=% CENGAGE - INDIA EDITION

it~ learning

Avtar Singh - S. Srinivasan
Digital Signal Processing

Implementations Using DSP Microprocessors
with Examples from TMS320C54xx

Digital Signal Processing
lmplementation‘s

Using DSP Mlcroprocessors——W|th
Examples from TMS320C54xx

- >Avtar Singh o
San Jose State University | -

> S. Srinivasan
Indian Institute of Technology, Madras

s o CENGAGE
"" Learning”

Andover « Melbourne « Mexico City « Stamford, CT « Toronto « Hong Kong « New Delhi « Seoul « Singapore » Tokyo

Digital Signal Processing implementations
Awvtar Singh & 8. Srivnivasan

© 2004 by Brooks/Cole, a part of Cengage Learning

This edmon is reprinted with license from Brooks/Cole, a part of Cengage Leaming, for sale in India,
Pakistan, Bangladesh, Nepal and Sri Lanka.

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced,
transmitted, stored or used in any form or by any means graphic, electronic, or mechanical, including
but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information
networks, or information storage and retrieval systems, except as permitted under Section 107 or 108
of the 1976 United States Copyright Act, without the prior written permission of the publisher

ISBN-13: 978-81-315-0034-7
ISBN-10: 81-315-0034-9

Cengage Learning India Private Lemuted
418, F.LE,, Patpargan;

Delhi 1 10092

India

Tel: 81-11-43641111

Fax: 91-11-43641100
Emall asia. mfomdla@oengage com

Cengage Learning is a leading provider of customized Iearnlng solutions with office locations around the globe,
inciuding Andover, Melbourne, Mexico City, Stamford (CT), Toronto, Hong Kong, New Dethi, Seoul,
Singapore, and Tokyo. Locate your local office at: www.cengage.com/global

Cengage Leaming Products are represented in Canada by Nelson Education, Lid.

For product information, visit our website at www.cengage.co.in

Printed in.India’
Eleventh indian Reprint 2011

http:www.cengage.co.in
www.cengage.com/global
mailto:asia-infoindia@cengage.com

Contents

Chapter 1
Introduction 1
1.1 A Digital Signal-Processing System 1
1.2 Programmable Digital Signal Processors 2
1.3 Major Features of Programmab!e Digital Signal Processors 3
14 The Scope of the Book 4
References 5
Chapter 2 , :
Introduction to Digital Sigrial Processing 6
2.1 Introduction
2.2 A Digital Signal-Processing System
2.3 The Sampling Process
2.4 Discrete Time Sequences ,
2.5 Discrete Fourier Transform (DFT) and Fas: Fourier Transform (FFT) 10
2.5.1 The DFT Pair 10 :
2.5.2 The Relationship between DFT and Frequ\ency‘ Response 11
2.5.3 The Fast Fourier Transform (FFT) 1
2,6 Linear Time-Invariant Systems 12
261 Convolution 13
2.6.2 Z-Transform 13
2.6.3 The System Function 13
2.7 Digital Filters

2.7.1 Finite impulse Response (FIR) Filters 14
2.7.2 Infinite Impulse Response (IIR) Filters 17
2.7.3 FIR Filter Design 19~

2.7.4 IR Filter Design 20

W N Y O

14

iv. Contents

2.8
2.9
2.10
2.1

(fhapter

3.1
3.2

33
34
3.5
36
- 3.7

3.8

| Chapter

4.1
4.2
4.3

4.3.1 Multiplier 63 ¢

Decimation and Interpoiation : -2
Analysis and Design Tool for DSP Systems: MATLAB 23
Digital Signal Processing Using MATLAB . 24
Summary ; 38
References - 38
Assignmehts - 38
Laboratory Assignment 40
3 S _
Computational Accuracy in DSP Implementations 42
Introduction - o 42
Number Formats for Signals and Coefficients in DSP Systems 42
3.2.1 Fixed-Point Format 43 ‘

