed for the 12-KHz sampling rate. Determine the 
divisor N that should be written to the CPLD of the DSK and the various clock 
frequenCies for the setup. 

10.6 	 Determine the timing parameters for a 20-bit data communication at 8 KHz. 

10.7 	 Which bits and register are used to program the analog input gain? Determine 
the bit. setting to obtain a O-dB gain. 

10.8 	 Which bits and register of the PCM3002 are used to program tile application 
of a 48-KHz deemphasis to the DAC output of the PCM3002? Determin~ the 
bit setting. 

10.9 	 What are the maximum and the minimum sampling rates that can be im­
plemented for the PCM3002 on the 5416 DSK? Determine the bits, their value, 
and the register that needs to be programmed to achieve the maximum and 
minimum sample rate settings: 

10.10 	 Modify ~e program in 'Figure 1O.11(c) to change the sampling rate to 12 KHz. 

10.11 	 Modify the program in Figure 1O.11(c) to output the absolute value of the 
signal sampled at the input. 

http:www.nch.com
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10.12 	 Modify the program in Figure 10.11(c) to incorporate the FIR filter imple­
mented in Chapter 7, Section 7.3. 

10.13 	 Determine, using CCS·debug capability, the processing time per sample for the 
filter implemented in Problem 12. Assume that the DSP is running at 80 MHz.· 
Based on this measurement and the consideration for the CODEC device, 
what is the maximum sampling frequency that can be implemented? Also 
determine the highest signal frequency that can be handled for processing. 

10.14 	 Implement the FFT program of Chapter 8 so as to process a real-time signal to 
compute its spectrum and di~play it on an oscilloscope .. Compute the spec­
trum each time a new sample is received. Determine the maXimum sampling 
rate that can be used in the implementation on the DSK. 

10.15 	 Repeat Problem 14 for computing the spectrum, each time, after receiving the 
block of samples used in FFT calculations. 



Chapter 11 
Applications of Programmable 
DSP Devices 

11 . 1 Introduction 


As commercial programmable DSPs are becoming more and more powerful 
in terms of their speed and functionality and are available at lower and 
lower costs, there is an explosion of applications in which these devices are 
increasingly used. These applications span a wide spectrum of areas, such 
as automotive, control, communication; entertaiDment, instrumentation, and 
medicine. Typical applications include toys, medical instruments, speech syn­
thesis and recognition systems, audio equalizers, echo cancellers, l\nd robotic 
controllers. These applications exploit such capabilities of the programmable 
DSP devices as high speed and throughput, facility to carry out complex 
computations with precision, ease. of programming, and ability to interface 
with host processors and external peripherals. In this chapter, we look into a 
few representative applications and study their requirements to s~ how these 
are met by systems implemented using DSPs. Following are the representative 
applications considered in this chapter: 

An EGG processing system 


A speech processing system 


An image processing system 


A position control system 


A power measurement system 


11 .2A DSP System 

Digital signal processors are computational devices that process digital rep­
resentation of input signals and produce digital representation of signals as 

297 
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Figure 11.1 The block diagram of a DSP system 

outputs. The difference between these devices and the general-purpose pro­
cessors ijes in the fact that DSPs process data representing real-world signals; 
whereas the general-purpose processors deal with applications requiring large 
volumes of stored data. Since real-world signals are mostly analog, they have 
to be converted into digital signals before being processed by the DSP and, 
likewise, DSP output needs to be converted back to analog for use in the real 
world. Figure 1l.1 shows the block diagram depicting the processing blocks of 
a typical DSP system. We have discussed this system in previous chapters. It 
consists of the DSP processor between the analog front end and the analog 
back end. The analog front end consists ofan antialiasing filter, a sample-and­
hold circuit, and an analog-to-digltal converter feeding into the DSP. The back 
end consists of a digital-to-analog converter to convert the digital output to its 
analog value, followed by a reconstruction filter. 

The block diagram of Figure 11.1 applies to almost all DSP systems. All or 
just soDie of the blocks shown.in the figure may realize a particular system. 
Implementations. may differ in details such as the signal frequency spectrum, 
the sampling.rate, memory requirements, and the computational complexity. 
In the application examples that follow, we look ~t the nature and computa­
tional'complexity of the algorithm to be implemented with a view to under­
standing how the processing power 'and other features of the programmable 
DSPs are utilized in each case. Description and design of the analog front and 
back ends as well as the analog-to-digital and the digital-to-analog converters 
are beyond the scope of this book. 

11.3 DSP-Based Biotelemetry Receiver 


Biotelemetry is a 'process by which physiological information or signals are 
transferred from one remote location to another, typically using radio fre­
quency links. The importance of biotelemetry becomes obvious when we 
consider monitoring life in remote or inaccessible locations such as an astro­
nautin space or a baby in mother's womb. The biomedical signals at the 
source are encoded, modulated, and then transmitted. At the receiver end, the 
signals are demodulated, decoded, displayed, and analyzed to extract diag­
nostic information for evaluation. 

http:shown.in
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Figure 11.2 A DSP-based biotelemetry receiver system 

The block diagram shown in Figure 11.2 shows a scheme that can be used 
to iJp.plement a biotelemetry receiver [1]. The DSP device receives the de­
modulated signal as obtained from the demodulator and analog processing 
circuits. The device can be programmed to decode the received' signal by 
inverting the 'process of encoding used in the trans11!.itter and thus generate 
the corresponding biomedical signals. The decoded signals can be presented 
to a D/ A converter to generate analog signals . 

.11.3.1 Pulse Position Modulation (PPM) 

PPM is a scheme that can be used to encode a single signal or multiple signals. 
The position of a pulse encodes the sample value of a signal. A PPM signal 
that encodes two signals in addition to providing a fixed sampling rate is 
shown in Figure 11.3. The PPM signal requires a sync signal (two pulses) to 

-"----tool I-t2. 

~ 

t3~1 Sync 

...~ Pulses 

Parameter Function Duration (j.1sec)-an Example 

tl Encodes signal 1 1000 
t2 Encodes signal 2 800 
t3 Compensation interval 1700 
Each pulse interval.(tp) 100 
Sync interval 3 x 100 
Total: tl + t2 + t3 + Stp . Sampling interval 4000 

Figure 11.3 A PPM for encoding two biomedical signals 
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mark the beginning of a cycle for encoding two or more signals. As shown in· 
the figure, tl encodes one signal, and t2 encodes the other. The time interval 
t3 is simply needed to keep' the sampling interval constant to provide a fixed 
sampling rate. In the example shown, the fixed sampling rate is 2.5 KHz. The 
example encoding can be modified to encode three signals by incorporating 
another time interval for the third signal or by superimposing the third signal 
in either of the intervals tl or t2. The superimposed signals should be distin­
guishable in the frequency domain so that it can be separated in the receiver. 
For instance, the system can be used to encode ECG, temperature, and pres­
sure signals. Temperature being the lowest frequency signal, it is combined 
with the highest frequency ECG signal and encoded <l;s interval t2. 

11.3.2 Decoding Scheme for the PPM Receiver 

The schematic diagram in Figure 11.4 shows how a DSP device can be used to 
decode a PPM signal to recover the encoded biomedical signals. The decoding 
requires me.asurements of time intervals in a PPM signal. The DSP device 
timer can be used for time measurement. To blitiate the measurement pro­
cess, the pulses in the PPM signal can be used to generate interrupt signals for 
the DSP device, whic!). then are used to start or terminate the timer. This 
approach avoids using an AID converter to handle the PPM signal, but it 
requires that the DSP device be fast enough so as not to miss a pulse or 
introduce time measurement error. 

nsp Timer nsp Timer 

~1'2~ ... 

t· . 

Figure 11.4 A DSP-based decoding scheme for a PPM signal 
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Figure 11.5 A DSP-based biotelemetry receiver implementation 

11 .3.3 Biotelemetry Receiver Implementation 

The block diagram in Figure 11.5 ~hows the system used for implementation. 
The PPM signal is proc-essed in the analog domain before it is applied to the 
interrupt system of the signal processor. The DSP device is interfaced to 
appropriate digital-to-analog converters so that signals can. be generated for 
analog display monitoring devices. The signal processor in the system is the 
TMS320C5402. An EPROM device can provide storage for the operating sys- . 
tern as well as the decoding software. In order for the DSP to generate the two 
recovered biomedical signals, a dual-channel parallel digital-to-analog con­
verter can be used. 

Two types of software programs are stored in the EPROM. One is the soft­
ware for decoding PPM signals to generate the encoded biomedical signals. 
The other software allows providing debugging capability using a PC con­
nected to a parallel port similar to a DSK. In fact, a DSK can be used to debug 
the software before building the receiver. 

11.3.4 ECG Signal Processing for Heart Rate Determination 

The most important information contained in an ECG signal is the associated 
heart rate. Determining the heart rate involves determining the time interval 
between QRS complexes. Therefore, we need a reliable algorithm to detect the 
QRS complexes so that the QRS interval can be determined to compute the 
heart rate. 