3.2.2 Double-Precision Fixed-Point Format 44 °

3.2.3 Floating-Point format 44

3.2.4 Block Floating-Point Format 46

Dynamic Range and Precision 47
Sources of Error in DSP Implementations 49
A/D Conversion Errors - 49
DSP Computational Errors 52
D/A Conversion Errors 54
3.7.1 Compensating Filter 57

Summary 59
References 59
Assignments 59
4

Architectures for Programmable Digital

Signal-Processing Devices 61
Introduction 61
Basic Architectural Features - _ 61
DSP Computational Building Blocks - 63

: 6;9
610

-Chapter

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

7.9

7.10

Chapter

8.1
8.2

83

6.8.1 Building a Project 162
6.8.2 The Debug Options 162

Contents - vii

DSP Software Development Example 164
Summary 167
References 174
Laboratory Assignments 175
7 |
implementations of Basic DSP Algorithms 176
introduction 176
The Q-notation 176
FIR Filters 178
IR Filters 181
interpolation Filters 187
Decimation Filters 190
PID Controller 193
Adaptive Filters 198
2-D Signal Processing. 201
7.9.1 Matrix Multiplication 206
Summary ' 211
References 211
Assignments - 211
8
Implementation of FFT Algorithms 215
Introduction 215
An FFT Algorithm for DFT Computation - 215
8.2.1 2-Point DFT Computation 216
8.2.2 4-Point DFT Computation 217
8.2.3 8-Point DFT Computation 218
8.2.4 N =2M-Point Computation 218

219

A Butterfly Computation

viii Contents

8.4
8.5
8.6

8.7
8.8

Chapter

9.1
9.2
93

9.4

9.5
9.6
9.7

9.8

9.9

Chapter

101
10.2

Overflow and Scaling 4 220
Bit-Reversed Index Generation 223
An 8-Point FFT Implementation on the TMS320C54xx 224
Computation of the Signal Spectrum 232
Summary 233
References 233
Assignments 233
Interfacing Memory and Parallel I/O Peripherals to

Programmable DSP Devices - 236
Introduction 236
Memory Space Organization 236
External Bus IriterfacingSignals 238
Memory Interface 238
9.4.1 Timing Sequence for External Memory Access 239

9.4.2 Wait States 240

8.4.3 Memory Design Examples 243

Parallel I/O Interface 245
Programmed I/O 247
Interrupts and 110 248.
9.7.1 Handling of Interrupts’ 249

Direct Memory Access (DMA) - 255
9.8.1 DMA Operation Configuration 256

~ 9.8.2 Register Subaddressing 257

Summary 259
References - 259
Assignments 260
10

Interfacing Serial Convertersto a -
'Programmable DSP Device 262
Introduction 262

.Synchronous Serial Interface

262

Contents ix

10.3 A Multichannel Buffered Serial Port (McBSP) A . 264
10.4 McBSP Programming - - - L 266
10.5 A CODEC Interface Circuit ' : - IR 266
10.6 CODEC Programming ' : 275
10.7 A CODEC-DSP Interface Example - 277
10.8 Summary ‘ | 294

References o 295

Assignments ” . 295

Chapter 11 _‘ '

Applications of Programmable DSP Devices _ 297
11.1 Introduction , : : 297
11.2 ADSP System ' _ 297
11.3 DSP-Based Biotelemetry Receiver : 1298

11.3.1 Pulse Position Modulation (PPM) 299
11.3.2 Decoding Scheme for the PPM Receiver 300
11.3.3 Biotelemetry Receiver Implémentation 301
‘ 11.3.4 ECG Signal Processing for Heart Rate Determination 301
11.4 " A Speech Processing System . 302
1141 A Digital Model for Production of Speech Signal 304 '
11.4.2 Autocorrelation 304 ,
11.4.3 Implementation on the TMS$320C54xx Processor 307
11.5 An Image Processing System - , o 307
11.5.1 JPEG Algorithm Overview 309
© 11.5.2 JPEG Encoding 310
11.5.3 JPEG Decoding 311
11.5.4 Encoding and Decoding of JPEG Using the TMSBZOCSAxx 3N

11.6 A Position Control System for a Hard Disk Drive Y 312

11.7 DSP-Based Power Meter 316
11.7.1 Power Measurement System 317 o ‘ -
11.7.2 Software for the Power Meter 320 ‘

11.8 Summary : : ' 322

References - ‘ 322

x Contents

Appendix A ‘ '
* Architectural Details of TMS320V(C5416
~ Digital Signal Processor 323

Index ‘ . 339

Preface

Due to advances in VLSI technology, programmable DSP devices are becom-
ing increasingly available and affordable. These devices have, therefore, be-
come popular in the industry for the design of products. Consequently, a large
number of undergraduate senior projects and graduate projects are planned
and implemented using these devices. Many students attempt these projects
based on a first-level course on digital signal processing. The books that are
used in these classes do not, however, cover the topics from the implemnenta-
tion point of view. There is generally a wide gap in students’ understanding of
DSP algorithms and how to use programmable DSP devices to implement
them..) _

This is a DSP implementation-oriented textbook that has been written
based on the authors’ experience in teaching graduate and undergraduate
courses on the subject. The objective of the book is to help the reader to
understand the architecture, programming, and interfacing of commercially
available programmable DSP devices and to effectively use them in system
implementations. The book is intended for senior undergraduate and first-
level graduate students in electrical engineering and computer science pro-
grams. The book will also be useful to engineers in industry engaged in the
design of DSP systems. The background expected from a reader is a course in
digital signal processing and a course in mlcroprocessors, both at the under-
graduate level.

This book contains 11 chapters and covers the architectural issues of pro--
grammable DSP devices and their relationship to the algorithmic require-
ments, architectures of commercially popular programmable devices, and the
use of such devices for software development and system design. These issues
are covered using a popular family of DSP devices— TMS320C54xx from Texas
Instruments..

Chapter 1 identifies the role of programmable devices in the 1mplementa-
tion of DSP-based systems. Chapter 2 reviews the DSP basics so that the
reader can correlate the remainder of the book to the theoretical requirements
of a DSP system. The aim is not to attempt to teach DSP theory, which is
abundantly covered elsewhere, but to highlight the concepts that are relevant
from the point of view of implementations. MATLAB is used as a tool in ex-
ploring and understanding the basic DSP concepts. Chapter 3 looks at issues
that determine the computational accuracy of algorithms when implemented

xi

xii

Preface

using programmable DSP devices. Although it is desirable to retain-as much
* accuracy as possible when DSP algorithms are implemented in hardware, in a

practical implementation, accuracy has to be measured against the speed of
operation and hardware complexity. Different number representation schemes
are introduced and their effects on precision and dynamic range are discussed.
Various sources of errors in a DSP system are described and are quantitatively
evaluated in this chapter.

One of the objectives of the book is to g1ve readers sufficient exposure to
the architecture of programmable DSP devices so that they can use them ef-
fectively and optimally in designing systems. Chapter 4 explains the architec-
tural features of programmable DSP devices based on the operations these
devices are required to perform, Various building blocks that constitute a
programmable digital signal processor are discussed from the point of view of
implementations. Desirable features for each of these blocks are discussed in
terms of their hardware realization. Chapter 5 introduces the Texas Instru-
ments’ TMS320C54xx family of fixed-point DSP processors and discusses their
archltecture, software, and hardware features. These devices are used in pro-
gramming and design examples throughout the book. Chapter 6 introduces
the various tools that are available for the development of DSP software on
programmable devices. In particular, the use of DSK5416, a system design kit
used for program development for the TMS320C54xx, and the development

~ software called Code Composer Studio are described. The DSK5416 1s the de-

velopment board around Whlch all the designs are implemented in subsequent -
chapters.’ ‘
In Chapters 7 and 8, programmmg of the TMS320C54xx devxces for several

basic DSP algorithms is explained. Examples are constructed to show im-
~ plementations of FIR filters, IIR filters, decimation filters, mterpolatlon filters,
“adaptive filters, a PID controller, two-dimensional mgnal processmg, and the
- FFT algorithms.