A nonlinear transformation is used to enhance the QRS complex so that it 
can be detected reliably with a threshold detector. The transformation in our 
implementation uses absolute values of the first and second derivatives of the 
signal as follows: 

y1(n) = Ix(n) x(n 1)1 
y2(!1) = Ix(n - 2) 2x(n 1) + x(n)1 

y3(n) = y1(n) + y2(n) 
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where x(n) refers to the ECG signal sample, yl(n) is the absolute value of the 
first derivative, y2(n) is the absolute value of the second derivative, and y3(n) 
is the combined absolute first and second derivatives. 

The transformed signal is filtered to remove high-frequency noise compo­
nents. To accomplish this, we use a simple I1R filter as follows 

y4(n) = lX(y3(n) - y4(n -1)) + y4(n - 1) 

where IX, a number less than 1, is the IIR filter coefficient. Its value is chosen 
based on the smoothing effect that should be used to discard high frequencies. 
The y4(n) in the difference equation denotes the filtered transformed signal. 

A QRS complex is detected using a threshold detector. Processing typical 
ECG signals by the above algorithm and determining the mean of half of the 
peak amplitudes of tha filtered signals determines the threshold for the detec­
tor. This estimated threshold value is then used to detect the QRS complexes 
in a given ECG waveform. 

The time interval between two complexes is the QRS interval. Finally, the 
heart rate (HR) in beats per minute (BPM) is computed using the formula 

HR = (Sampling rate x 60)/QRS interval 

The sampling rat~ is determined from the time duration of a PPM cycle or 
depends upon the modulation technique. To produce a heart rate value accu­
rate on an average, the computed heart rate can also be filtered using an 
appropriate filter. Figure 11.6 shows the ECG arid HR waveforms generated 
by the system. 

11.4 A Speech Processing System 

Depending on the objective of speech processing, the techniques of processing 
differ. For instance, if the objective is to understand speech characteristics, 
analysis-type algorithms are used. To improve the speech quality, filtering 
algorithms are employed. Here, we consider a technique called pitch period 
estimation. Pitch period estimation (or, equivalently, fundamental frequency 
estimation) is one· of the most important problems in speech processing. Pitch 
detectors are used in vocoders, speech identification and verification systems, 
and in aids to the handicapped. Because of its importance, many solutions 
have been proposed to this problem. Here, we present pitch estimation using 
the autocorrelation technique implemented on the DSP. Before describing the 
algorithm for pitch detection, we introduce the concept of how speech is gen­
erated and classified. 
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Figure 11.7 	 A schematic diagram of the human vocal apparatus 

11,.4.1 A Digital Model for Production of Speech Signal 

A schematic diagram of the human vocal apparatus is shown in Figure 11.7. 
The vocal tract is an acoustic tube that is terminated at one end by the vocal 
chords and at the other end by the lips. An ancillary tube, the. nasal tract, can 
be connected or disconnected by the movement of the velum. The shape of 
the vocal tract is determined by the position of the lips, jaws, the tongue, and 
the velum~ Sounds can be generated in different ways. Voiced sounds are 
produced by exciting the vocal tract with quasi-periodic pulses of air pressure 

. caused by vibration of the vocal chords. Unvoiced or the fricative sounds are 
produced by forming a constriction somewhere in the vocal tract and forc­
ing air through. the constriction, thereby creating. turbulence that produces a 
source of noise to excite the vocal tract [2]. The vocal tract can be charac­
terized by its natural frequencies (or formants), which correspond to reso­
nance in the sound transmission characteristics of the vocal tract. 

11.4.2 Autocorrelation 

In the voiced intervals, the speech signal is characterized by a sequence of 
peaks that occur periodically at the fundamental frequency of the speech sig­
nal. In contrast, during unvoiced intervals the peaks are relatively smaller and 
do not occur in-any discernible patterfl. Autocorrelation is a common method 
of obtaining the pitch of the speech signal. Periodicity in the autocorrelation 
function indicates the periodicity of the speech signal. 

Speech is not a stationary signal but the properties of the speech signal 
remain fixed over relatively long time intervals. However, the major limita­
tion of the autocorrelation representation is that it retains too much of the 
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information in the speech signal. Techniques known as spectrum flattening 
techniques are applied to the speech signal before performing the autocorre­
lation so as to filter out extraneous details. The block diagram of a clipping 
autocorrelation pitch detector is shown in Figure U.8. 

Autocorrelation Computation 

The computation of the autocortelation function for a three-level center­
clipped signal is particularly simple [3]. If we denote the output of the three­
level center clipper as y(n), then the product terms y(n +m)y(n +m +k) in 
the autocorrelation function [4] 

N-k-l 

Rn(K) = L y(n +m)y(n + m + k) 
m=O 

can have only three different values; that is, 

y(n + m) y(n + m + k) = 0 if y(n +m) = 0 or y(n + m + k) = 0,. 

= +1 if y(n + m) = y(n + m + k), and 

= -1 if y(n + m) '" y(n + m + k) 

The three-level clipping scheme is shown in Figure 11.9. The algorithm for 
pitch period estimation is summarized below: 

The speech signal is filtered with a 900 Hz lowpass analog filter and sam­
pled at the rate of 10 KHz.. . 

Filtered signal segments, each oflength 30 msec (300 samples), are selected 
at lO-msec intervals. Thus, the segments overlap by 20 msec. 

;rile average of absolute magnitudes is computed with a 100~sample rect­
angular window. The peak signal level in each frame is compared to a thres­
hold determined by measuring the peak signal level for 50 msec of background 
noise, as shown in the block "compute silence level threshold" in the block 
diagram. If the peak signal level is above the thresliold, signifying that the 
segment is speech, not noise, then the algorithm proceeds as follows; other­
wise the segment is classified as silence and no further action is taken. 

The dipping level is determined as a fixed percentage (e.g., 68%) of the 
minimum of the maximum absolute values in the first and last 100 samples of 
the speech segment. 

Using this dipping level, the speech signal is processed by a thtee-Ievel 
center clipper, and the correlation function is computed over a range span­
ning the expected range of pitch periods. 

The largest peak of the autocorrelation function is located and the peak 
value is compared to a fixed threshold (e.g., 30% of Rn(O». If the peak falls 
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Figure 11.9 Three-level center-clipped signal 

below threshold, the segment is classified as unvoiced, and if it is above the 
threshold,. the pitch period is defined as the location of the largest peak. 

11.4.3 Implementation on the TMS320C54xx Processor 

Speech samples were recorded using voice recorder software in Windows 98. 
. The signal was sampled at 16 KHz in 16-bit.mono format. The autocorrelation 

module is .the most computation-intensive section for pitch detection. For this 
reason DSP was used to compute a 400-point autocorrelQ.tion for a 480-sample 
segment. For the sampling frequency of 16 KHz, 30 msec of speech corre­
sponds to 480 samples, and it takes about 17200 dock cycles or 0.17 msec for 
theTMS320CS402 running at 100· MHz. Timing can be improved by using a 
lower sampling rate and thereby reducing the section size. Reduction of 
window size for computation of autocorrelation or using adaptive methods 
for d~ermining the frame size will further reduce the computations involved. 
Figure 11.10. shows the autocorrelation output of a voiced speech signal and 

. Figure 11.11 that of an unvoiced speech signal. The complete implementa­
tion of the block diagram shown in Figure 11.8 is left as an exercise for the 
implementor. . . 

11.5 An Image Processing System 

Images represent huge amounts of data. Image processing applications such 
as high-definition television, video conferencing, computer communication, 
and so fO$ require large storage and high-speed channels for handling the 
huge volumes of data. In order to reduce the storage and communication 
channel bandwidth requirements to manageable levels, data compression 
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.Figure 11.10 Typic~1 autocorrelation for a voiced speech segment 

te~niques are imperative. Data compression on the order of 20 to 50 is 
feasible depen~ing on the actual picture contents and techniques adopted for 
compression. 

JPEG, which stands for Joint Photographic Experts Group, the name of the 
committee that wrote the standard, is a still-image compression standard. 
JPEG is used to compress either full-color or gray-scale images of natural or 
real-world scenes. It works well on pictures such as photographs and natural­
istic artwork, not so well on lettering, simple cartoons, and line di:awings. 
JPEG is "lossy," meaning that the decompressed image is not exactly the same 
as the original. JPEG is designed to exploit· known llinitations of the human 
eye, notably the fact that small color changes are perceived less accurately 
than small changes in brightness. Thus, ]PEG. is intended for compressing 
images that will be looked at by humans. The usefulness of JPEG. is that the 
degree of lossiness can be adjusted by varying the compression parameters. 
This ~eans that the image maker can trade off file size against image quality. 
JPEG achieves image compression by methodically throWing away visually in­
significant image information. This information includes the high-frequency 
components of the image, which are less important.to image content than the 

http:important.to
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Figure 11.11 Typical autocorrelation output for an uiwoiced speech segment 

low~frequency components. When an image is compressed using JPEG. the 
discarded high-frequency component cannot be retrieved. Another important 
aspect ofJPEG is that decoders can trade off decoding speed against image 
quality. by using approximations to the required calcQ.lations. 

11.5.1 JPEG Algorithm Overview 

The original image is divided into 8 x 8 blocks. Each 8 x 8 block is trans­
formed by the forward discrete cosine transform (DCT). which extracts the 
various frequency components and their relative amplitudes of the two~ 
dimensional image signal represented by the 8 x 8 block into a set of 64 
values, referred to as DCT coefficients [5]. Each of the 64 coefficients is then 
quantized using a quantizing table. which allocates more bits for (;oefficients 
corresponding to more dominant frequency components and fewer or zero 
bits for insignificant frequency components. The resulting 64 values (includ­
ing zero values) are, further coded by a process, known as entropy encod­
ing. wherein based on the statistical probability of occurrence of these long 
sequences. shorter codes are allotted to long~running sequences of Os and Is. 
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Figure 11.13 The block diagram of the JPEG decoder 

This way, the two-dimensional image data is converted to a bitstream ofmuch 
smaller size compared to the priginal image data retaining most of the image 
features· while discarding the insignificant information not eaSily discernible 
by the human eye. Figur£! 11.12 shows the block diagram of a JPEG encoder. 
The JPEG decoding process is the reverse of encoding and it is shown in 
Figure 11.13 [6]. 

11.5.2 JPEG Encoding 

As mentioned above,. the first step in· JPEG encoding is computing the forward 
DCT of the 8 x 8 image block. We obtain the 64 OCT coefficients after apply­
ing the forward DCT on the two-dimensional image matrix. One of these 
values is referred as the dc coefficient and the other 63 as the ac coefficients. 
The fOI'Mlrd DCT is computed from the equation 

1 -7 7 
Iv,u =4cucv LL.t;..x cos (2x+l)un cos (21+ 1)V1t 

. x=O y=O 16 16 
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The second step is quantization. Each of the 64 coefficients is quantized using 
one of 64 corresponding values from a quantization table.· After quantization, 
the dc coefficient and the ac coefficients are prepared for entropy coding, 
which is also known as Huffman coding. The previous dc coefficient is sub­
tJacted from the current dc coefficient, and the difference is encoded. The 63 
quantized ac coefficients undergo no such differential encoding, but are con­
verted into a one-dimensional zig-zag sequenceoeforebeing coded. Since 
many coefficients are zero, runs of zeros are identified and coded efficiently. 

11.5.3 JPEG Decoding 

In the reverse processes of Huffman decoding, dequantization and the inverse 
OCT are used to recover the original image data. The·Huffman decoding table 
is used to recover the compressed data from the bitstream format to 64 16-bit 
data. The values in the dequaniization table are the inverse of the values in the 
quantization table. The inverse OCT equation is 

1 1 11"x 4LI>ucll/v,u cos (2x+ l)u1r cos (2y+l)vn 
u=o y=o 16· 16 

After IDCT, decoding of the 8 x 8 image block is completed. ThE' last proce­
dure is to combine the 8 x 8 blocks to create the image. " 

11.5.4 Encoding· and Decoding of JPEG Using the TMS320C54xx 

For implementing the OCT of an 8 x 8 block, the FDCT algorithm by Lee [7] 
is used. The signal flow graph for computing the 8-point OCT using Lee's OCT 
algorithm is shown in Figure 11.14. The IDCT is obtained using the same flow 
graph by reversing the direction of the arrows and inputs given from the 
opposite side . 

.The;natrix used for quantization and dequantization is shown in Figure 
lLl5. Notice the large quantization steps at the high-frequency en4 of the 
matrix compared to the smaller values at the low-frequency end. 

For the implementation described here, the Huffman-coding and -decoding 
algorithms were progra:mmed in C and interfaced to the DSP codes for DCTI 
quantization and IDCT/dequantization, respectively. After merging, the entire 
program was run in the TMS320C5402 processor. Encoding an image ofa 
256 x 256 size requires approximately 150,000,000 instruction cycles, or 150 
msec in the TMS320VC5402, with an instruction cycle of 10 ns. The time taken 
for decoding is about the same. Figure 11.16 shows a sample image before and 
after being processed by the JPEG encoder and decoder. The two images look 
very much alike. 
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Figure 11.15 Matrix used for quantization and dequantization 

11 .6 A Position Control System for a Hard Disk Drive 

One important application for digital signal processors is the positioning of 
a read/write head on a hard disk The DSP provides the computational capa­
bility, while a microcontroller handles the driver's functions for positioning 
of the head. Today, the single-chip solution using a DSP offers low cost, im­
proved reliability, and low power consumption for hard disk controllers. 

Details of the control system are shown in Figure 11.l7. The parameter to 
be controlled is the drive mput of a servomotor that determines the position 
of the read/write, head on the disk Thccontroller issues the appropriate 

. commands to the servomotor via the DAC. The servomotor, in turn, moves 
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Figure 11.16 A sample image before and 2rtter JPEG pr.ocessing: (a) raw image and (b) the image 
after JPEG compression and decompres.$ion 
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Figure11.17 The block diagram of a hard drive servo control system 

the read/write head from the current position to the desired track on the disk. 
The design objective is to keep the position error minimized at ,all times. The 
DSP controller incorporates the algorithm to minimize the position error and 
use the position erroito control the motor, 

With the constant increase in disk storage capacity, there is a steady in­
crease in the number of tracks' and a decrease in their widths, The demand 
for accurate head position and tracking requires a more frequent sampling 
of the head position than would have been otherwise needed, Another reason 
for increasing the sampling rate ,is the decrease in the time constant of the 
process to be controlled. Therefore, the disk controller must be capable of high 

http:Figure11.17
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Figure 11.18 An adaptive scheme for head positioning in a servo control system in the presence 
of noise 

sampling rates in addition to a math-intensive algorithm for the digital con­
trol of the servomotor. 

Figure 11.18 shows an adaptive scheme for head positionin,g in the presence 
of environmental variations [8]. According to this scheme, the servo-plant 
output, c(n), must follow a reference (desired) model output, s(n). A digital 
controller, D(z) and the servo plant, G(z), comprise the reference model, R(z), 

. while a servomotor, G(s), and the DAC comprise the servo plant, Gp(z). The 
adaptive reference inverse model is an inverse model of the servo plant, 
which, when combined with the servo plant and the reference model, gives an 
output, yen), that follows the reference model output sen). The adaptive ref­
erence inverse model is computed offline. Once an adaptive reference inverse 
model is obtained, it ,is incorporated into the control system. The servo plant 
is driven by the output obtained from a copy of the adaptive reference inverse 
model, which is updated after each seek operation. This ensures that the servo 
plant follows the same profile as the reference model at all times. 

The reference model transfer function as given in reference r81 is 

R(z) C(z)IE(z) ~ 0.01524z + 0.0147 
- 1.6847z + 0.7147 

This reference model may now be used to derive the adaptive reference in­
verse model of the servo plant. Figure 11.19 illustrates the adaptive reference 

. inverse modeling technique. This particular model incorporates a 40-tap trans­
versal filter whose coefficients are updated according to the least-mean-square 
algorithm . .The compromise between the accuracy and computational com­
plexity dictates the choice of the number of taps in· the transversal filter. The 
following equations describe this model: 
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Figure 11.19 Adaptive inverse modeling scheme 

Servo plant output: 

c(n) 0.0048x(n - 1) + 0.0046x(n) + 1.9c(n - 1) 0.9094c(n - 2) 

Reference model output: 

sen) 0.01S24x(n - 1) + 0.0147x(n 2) + 1.68476s(n ~ 1) 0.7147s(n - 2) 

Adaptive reference inverse model output: 

yen) = I:: w(i)c(n i + 1); i = 1 to 40 

Error: e(n) = sen) - yen) 

Weight vector update: 

w;= Wi + fl.ec(n - i + I), 1,40 . 

The weight vectors, Wi> which represent the adaptive reference inverse 
model, are obtained by performing 500 iterations of the adaptive loop. The 
parameter fl., which determines the rate of convergence for obtaining the· 
weight vector, is chosen empirically, in this case, to be 0.05. The input to 
the system is assumed to be ,a step. Once the adaptive reference of the inverse 
model is obtained, it can be applied to the control system of Figure lLl8. Due 

. to the adaptive reference inverse· model, any variations in the internal vari­
ables of the servo plant result in corresponding-changes in the coefficients of 
the adaptive reference inverse model. Hence, the servo output follows the ref­
erence at all times. 
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Figure 11.20 The control signal c(n) as obtained from the implementation of the control system on 
the TMS320C5402 processor 

The initial 40 coefficients of the transversal filter were obtained from a 
MATLAB program and were then used in the final assembly language code of 
the DSP. Once an input impulse is given to a DSP, the output settles down in 
about 201300 instruction cycles, which is 0.2 msec for the TMS32QC54~2, f6r 
which each instruction cycle .takes 10 nsec. Figure 11.20 shows the graph for 
c(n) obtained from the actual implementation of the control system on the 
TMS320{;5402. processox;. 