Chapters 9 and 10 deal with the signals of a programmable DSP device re-
quired for interfacing it to the real world. Interfacing of memory and /O to
the DSP devices are discussed with examples. The system integration topics

- such as DMA and interrupts are also covered. Programming of a CODEC de-
. vice interfaced to the DSP on the DSK5416 is covered so as to enable the

reader to use its A/D and D/A converters for serial I/0,
Chapter 11 presents several applications of programmable DSP devices. The

_ Objective of this. chapter is to highlight the suitability of programmable DSP

devices for various application areas and motivate readers to design.systems
around these devices. -

The chapters have many end-of-chapter assignment problems and labora-
tory exercises. The lab exercisés require the use of MATLAB as an analysis/
design tool and DSK5416 with Code Composer Studio as a hardware/software

’ development tool. The programs in the book are available on the web site.

The site also contains additional examples and projects and links to other re- -
lated information. To access the site requires a password available from the

Preface xiii

publisher. The programis in the book can be used in many applicétions with

appropriate enhancements. The development tools are inexpensively available

from TIL At the end of a course with this book as the text, the student should
be comfortable in using both hardware and software for designing with pro-

grammable DSP devices.

In conclusion, there is a gap between the algorithm-based DSP courses,
generally offered in most universities, and the implementation of these algo-
rithms using commercial devices and tools. The implementation area is be-
coming increasingly important as it leads to innovative applications for the

marketplace. Seeing . the importance, many universities have attempted

courses in this area, generally without a textbook and mainly relying on the
company literature. In our opinion, this book fills this gap between DSP
theory and DSP design.

A book of this nature can only be developed with help from both academia
and industry. Many of our students at both of our institutions have been the
source of motivation for this project and have contributed to its completion.
Specifically, we would like to thank our students Ramandeep Kaur Sahi, Ulhas
Kotha, Uldarico Muico, and H. Larios of San Jose State University, and Ab-
hishek Tandon, Vineet Jain, Kaushik Raghunath, Gaurav Verma, and Surender
Reddy of the Indian Institute of Technology, Madras. Secretarial assistance
provided by S. Sreekala and the technical assistance by Narendra S. Sihra are
gratefully acknowledged. Chris Petersen and Keith Ogboenyiya of Texas In-
struments are specially thanked for arranging a generous donation of the de-
velopment boards and the software, without which this’ pro;ect could not have
been completed.

Avtar Singh, SJSU.
S. Srinivasan, T, Madms

Chfapter'] |

Introduction

1.1 A Digital SignaI-Processing System

Digital signal processing (or DSP) is the technique of performing mathemati-
cal operations on signals represented as sequences of samples. These sequences
are obtained by converting real-world analog signals by means of analog-to-
digital converters. After processing, the digital samples are converted back to
‘analog signals by means of digital-to-analog converters. Although function-
ally digital signal processing is the heart of a DSP system, the analog front end
and the analog back end are equally important, as the system has to be inter-
faced to the real-world signals, which are mostly analog. Digital processing
of signals offers many advantages over analog processing. Some of these are:
immunity to environmental noise, predictable and reproducible behavior,
programmability, size, and cost. Examples of digital signal-processing systems
* can be found in speech and audie systems, telecommunication applications
such as modems, electronic and biomedical instrumentation, image process-
ing, robotics, control applications, etc. , '
The block diagram of a typical DSP system is shown in Figure 1.1. It con-
sists of the DSP processor between the analog front end and the analog back
end. The analog front end consists of an antialiasing filter, a sample and hold
circuit, and an analog-to-digital (A/D) converter feeding into the DSP. The
back end consists of a digital-to-analog (D/A) converter to convert the digital
output to its analog value followed by a reconstruction filter. The antialiasing
filter, an analog lowpass filter, is used to band limit the input analog signal to
the required frequency range and prevent frequency components beyond this
range from appearing as aliases in the sampled spectrum of the input signal.
The sample and hold circuit presents the samples of the input signal at the
rate determined by the system design requirements to the input of the analog-
to-digital converter. It also holds these samples at constant levels irrespective
of the variations in the input signal in the interval between sampling instants.
The analog-to-digital converter maps the value of the analog input sample to
its equivalent digital representation and feeds it to the DSP..