11 .7 DSP-Based Power Meter 

Measurement of power is an important task in evaluating performance of a 
system- or a household appliance. Power has· been conventionally measured 
using older electromagnetic-mechanical systems: This project is about design­
inga power measuring system using modem DSP technology. The result of 
this approach can be a device that provides better performance. at lower cost. 
The project details are available elsewhere in a report [9J. 
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Figure 11.21 Block diagram of a DSP-based power meter 

11 .7.1 .Power Measurement System 

Figure 11.21 shows a block diagram that can -be implemente9 to measure 
power. The block diagram shows three functional units: the data acquisition 
unit, the DSP unit, and the user interface unit. The data acquisition unit gets 
the electrical signals representing power, the DSP unit processes the signals to 
compute power, and the user interface presents the results to the user for 
viewing graphically. 
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Figure 11.22 ADC interface to the DSP using McBSPs 

Data Acquisition Unit 

Data acquisition consists of acquiring the voltage signal using a voltage trans­
former and the current signal using a current transformer. The voltage trans­
former is used to transform the voltage signal to a value that can be handled 
by an AID converte~: Similarly, the current transformer produces voltage 
proportional to the current in the circuit. This voltage is fed to a second AID 
converter. The AID converters produce digital data at the selected sampling 
rate. The number of AID bits specifies'the resolution for the digital signal. The 
dual-channel ADC device (DSP102 from TI), with the maximum sampling rate 
of 200 KHz, 16-bit resolution, and serial interface, was used in this design. 

DSPUnit 

For power computations, the Texas Instruments DSK5402 DSP board was 
used. The de:velopment software package, CCS, running on PC, was used to 
develop and download software for the DSP. The DSP's on-chip multichannel 
buffered serial ports (McBSPO and McBSPl, provide the mechanism to collect 
data from the two AID converters on the data acquisition unit Figure 11.22 
shows the interface between th~ AID converters and the DSP. 

Programming the McBSP registers can configure the clock and sampling 
frequencies. The sampling frequency was programmed for 12.2 KHz. The DSP 
is programmed to generate the AID convert pulse. The AID supplies two data 
samples as a 32-bit number after asserting the sync signal on the FSR of the 
serial port. The receiver has two 16-bit registers, DRRlland DRR21, that re­
ceive the data every conversion cycle. From here, it is the DMA that transfers 
the signal.data to the DSP memory. Two DMA channels are used for the two 
signals. The DMA is also used to transfer the data from the DSP to the user 
interface unit using another DMA channel and the transmitter register DJCRIO 
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Figure 11.23 DSP's DMA system for interfacing to ADCs andto the user interface unit 

on the McBSPO serial port. Figure l1.23 shows the details of the DMA interface 
for receiving the AID data using McBSPl and transmitting the computed sig­
nal data using the McBSPO. 

User Interface Unit 

The user interface displays the signals received from the DSP. For this 
purpose, in this project a complete embedded computer system was used. In 
this way, the DSP can dedicate itself to analyzing the data, and the computer 

I 
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Figure 11.24 DSP-to-computer interiace logic 

provides capability to display signals on a LCD display. This requires provi­
sion of two-way communication between theDSP and the computer. The in­
terface was designed using Xilinx XC4005XL-PC84 FPGA. An EEPROM is used' 
to configure the FPGA upon power-up. 

The bus interface logic shown in Figure 11.24 has two main responsibilities. 
First, it controls the DSP and second, it supplies the DSP data to the com­
puter. For the computer to control the DSP, the interface converts parallel 
data and delivers it serially to the DSP. For the DSP to send data to the com­
puter, the opposite mechanism, that is, serial-to-parallel conversion, is used in 
addition to coordinating the DMA transfer to the computer. 

The embedd'ed computer uses a graphic controller to, drive the LCD. The 
LCD provides a resolution of 640 x 480. To implement the interface, a few 
computer resources such as interrupt and memory locations are dedicated to 
the interface. 

11 .7.2 Software for the Power Meter 

The software for the device consists of the system. software and the application 
software. The system software consists of routines that manage the hardware, 
both for the DSP and the computer. 

The DSP system software consists of modules, written in C, that manage 
the ADC and operate the computer interface logic. This software is stored in 
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Figure 11.25 Waveforms and computed quantities as displayed on LCD screen 

the flash memory of the DSK. A user interface device driver that runs on the 
computer provides read/write operations to the DSP and starts the DSP. 

The application software ruiming on the DSP uses the current and voltage 
signal data to compute the quantities in the following equations: 

p(k) = Y(k)i(k), k = k, k + 1, ... )k + N 

Vrms = Vl/N~ y2(k) 

1/N ~ 2
= i (k)V

Pavg = lIN L p(k) 
N 

An example of these computed signals and quantities as displayed on the LCD 
screen is shown in Figure 11.25. The waveforms and the text are displayed 
using the user interface software running on the computer. 
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1.1.8 Summary 

In this chapter, we have seen that the programmable DSP can be used for a 
variety of applications. Although these applications vary in the nature of the 
signals to be processed and their computational complexities, the architecture 
and other features of the DSP are suitable for implementing these and many 
other applications. As examples, we ~tudied the use of the DSP for five repre­
sentative applications. 
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Architectural Details of TMS320VC5416 
'Digital Signal Processor 

15 7 6 5 4 3 2 '0 

CLK
IPTR MP/MC' OVLY 'AVIS DROM 

OFF 
SMUL' SST 

,-­

, 

I 

R/W"1FF MP/MC RlWoO R/W-O' R/W..O ' R/W-O R/W..O R/W-O 
Pin 

LEGEND: R =Read, W =Write 

BIT 
RESET 

NO. NAME VALUE FUNCTION 

15-7 IPTR 1FFh 15-7 IPTR 1FFh Interrupt vector pointer. The 9-bit IPTR field points 
to the 128-word program page where the interrupt vectors reside. 
The interrupt vectors can be remapped to RAM for boot-loaded 
operations. At reset, these bits are all set to 1; the reset vector 
always resides at address FF80h in program memory space: The 
RESET instruction does not affect this field. 

6 MP/MC MP/MC Microprocessor/microcomputer mode. MP/MC enables/disables 
pin the on-chip ROM to be addressable in program memory space . 

.;. MP/MC ='0: The on-chip ROM is enabled and addressable. 
_ MP/MC =1: The on-chip ROM is not available. MP/MC iS,set to 
the value corresponding to the logic level on the MP/MC pin 
when sampled at reset. This pin is not sampled again until the 
next reset. The RESET instruction does not affect this bit. This bit 
can also be set or cleared by software. 

Figure A.1 Processor Mode $tatus(PMST) Register (continued) 

(Courtesy of Texas Instruments Inc.)' 
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5 OVLY 0 RAM overlay. OVLY enables on-chip dual-accessdata RAM block~ 
to be mapped into program space. The values for the OVLY bit 
are: _ OVLY =0: The on-chip RAM is addressable in data space but 
not in program space. _ OVLY = 1: Theon-chip RAM is mapped 
into program space and data space. Data page 0 (addresses Oh to 
7Fh), however, is not mapped into program space. ' 

4 AVIS 0 Address visibility mode. AVIS enables/disables the internal 
program address to be visible at the address pins. AVIS =0: The 
external address lines do not change with the internal program 
address. Control and data lines are not affected and the address 
bus is driven with the last address on the bus. AVIS =1: This 

- I 

mode allows the ,internal program address to appear at the pins 
of the 5416 so that the internal program address can be traced. 
Also,' it allows the interrupt vector to be decoded in conjunction 
with lACK when the interrupt vectors reside on on-chip memory. 

3 DROM 0 DROM enables on-chip DARAM4-7 to be. mapped into data space. 
The DROM bit values are: _ DRDM =0: The on-chip DARAM4-7 is 
not mapped into data space. _ DROM =1: The on-chip QARAM4­
7 is mapped into data space. 

2 CLKOFF 0 CLOCKOUT off. When the CLKOFF bit is 1, the output of CLKOUT 
is disabled and remains at a high level. 

SMUL N/A . Saturation on multiplication. WhenSMUL = 1, saturation of a 
multiplication result occurs before performing the accumulation 
in a MAC of MAS instruction. The SMUL bit applies only when 
OVM =1 and FRCT = 1. 

0 SST N/A Saturation on store. When SST = 1, saturation of the data from 
the accumulator is enabled before storing in memory. The 
saturation is performed after the shift operation. 