2 Chapter 1 Introduction

Analog Front End DSP “Analog Back End * -
Antialiasing Filter, Processor D/A Converter,
Analog ’ . . Analog
Signal in Sample and Hold, | — Réconstmctlon Filter. Signal out
A/D Converter. . ‘
Digital Digital

Figure 1.1

The block diagram of a DSP system

After processing, the digital outputs of the DSP are converted to their
equivalent analog values by the digital-to-analog converter. These discrete
analog values are converted to a smooth, continuous waveform by the recon-
struction filter at the output for use in the real world. Like the antialiasing
filter, the reconstruction filter is also an analog lowpass filter.

The following issues are important to be considered in designing and im-

' plementing a DSP system.

Complexity of the algbx"ithm: The arithmetic operations to be performed
- and the precision required are decided by the application.
Sample rate: The rate at which input samples are received and processed
~ varies with the application, and this rate along with the algorithm com-
plexity determmes whether a parucular DSP is suitable for a given applica-
-tion,

Speed: This depends on the technology To meet specified throughput
requirement ‘with a given sample rate, it must be possible to operate the
DSP at a particular clock rate (or speed). If this speed is not achievable in a
given technalogy, a faster technology or other options must be explored.

Data representation: The format and the number of bits used for data
representation depend on the arithmetic precision and the dynamic range
required for the gwen application.

1.2 Pro'g.ll'ammable, Digital Signal Processors

Digital signal processors can be either application-specific or general purpose.
Application-specific chips are designed to perform one function more accu-
rately, faster, or more cost- effectwely than their general-purpose counterparts.
Typical examples are digital filters and fast Fourier Transform chips. Some
application-specific chips are programmable, but only within the confines
of the chip’s function; the coefficients of a filter, for example, can be pro-
grammed

1.3 Major Features of Programmable Digital Signal Processors 3

A programmable digital signal processor, on the other hand, is cost-

effective. It can be programmed for different applications and has a short

design cycle time. Basically, it is a microprocessor whose architecture is opti-
mized to process sampled data at high rates [1]. It performs such operations
as accurrulating the sum of multiple products much faster than an ordinary
mlcroprocessor Its architecture is designed to exploit the repetitive nature of
s1gnal processing by pipelining the data flow and by incorporating parallelism
in its operation. These features are designed in the programmable DSP to
achieve higher speed and throughput

For a given application, there is a large number of programmable DSPs to

- choose from, based on such factors as speed, throughput, arithmetic capa-

bility, precision, size, cost, and power consumption. As the technology grows,
there are more and more such devices with better and better performance
characteristics that are easily incorporated in DSP systems

1.3 Major Features of Programmable Digital Signal
Processors

" Although there are many unique architectural features implemented in pro-

grammable DSP devices [3], following are the ones that are commonly found:

Multiply-accumulate hardware: Multiply-accumulate is the most fre-
quently used operation in digital signal processing. In order to implement
this efficiently, the DSP has a hardware multiplier, an accumulator with
an adequate number of bits to hold the sum of products and an explicit
multiply-accumulate instruction.