Figure A.1 Continued 
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LEGEND: R =Read, W = Write, 0/111 =Value after reset 

BIT 
RESET 

. NO. NAME VALUE FUNCTION 

15 XPA 

14-12110 

11-9 Data 

8-6 	 Data 

5-3 Program 

2-0 Program· 

O· 	 Extended program address control bit.XPA is used in conjunction 
with the program space fields (bit~ 0 through 5) to select the 
address range for program space wait states. 

111 	 1/0 space. The field value (0-7) corresponds to the base number 
of wait states for 1/0 space accesses witl'1in addresses OOOO-FFFFh. 
The SWSM bit of the SWCR defines a multiplication factor of 1 or 
2 for the base number of wait states. 

111 	 Upper (:lata space. The field value (0-7) corresponds to the base 
number of wait states for external data space accesses within 
addresses 8000-FFFFh. The SWSM bit of the SWCR defines a 
multiplication factor of 1 or 2 for the base.numberof wait states. 

111 	 Lower data space. The field value (0-7) corresponds to the base 
number of wait states for external data space accesses within 
addresses O:i00-7FFFh. The SWSM bit of the SWCR defines a 
multiplication factor of 1 or 2 for the base number of.wait states. 

111 	 Upper program space. The field value (0-7) corresponds to the 
base number of wait states for external program space accesses 
within the following .addresses: 

• 	 XPA =0: xx8000 - xxFFFFh 
• 	 XPA =1: 400000h - 7FFFFFh. The SWSM bit of the SWCR 

defines a multiplication factor of 1 or 2 for the base 
number of wait states. 

111 	 Program space. The field value (0-7) corresponds to the base 
number of wait states for external program space accesses within 
the following addresses: 

• 	 XPA =0: xxOOOO - xx7FFFh 
• 	 XPA = 1: 000000 - 3FFFFFh. The SWSM bit of the SWCR 

defines a multiplication factor of 1 or 2 for the base 
number of wait states. 

Figure A.2 Software Wait-Signal Register 

(Courtesy of Texas Instruments Inc.) 
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15 1 o 

Reserved Swyr;] 
R/W-O R/W-O 

LEGEND: R = Read, W :::: Write 

PIN 
RESET 

NO. NAME VALUE FUNCTION 

15-1 Reserved 0 These bits are reserved and are unaffected by 
writes. 

o SWSM 0 Software wait-state multiplier. Used to multiply 
the number of wait states defined in the 
SWWSFl by a factor of 1 or 2. 

• SWSM =0: wait-state base values are 
unchanged (multiplied by 1). 

• SWSM = 1: wait-state base values are 
multiplied by 2 for a maximum of 14 wait 
states 

Figure A.3 Software Wait-State Control Register (SWCR) 

(Courtesy of Texas Instruments Ind 
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15 14, 13 12 11 3 2 1 0 


CONSEt· DIVFCT ' IACKOf:F Reserved 'HBH BH Res
 _ I 
n n 

R/W-1 R/W-11 R/W-1 R R/W-O R/W-O R 

R= Read, W = Write 

RESET 
BIiI" NAME VALUE FUNCTION 

15 CONSEC· Consecutive bank-switching. Specifies the .bank-switching mode. 
CONSEC* =0: Bank-switching on 32K bank boundaries,only. 

This bit is cleared if fast access is desired for 
continuous memory reads (i.e., no starting and 
trailing cycles between read Gycles). 

, CONSEC* = 1: Consecutive bank switches on external memory 
reads. Each read cycle consists of 3 cycles: starting 
cycle. read cycle. and trailing cycle. 

13-14 DIVFCT 11 ,CLKOUT output divide factor. The CLKOUT output is driven by 
an on-chip source having a frequency equal to 1/(DIVFCT + 1) of 
the DSP clock. 
DIVFCT ::: 00: CLKOUT is not divided. 
DIVFCT ~ 01: CLKOUT is divided by 2 from the DSP clock. 
DIVFCT = 10: CLKOUT is divided by 3 from the DSP clock. 
DIVFCT::: 11: CLKOUT is divided by 4 from the DSP clock 

. (default value following reset). 

12 IACKOFF IACK* signal output off. Controls the output of the flACK 
signal. IACKOFF is set to 1 at reset. 
IACKOFF =0: The IACK* signal output off function is disabled. 
IACKOFF = 1: The IACK* signal output off function is enabled. 

11-3 Rsvd Reserved 

2 HBH. o HPI bus holder. Controls the·HPI bus holder. HBH is cleared to 0 
at reset. 
HBH= 0: The bus holder is disabled except when HPI16 = 1. 
HBH = 1: The bus holder is enabled. When not driven. the HPI 

data bus. HD[7:0] is held in the previous logic level. 

Figure A.4 Bank-Switching Control Register (BSCR) (continued) 

(Courtesy of Texas Instruments Inc.) 
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BH o 	 Bus holder. Controls the bus holder. BH is cleareato 0 at reset. 
BH =0: The bus holder is disabled. 
BH = 1: The bus holder is enabled. When not driven, ,the data 

bus, D[15:0] is held.in the previous logic level. 

o Rsvd 	 Reserved 

l1igure A.4 Continued 

CLKMD RESET 

CLKMD1 CLKMD2 CLKIYID3 VALUE CLOCK MODE 

0 0 0 OOOOh 112 (PLL disabled) 
0 0 1 9007h PLL x 10 
0 1 0 4007h PLL x 5 
1 0 q 1007h PLL x 2 

1 0 F007h· PLL x 1 
'OOOOh 112 (PLL disabled) 

0 1 FOOOI\ 114 (PlL'disabled) 
0 1 1 Reserved (Bypass mode) 

tThe external CLKMD1-CLKMD3 pins are' sampled to determine the desired 
clock generation mode while RS is low. Fo.llowing reset, the dock generation 
mode can be reconfigured by writing to the internal dock mode regiSl:er in 
software. 

----------~------~------------------------------------
Figure A.S. Clock Mode Settings at Reset 

(Courtesy of Texas Instruments Inc.) 
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ADDRESS 

NAME DEC HEX DESCRIf:rrION 

IMR .0 0 Interrupt mask register 
. IFR 1 Interrupt flag register 

2-5 .2-5 Reserved for testing 
5TO 6 6 Status register 0 
ST1 7 7 Status register 1 
AL 8 8 Accumulator A low word (15-0) 
AH 9 9 Accumulato~ A high word (31-16) . 
AG 10 A, Accumulator A guard bits (39-32) 
BL· 11 B Accumulator B low word (15-0) 
BH 12 C Accumulator B high word (31-16) 
BG 13 .D Accumulator B guard bits (39-32) . 
TREG" 14 E Temporary register 
TRN 15 F Transition register 
ARO 16" 10 Auxiliary register 0 
AR1 17 11 Auxiliary register 1 
AR2 ' 1.8 12 Auxiliary register 2 
AR3 19 13 Auxiliary register ~ 
AR4 20 . 14 Auxiliary register 4 
AR5 21 15' Auxiliary register 5 
AR6· 22 16 Auxiliary register 6 
AR7 23 17 Auxiliary register 7 
SP 24 . 18 Stack pointer register 
BK 25 19 Circular buffer size register 
BRC 26 1A Block repeat counter 
RSA 27 1B Block repeat start address 
REA, 28 lC Block repeat end address 
PMST -29 10 Processor mode status (PMST) register 
XPC 30 1E ExtendedJ)rogram page register 

31 1F Reserved 

FigureA.6 Memory-Mapped Registers 

(Courtesy of Texas Instruments Inc.) 