Harvard architecture: In Harvard memory architecture, there are two
memory spaces, typically partitioned as program memory and data mem-

© ory (though there are modified versions that allow some crossover between
the two). The processor core connects to these memory spaces by two
separate bus sets, allowing two simultaneous accesses to memory. This
arrangement doubles the processor’s memory bandwidth, and i crucial in
keeping the processor core fed with data and instructions. The Harvard
architecture is sometimes further extended with additional memory spaces
and/or bus sets to achieve even higher memory bandwidths.

Zero-overhead looping: One common characteristic of DSP algorithms
is that most of the processing time is spent on executing instructions
contained within relatively small loops. That is why most DSP processors
include specialized hardware for zero-overhead looping. The term' zero-
overhead looping means that the processor can execute loops without con-
suming cycles to test the value of the loop counter, perform a conditional
branch to the top of the loop, and decrement the loop counter.

4 Chapter 1 Introduction

Specialized addressing: DSP processors often support specialized address-
‘ing modes that are useful for common signal-processing operations and
algorithms. Examples include module (circular) addressing, useful for
implementing digital-filter delay lines, and bit-reversed addressing, useful

. for implementing a commonly used DSP algonthm called the Fast Fourier
Transform or FFT. -

1.4 The Scope of the Book

Due to advarices in VLSI technology, programmable DSP devices are becom-
ing increasingly available and affordable. These devices have, therefore, be-
come popular in the industry for the design of products. Consequently, a large
number of undergraduate senior projects and graduate projects are planned
and implemented using these devices [2]. This book attempts to bridge the
gap between the knowledge of DSP theory and practical implementation of
systems using DSP devices. ,
The scope of this book includes the following:

1. Architectural issues of programmable DSP devices and their relationship
to the algorithmic requirements

" 2. Exposure to commercially popular architectures

3. Use of programmable dev1ces for software development and system
design

. These topics are covered using a popular family of DSP devices from Texas
Instruments (TI), the TMS320C54xx DSP family, similar to the one shown in
Figure 1.2. The processors from this family have been used in many digital
signal-processing implementations. The processors from other companies,
such as Analog Devices and Motorola, can equally be used to implement such
systems. In this book, however, we limit our discussion to the TI processors.

The book contains 11 chapters. Chapter 2 reviews the basic DSP concepts.
_Chapter 3 covers the accuracy in DSP implementations. It discusses the
sources of errors in DSP computations. Chapter 4 lists the architectural
requirements of digital signal processors for efficient implementation of algo-
rithms. Chapter 5 introduces programmable DSP devices and gives the archi-
tectural and programming details of the TMS320C54xx family of devices.
Chapter 6 covers the software development tools for programmable DSP de-
vices. Chapters 7 and 8 deal with implementations of DSP algorithms on
TMS320C54xx DSP processors. Chapters 9 and 10 discuss interfacing of DSP
devices to external peripherals, both serial and parallel. Chapter 11 gives se:

- lected examples of apphcatwns of programmable DSP devioes.

References 5

Figure 1.2 “TM532OC 54x DSP Microprocessor

(Courtesy of Texas Instruments Inc.)

References .

1. Allen, J., “Computer Architecture for Digital Slgnal Processmg,” IEEE Pro-
ceedings, Vol. 73, pp. 852-873, May 1985.

2. Special Issue on Digital Signal Processing in Undergmduate Education, TEEE
Transactions on Education, vol. 39, no. 12, May 1996.

3. lapsley, P, Bier, J., Shoham, A., and Lee, E. A., DSP Processor Fundamentals:
Architectures and Features, IEEE Press, Piscataway, NJ, 1997.