330 Appendix A· Architectural Details of TMS320VC5416 Digital Signal Processor 

ADDRESS 

NAME DEC HEX DESCRIPTION 

DRR20 32 lO McBSP 0 Data Receive Register 2 
DRR10 33 21 McBSP 0 Data Receive Register 1 
DXR20 34 22 McBSP 0 Data Transmit Register 2 
DXR10 35 23 McBSP 0 Data Transmit Register 1 
TIM 36 24 Timer Register 
PRD 37 25 Tim~r Period Register 
TCRTimer 38 ·26 Control Register 

39 27 Reserved 
SWWSR 40 28 Software Wait~State Register 
BSCR 41 29 Bank-Switching Control Register 

42 2A Reserved 
SWCR 43 2B Software Wait~State Control Register 
HPIC 44 2C HPI Control Register (HMODE =0 only) 

45-47 2D-2F Reserved 
DRR22 48 30 McBSP 2 Data Receive Register 2 
DRR12 49 31 McBSP 2 Data Receive Register 1 
DXR22 50 32 McBSP 2 Data Transmit Register 2 
DXR12 51 33 McBSP 2 Data Transmit Register 1 
SPSA2 52 34 McBSP 2 Sub bank Address Registert 

SPSD2 53 35 McBSP 2 Subbank Data Registert 
54-55 36-37 Reserved 

SPSAO 56 38 McBSPO Subbank Address Registert 
SPSDO 57 39 McBSP 0 Subbank Data Registert 

58"'-59 3A-3B Reserved 
GPIOCR 60 3C General-Purpose 110 Control Register 
GPIOSR 61 3D General-Purpose 110 Status Register 
CSIDR' 62 3E Device ID Register 

63 3F Reserved 
DRR21 64 40 McBSP 1 Data Receive Register 2 
DRR11 65 41 McBSP 1 Data Receive Register 1 
DXR21 66 42 McBSP 1 Data Transmit Register 2 
DXR11 67 43 McBSP 1 Data Transmit Reg1Sterf 

68-71 44-47 Reserved 
SPSA1 72 48 McBSP 1 Subbank Address Registert 
SPSD1 73 49 McBSP 1 Subbank Data Registert 

74-83 4A-53 Reserved 
DMPREC 84 54 DMA Priority and Enable Control Register 

Figure A.7 Peripheral Memory-Mapped ReYlsters (continued) 
(Courtesy Texas Instruments Inc.) 
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DMSlA. DMA 
DMSDI 
DMSDN 
CLKMD 

85 
86 
87 
88 
g9-95 

55 
56 
57 
58 
59-5F 

Subbahk Address Register* 
DMA Subbank Data Register with Autoincrement:l: 
DMA Subbank Data Register* . 
Clock Mode Register (CLKMD) 
Resenied 

tSee Table Figure A.8 for a detailed description of the McBSP control registers and their sub­

addresses. 

;See Table Figure A.9 for a detailed description of the DMA subbank addressed registers. 


Figure A.4 Continued 
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McBSPO McBSP1 McBSP2 
SUB 

NAME ADDRESS. NAME ADDRESS NAME ADDRESS ADDRESS DESCRIPTION 

SPCR10 39h SPCR11 49h SPCR12 35h OOh .Se-rial port control 
register 1 

SPCR20 39h SPCR21 49h SPCR22· 35h 01h Serial port control 
register 2 

RCR10 39h RCR11 49h RCR12 3Sh .·02h Receive control. 

- register 1 
RCR20 39h RCR21 49h RCR22 3Sh 03h Receive control . 

register 2 
XCR10 39h XCR11 49h XCR12 3Sh 04h Transmit control 

register 1 
XCR20 39h XCR21 49h XCR22 3Sh OSh Transmit control 

register 2 
SRGR10 39h SRGR11 49h 'SRGR12 3Sh 06h Sample rate 

generator register 1 
SRGR20 39h SRGR21 . 49h SRGR22 3Sh 07h . Sample rate 

generator register 2 
MCR10 39h MCR11 49h MCR12 35h OSh . Multichannel 

register 1 
MCR20 39h MCR2l 49h MCR22 3Sh 09h Multichannel 

register 2 
RCERAO 39h RCERA1 49h RCERA2 3Sh OAh Receive channel 

enable register 
partition A 

RCERBO 39h RCERB1 49h RCERA2 3Sh OBh Receive channel 
enable register 
partition B 

XCERAO 39h XCERA1 49h XCERA2 3Sh OCh Transmit channel 
enable register 
partition A 

XCERBO 39h XCERBl 49h XC:ERA2 3Sh ODh Transmit channel 
enable register 
partition B 

PCRO 39h peR1 49h PCR2 3Sh OEh Pin control register 
RCERCO 39h RCERCl 49h RCERC2 3Sh 010h Additional channel 

enable register for 
128-channel selection 

Figure A.S McBSP Control Registers and Subaddresses .(continued) 

(Courtesy of Texas Instruments Inc) 
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RCERDO 39h RCERDl 49h RCERD2 35h 011h Additional channel 
enable re~ister for. 
128-channel selection 

XCERCO 39h XCERCl 49h XCERC2 35h 01~h Additional channel 
enable register for 
128-channel selection 

XCERDO 39h XCERDl 49h XCERD2 35h 013h Additional channel 
enable register for 
128-channel selection 

RCEREO 39h RCEREl 49h RCERE2 35h 014h Additional channel 
enable register ·for 
128-channel selection 

RCERFO 39h RCERF 49h RCERF2 35h 015h Additional channel 
enable register for 
128-channel selection 

XCEREO 39h XCEREl 49h XCERE2 35h 016h Additional channel 
enable register for 
128cchannel selection 

XCERFO 39h XCERFl 49h XCERF2 35h 017h Additional channel 
enable register for 
128-channel selection 

RCERGO 39h RCERGl 49h RCERG2 35h 018h Additional channel 
enable register for . 
128-channel selection 

RCERHO 39h RCERH 49h RCERH2 35h 019h Additional channel 
enable register for 
128-channel selection 

XCERGO 39h XCERGl 49h XCERG2 35h 01Ah Additional channel 
enable. register for 
128-channel selection 

XCERHO 39h XCERHl 49h XCERH2 35h 01Bh Additional channel 
enable register for 
128-channel selection 

Figure A.S Continued 
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SUB 
NAME ADDRESS ADDRESS DESCRIPTION 

DMSRCO 56h/57h OOh DMA channel 0 source address register 
DMDSTO 56h/57h 01h DMA channel 0 destination address register 
DMCTRO 56h/5.7h 02h DMA channel 0 element count register 
DMSFCO 56h/57h 03h DMA channel 0 sync select and frame count register .. 
DMMCRO 56h/57h 04h DMA channel 0 transfer mode control register 
DMSRC1 56h/57h 05h DMA channell source address register. 
DMDSTl 56h/57h 06h DMA channel 1 destination address register 
DMCTR1 56h/57h· 07h DMA channell element count register 
DMSFC1 56h157h 08h DMA channel 1 sync select and frame count register 
DMMCR1 56h/57h 09h DMA channell transfer mode control reg.ister 
DMSRC2 56h/57h OAh DMA channel 2 source address register 
DMDST2 56h/57h OBh DMA channel 2 destination address register 
DMCTR2 56h/57h OCh DMA channel 2 element count register 
DMSFC2 56h/57h ODh DMA channel 2 sync select and frame count register 
DMMCR2 56h/57h OEh DMA channel 2 transfer mode control register 
DMSRC3 56h/57h OFh DMA channel 3 source address register 
DMDST3 56h/57h 10h DMA channel 3 destination address register 
DMCTR3 56h/57h 11 h DMA channel 3 element count register 
DMSFC3 . 56h/57h 12h DMA channel 3 sync select and frame count register 
DMMCR3 56h/57h 13h DMA channel 3 transfer mode control register 
DMSRC4 56h/57h 14h DMA channel 4 source address register 
DMDST4 56h/57h 15h DMA channel 4 destination address register 
DMCTR4 56h/57h 16h DMA channel 4 element count register 
DMSFC4 56h/57h 17h DMA channel ~ sync select and frame count register 
DMMCR4 56h/57h 18h DMA channel 4 transfer mode control register 
DMSRC5 56h/57h 19h DMA channel 5 source address register 
DMDST5 56h/57h lAh DMA channel 5 destination address register 
DMCTR5 56h157h lBh DMA channel 5 element count register· 
DMSFC5 56h/57h lCh DMA channel 5 sync select and frame count register 
DMMCR5 56h/57h lDh DMA channel 5 transfer mode control regi.ster 
DMSRCP 56h/57h lEh DMA source program page address (common channel) 
DMDSTP 56h/57h lFh DMA destination program page address (common 

channel) 
DMIDXO 56h/57h 20h DMA element index address register 0 
DMIDX1 56h/57h 21h DMA element index address register 1 
DMFRIO 56h/57h 22h DMA frame index register 0 
DMFRll 56h/57h 23h DMA frame index register 1 
DMGSAO 56h/57h 24h DMA global source address reload register, channel 0 

Figure A.9 DMA Subbank Addressed Registers (continued) 

(Courtesy of Texas Instruments Inc.) 

http:56h/5.7h
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DMGDAO 56h/57h 25h- DMA global destination address reload register, 

, channel 0 
DMGCRO 56h/57h 26h DMA global count reload register, channel.O 
DMGFRO 56h/57h 27h DMA gloDal frame count reload register, channel 0 
XSRCDP 56h/57h 28h DMA extended source data page (currently not 

. supported) 
XDSTDP 56h/57H 29h DMA extended destination data page (currently not 

supported) 
DMG'SA1 56h/57h 2Ah DMA global source address reload register, channel 1 
DMGDA1 56h/57h· 2Bh DMA global destination address reload register, 

channel 1 
DMGCR1 56h/57h 2Ch DMA global count reload register, channel 1 
DMGFR1 56h/57h 2Dh DMA global frame count reload register, channel 1 
DMGSA2 56h/57h 2Eh DMA global source address reload register, channel 2 
DMGDA2 56h/57h 2Fh DMA global destination address reload register, 

channel 2 
DMGCR2 56h/57h 30h DMA global count reload· register, channel 2 
DMGFR2 56h/57h 31h DMA global frame count reload register, channel 2 
DMGSA3 56h/57h 32h DMA global source address reload register, channel 3 
DMGDA3 56h/57h 33h DMA global destination address reload register, 

channel 3 
DMGCR3 5611/57h 34h DMA global count reload register, channel 3 
DMGFR3 36hl57h 35h DMA global frame count reload register, channel 3 
DMGSA4 56h/57h 36h DMA global source address reload register, channel 4 
DMGDA4 56h/57h 37h DMA global destination address reload register, 

channel 4 
DMGCR4 56hl57h ·38h DMA global count reload register, channel 4 
DMGFR4 56h/57h 39h DMA global frame count reload register, channel 4 
DMGSA5 56h/57h 3Ah DMA global source address reload register, channel 5 
DMGDA5 56h157h 3Bh DMA global destination address reload register, 

chann~1 5 
DMGCR5 56h/57h 3Ch DMA global count reload register, channel 5 
DMGFR5 56hl57h 3Dh bMA global frame count reload register, channel 5 

Figure A.9 Continued 
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LOCATION 

NAME DECIMA HEX PRIORITY· FUNCTION 

RS, SINTf{ 0 00 1 Reset (hardware and software reset) 
NMI, SINT 16 4 04 2 Nonmaskable interrupt 
SINn7 8 08 Software interrupt #17 
SlNn8 12 OC Software interrupt #18 
SINn9 16 10 Software interrupt #19 
SINT20 20 14 Software interr,upt #20 
SINT21 24 18 Software interrupt #21 
SINT22 28 lC Software interrupt #22 
SINT23 32 20 Software interrupt #23 
SiNT24 36 36 Software interrupt #24 
SINT25 40 28 Software interrupt #25 
SINT26 .44 2C Software interrupt #26 
SINT27 48 30 Software interrupt #27 
SINT28 52 34 Software interrupt #28 
SINT29 56 38 Software interrupt #29 
SINHO 60 3C Software interrupt #30­
INTO, SINTO 64 40 3 External user intern,Jpt #0 
INT', SINn 68 44 4 External user interrupt #1 
INT2, SINT2 72 48 5 External user interrupt #2 

SINH 76 4C ·6 Timer interrupt 
RINTO, SINT4 80 '50 7 McBSP #0 receive interrupt (default) 
XINTO, SINT5 84 54 8 McBSP #0 transmit interrupt (default) 
RINT2, SINT6 88 58 9 McBSP #2 r~ceive interrupt (default) 
XINT2, SINTl 92 5C 10 McBSP #2 transmit interrupt (default) 
INH, SINT8 96 60 11 External user interrupt #3 
HINT, SINT9 100 64 12 . HPI interrupt 
RINn, SINnO 104 68 13 McBSP #1 receive interrupt (default) 
XINn, SINnl 108 6C 14 McBSP #1 transmit interrupt (default) 
DMAC4, SINn2 112 70 15 DMA channel 4 (default) 
DMAC5, SINn3 116 74 16 DMA channel 5 (default) 
Reserved 120-127 78-7F Reserved 
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15,...12 11 10 9-6 '5 4 3-0 

Reserved I. Soft Free I' PSC TRB I­ TSS TDDR 

Reset 
Bit Name Value Function 

15-12 Reserved Reserved; always read as O. 

11 Soft 0 Used in conjunction with the Free bit to determine the state of 
the timer when a breakpoint is encountered in the Hll 
debugger. When the Free bit is cleared, the Soft bit selects the 
timer mode. 
Soft =0 The timer stops immediately. 
Soft =1 Thetimer stops when the counter decrements to O. 

10 Free 0 Used in conjunction with the Soft bit to determine the state of 
the timer when a breakpoint is encountered in the Hll 
debugger. When tlie Free bit is cleared. the Soft bit seiects the 
timer mode. 
Free =0 The Soft bit selects the timer mode. 
Free =1 The timer runs free regardless oftheSoft bit. 

9-6 PSC Timer prescaler counter. Specifies the .count for the on-chip timer. 
When PSC is decremented past 0 or the timer is reset. PSC is 
loaded with the contents of TDDR and the TIM is decremented. 

5 TRB Timer reload. Resets the on-chip timer. When TRB is set, the TIM 
i.s loaded with the value in the PRD and the PSC is loaded with 
the value in TDDR. TRB is always read as a. O. 

4 TSS 0 Timer stop status. Stops or starts the on-chip timer. At reset, TSS 
is cleared and the timer immediately starts timing. 
TSS =0 The timer is started. 
TSS =1 The timer is stopped. 

3-0 . TDDR 0000 Timer divide-down ratio. Specifies the timer divide-down ratio 
(period) for the on-chip timer. When PSC is decremented past 0, 
PSC is loaded with the contents of TDDR. 

Figure A.11 Timer Control Register (TCR) 

(Courtesy of Texas Instruments Inc.) 





Index 


2-D signal processing, 201 


AJD conversion errors, 49 

absolute file, 158 

absolute lister, 158 

accumulator, 120 

adaptive filter, 198 


coefficient of adaptation, 201 

error signal, 198 


address arithmetic unit, 96 

address generation unit, 90 

addressing, . 4 


bit-reversed, 4 

modulo, 4 


addressing mode, 81, 83 

bit-reversed, 87 . 

circular, 85 

direct, 82 

immediate, 81 

indirect. See also indirect addressing mode 

register, 82 


aliasing, 7 

noise, 7 


ALU. See arithmetic and logic unit· 

overflow management, 75 

register file, 76 

status flags, 75 


amplitude degradation of D/A output, 56 

antialiasing filter, 1, 7, .270 

API funCtions, 164 

architecture, 3, 77 


Harvard architecture, 3, 77 

Von Neumann architecture, 77 


archiver utility, 158 

arithmetic and logic unit, 75 

assembler, 159 

assembly source file, 159 

assembly source program, 159 


assembly translation assistant, 158 

.autocorrelation, 105,304 


BCLKIN,273 

biomedical signals, 298 

. biotelemetry, 298 

biotelemetry receiver, 299 


implementation, 301 

pulse position modulation, 299 


PPM receiver, 300 

bit reversing, 218 

block floating-point format. See number formats 


block exponent, 46, 47 

block repeat, 137 

board ·confidence testing, 158 

board drivers, '158 

branching, 93 

buffered serial port, ~46 

butterfly, 216 


C compil~l" 157 

CCS. See code composer studio 

circular buffer, 85, 178 

code composer studio, 161 

CODEC. See also synchronous serial interface 


ATT,277 

BCLKIN,~72 

CODEC programming, 275 

FMTO; 277 

FMTl,277 

LOP, 271 

LRCIN,277 

LRP,277 

MC,275 

MD,275 

ML,275 


CODEc_eLK, 272 

CODEC...;.S:YSCLK,272 


339 



340 Index 

CODEC (continued) 
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interrupt flag register, 249 

interrupt mask register, 249 

interrupt vector table, 249 

INTM,249 

maskable, 249 

nonm!lskable, 249 

priority, 251 

service routine, 248 

software ,interrupt, 249 


interrupt 110, 246 

interrupt service routine, 93, 252 

interrupt vector table, 93 


joint photographic exp·erts group, 308 

dequantization, 311 

Huffman decoding, 311 

JPEG algorithm, 309 


DCT,309 

entropy encoding, 309 

inverse DCT, 311 

quantization, 309 


JPEG decoding, 311 

JPEG encodiIig,31O . 


ac coefficients, 310 

dc coefficient, 310 


JPEG. See joint photographic experts group 

JTAG emulation logic, 1.55 


last-in-first-out, 92 

library modules, 158 

librarY-build utilih', 158 

LIFO. See last-in-first-out 

linker, 158 

loops, 93 


MAC. See niultiply and accumulate 

MAC unit. See multiply and accumulate unit 

machine program, 160 

macros, 158 

mantissa, 44, 46 

MAR. See· modify auxiliary register 

MATLAB,23 


. matrix multiplication, 206, 207 

memory organization, 207 


McBSP. See multichannel buffered serial port 


mean square error, 198 

memory, 77 


data memory, 78 

dual data memories, 78 

dual-access memories, 80 

memory access times, 79 

off-chip memories, 79 

on-chip memory, 79 


memory space of TMS320C54xx processors, 

129 


/L-Iawexpansion table, 129 

A-law explmsion table, 129 

bootloader, 129 

DARAM,129 

data"memory space, 129 

extended pages, 129 

interrupt vector table, 129 

mem6ry~mapped peripherals, 129 

on-chip DARAM, 129 

on-chip RAM, 129 

on-chip ROM, 129 

processor mode status register, ·129 

program memory space, 129 

SARAM,129 

sine look-up table, 129 

speech codec table, 129 


microcode, 93 

microinstructions, 93 

microstore, 93 

modify auxiliary register, 123 

MSE. See mean squa~e error 

multichannel buffered serial port, 155,264 


control registers, 266 

DMA,265 

DRR,265 

DXR,265 

McBSP programming, 266 

RBR,265 

RINT,265 

RRDY, 265 

RSR,264 

subaddresses, 266 

XINT,265 

XSR,265 


multiple buses, 96 

multiple memories, 96 

multiplier, 63 


array, 63 

Baugh - Wooley, 66 
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Braun multiplier, 64 

bus widths, 66 

for signed numbers, 64 

parallel, 63 

speed, 66 


multiply and accumulate, 3, 52, 53 

multiply and accumulate unit, .71 


noise variance, 52 

normalization, 45 

number formats, 42 


accuracy, 47,49 

block floating-point format; 46 

double-precision fixed~point format, 44 

dynamic range, 47, 49 

fixed-point format, 43 

floating-point format, 44 

IEEE-754 format, 45 

precision, 45, 46 

resolution~ 48,. 49 


object formats, 158 

Object library, 158 

on-chip cache, 80 

operand syntax, 123 

overflovv, 53, 54, 72, 74 


overflovv error~ 54 

oversampling sigI!la-delta converters, 266 


parallel I/O interface, 245 

timing diagram, 246 


parallel multiplier, 64 . 

parallelism, 96 


system level parallelism, 98 

PC! configtlration data, 159 

PCM3002. See stereo codec 

periodic sequence, 10 

peripheral memory-mapped registers, 266 


SPSA,266 

SPSD.266 


PID cORtroller, 193 

errol,194 

error derivative, 194 

error integral, 194 


pipeline latency, 97 

pipeline operation of the TMS320C54:xx, 148 

pipelining, 97 , 


system level pipelining, 98 

PMST. See processor mode status register 


position control system. 312 

environmental variations, 314 

head positioning, 314 

position, 312 

position error, 313 

reference, 314 

reference inverse model, 314 

reference model, 314 

reference model output, 314 

servomotor, 312 

servo-plant output, 314 

track, 313 . 

transversal filter, 316 

vveight vectors, 315 


povver measurement system, 317 

current transformer, 318 

data acquisition unit, 318 

DSP unit, 318 

user interface unit, 319 


povver meter, 316 

povver spectral density, II, 25, 27 

PPM. See pulse position modulation 

PRO. See timer period register 

probability density function, 50 

program address generation unit (PAGEN), 114 

program counter, 93 

program execution, 91 


control unit, 93 

hardwired, 93 


program sequencel, 93 

condition logic, 95 


program memory, 78 

program prefetch, 148 

programmed I/O, 246, 247 


BIO, 247 

GPIOCR,247 

GPIOSCR, 247 

handshake, 247 

XF,247 


project creation vvindovv, 162 

project menu, 162 


load program, 165 

project toolbar, 162 


add files to project, 164 

build, 165 

debug, 162 

nevv, 164 

rebuild all, 1152 

release, 162 




344 Index 

project view window, 162 

pseudocode, 105' 


Q-notation, 176 

quantization error, 49, 50 


real-time data exchange, 164 

real-world signals, 298 

reconstruction filter, 1, 2, 7 

record length, 11 

register subaddressing, 257 

relocatable COFF object files, 158 

resolution, 48, 49 

reverse-carry-add, 89 

rounding, 177 

rounding error, 50, 51 

RTOX. See real-time data ex<;hange 


sample-and-hold ciJ'cuit, 270 

sampled-data signal, 7 

sampling, 7 


frequency, 7 

interval, 8' 

oversampling, 270 

rate, 7, 300 

theorem, 8 


saturation logic, 74 

serial port, 146 

shifter, 68 ­

barrel shifter, 69 

signal power, 52 

signal spectrum, 232, 233 

signal to-noise ratio, 52 


.signedfractions,43,44 

signed integers, 43, 44 

sine function, 56 

single-step execution. See debug options 

sinusoidal sequence, 10 

software, 320 


device driver, 321 

software development flowchart, 156 

speech processing system, 302 


autocorrelation, 302 

autocorrelation ~omp\ltation, 305 

dipping level, 305 

fundamental frequency estimation, 302 

pitch detectors, 302 

pitch period estimation, 302, 305 

spectrum fiattening,305 


three-Ievei clipping scheme, 305 

vocoders, 302 


. speech signal, 304 

digital model, 304 

fiicativesounds,304 

nasal tract, 304 

natural frequencies, 304 

unvoiced speech signal, 307 

velum, 304 

vocal apparatus, 31)4. 

voiced speech signal, 307 


stack, SO, 92 

stack pointer, 279 

status and control bits of timet, 142 

status display, 158 .. 

status register Sri, 116 

stereo codec, 155 

subbank access register, 257 


OMSDI,257 

OMSON,257 


5ubbank address register, 257 

. subroutines, 93 

SWWSR. See software wait state register 

synchronous serial interface, 262 • 


CLKR,263 ­
CLKX,263 

COOEC,263 

OR, 263 

Ox, 263 


. frame sync signal, 263 

FSR, 263 

FSX, 263 

full-duple.r, 264 

PCR,266 

RCR,266 

receive timing, 263 

RRDY,263 

SPCR,266 

subbank control registers, 266 


. transmit timing, 263 

XRDY,26.3 


system function, 14 


target libraries, 158 

TCR. See timer control register 

TOOR,143 

TOM. See time-division multiplexed 

throutWput, 2, 97 

TIM. See timer register 




time-division multiplexed, 146. 

. time-domain sequence, 216 

time-invariant system, 12 


linear, 12 

timer, 155 

timer control register, 142 

1'in\er period register, 142 

timer register, 142 


TINT,143 

TOUT,143 


TMS320C5402, 311, 316 

TMS320C5416 


bus interfacing signals, 238 

110 space,' 277 

memory interface. 244, 245 


TMS320C54xx, 108 

addressing modes, 117 


absolute addressing 

dmad, 120 

lk, 120 

PA,120 

pnldd, 120 


bit-reversed addressing, 127 

~circul8I addressing, 124 

direct, 121 

dual-operand addressing, 127 

JIiemoiy-mapped register, 127 

stack,128 


muo. See auxiliary register arithmetic units 

.ARAUl; See auxiliary register arithmetic units 

awciliary regiSter arithmetic units, 112, 123 

auxiliary register ARx, 126 

BI<. See circular-buffer size register 

bus cycle. 241 

bus structure. III 

central processing unit, 112 

circular-buffer size register, 125 

CLKOUT,239 1 


compiler mode hit, 121 

CPL, See cOlJlpller mode bit 

CPU registers, 117 

data bus pairs; i 12 

data-page pointer, 121 

direct mem,ory,access 


'register suhaddressing, 257 

D¥A channels, 255 

DNii\ Qpera.tion, 25~ 


chann'el destination address register, 256 

channel element count register, 256 
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channel priority and enable control register, 

256 


channel soUrce. address register, 256 

channel sync select and frame count 


register, 256 

channel transfer mode control register, 256 

configuration, 256 


DP. See data-page pointer 

dual-access type, 117 


. internal memory, 117 

interruptS, 146 


external, 146 

internal, 146 

maskable" 146' 

nonmaskable, 146 


memory interface, 238 

memory space organization, 236 


paging, 241 

memory-mapped register, 117 

on-chip peripherals, 142 


clock generator, 145 

hardware timer, 142 

host port interface, 143 

serial 1/0 ports, 146 


peripheral registers, 117 

PMST registers, 117 

program bus paiJ;, 112 

program control, 131 . 


hardware stack, 131 

PAGEN,132 

program control unit, 131 

repeat counters, 131, 132 

statu~ registers, 131 


programming examples, ·137 

single-access type, 117 

SP. See stack-pointer 

stack pointer, 121 


TMS320C54xx instructions, 132 

arithmetic, 133 

instruction set, 132 

load and store, 132 

logical, 133 

multiply, 134 

multiply and accumulate, 134 

multiply and subtract, 135 

multiply. accumulate, and delay, 136 

PORTR,245 

PORTW, 245, 246 

program-control, 133 
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TMS320C54xx instructions (continued) 

RBADA, 121- . 


WRITA,121 

TMS320VC5416, 155, 237 

TMS320VC5416 DSK, 155 

transfer function, 14 

truncation, 177 

truncation error, SO, 51 

twiddle factor, 216 


unconditional I/O, 246 

underflow, 72, 74 

universal serial bus, 155 

USB. See universal serial bus 
user-mode DLL, 159 


Viterbi algorithm, 117 


wait states, 240 

READY, 240 

software programmable, 240 

software wait state register, 240 


Win32 DLL, 158 

wraparound, 44,54, 74 


error, 74 


Yulewalk technique, 57 


:tero-order hold, 54, 56 

zero-overhead looping, 3 

Z-transform, 13 .. 