Cha pter 2

Introduction to Digital Signal Processing

2.1 'Introd‘m’:tion

This chapter reviews the important bas1c concepts of digital signal processmg
(DSP). The coverage is brief and is from the viewpoint of implementations of
DSP algorithms. The concepts are illustrated with examples using MATLAB’s
capability to analyze and design algorithms. For comprehensive coverage of
DSP algorithms, the reader is advised to consult the references [1, 2] at the end
of this chapter. Specifically, the following topics are covered in this chapter:

A digital signal-processing system

'The sampling process

Discrete time sequences ‘ _
Discrete Fourier transform (DFT) and fast Fourier transform (FFT)
Linear time-invariant-systems

Digital filters

Decimation and interpolation

Analysis and design toel for DSP systems: MATLAB

2.2 A Digital Signal-Processing System

A digital signal-processing (DSP) system uses a computer or. a digital pro-
cessor to process signals. The real-life signals are analog and therefore must
be converted to digital signals before they can be processed with a computer.
To convert a signal from analog to digital, an analog-to-digital (A/D) con-
verter is used. After processing the signal digitally, it is usually converted to
an analog signal using a device called a digital-to-analog (D/A) converter. The
block diagram of Figure 2.1 shows the components of a DSP scheme. Th1s

2.3 The Sampling Process 7

Analog
~pp| Antialiasing
Filter

, . Analog
Ll DSP Lyl D/A || Reconstruction
/ / ~ Filter —

z

Digital Digital

Figure 2.1 A digital signal-processing system V

figure contains two additional blocks, one is the antlallasmg filter for filtering
the signal before sampling and the second is the reconstruction filter placed
after the D/A converter. The antialiasing filter ensures that the signal to be
sampled does not contain any frequency higher than half of the sampling fre-
quency. If such a filter is not used, the high-frequency contents sampled with
an inadequate sampling rate generate low-frequency aliasing noise. We will
discuss the choice of sampling frequency further in the next section. The re-
construction filter removes high-frequency noise due to the “staircase” output
of the D/A converter.

The signals that occur in a typical digital 31gna1 processing scheme as
shown in Figure 2.2-are: continuous-time or analog signal, sampled signal
sampled-data signal, quantized or digital signal, and the D/A output signal.

An analog signal is a continuous-time, continuous-amplitude signal that
occurs in real systems. Such a signal is defined for any time and can have any
amplitude within a given range. The sampling process generates a sampled
signal. A sampled signal value is held by a hold circuit to allow an A/D con-
verter to change it to the corresponding digital or quantized signal. The signal

- at the A/D converter-input is called a sampled-data signal and at the output

is the digital signal. The processed digital signal, as obtained from the digital
signal processor (DSP), is the input to the D/A converter. The analog output
of a D/A converter-has “staircase” amplitude due to the conversion process
used in such a device. The signal, as obtained from the D/A, can be passed

through a reconstruction lowpass filter to remove its high-frequency contents

and hence smoothen it.

2.3 The Sampli’ng Pmcess

The process of convertmg an analog signal to a digital signal involves sam-
pling the signal, holding it for conversion, and converting it to the corre-
sponding digital value. The sampling frequency must be high enough so as
to avoid aliasing. Aliasing is a phenomenon due to which a high-frequency
signal when sampled using a low (inadequate) sampling rate becomes a low-
frequency signal that may interfere with the signal of interest. To avoid

8 Chapter 2 Introduction to Digital Signal Processing

0.5
(@
0|
05
()
0.1 0.15 0.2 0.25 0.3 0.35 0.4 045 0.5
045 H i] H . i 1 1
] o
(C) i 193 A
. 0[) ! L 1 t
01 015 0.2 0.25 03 035 04 0.45 0.5
0.5 T T T | T Y T “\}
@- 2 : T .
O‘) 1 ‘ 1) L 1 i
0
1

01 015 - 02 025. 03 035 . 04

0.45

0.5

converter ouput signal

" Figure 2 2 Typical signals in a DSP scheme: (a) continuous-time signal, (b) sampled signal,
() sampled-data signal, (d) quantized (digital) signal, (¢) digital-to- analog

aliasing, the sampling theorem states that the following requirement must Be;

- satisfied:
fs=1UT > 2fnax.
where

fs is the sampling frequency in Hz,
T is the sampling interval in seconds, and
Jfmax is the highest frequency contents of the analog signal

(2.1)

2.4 Discrete Time Sequences 9

_For instance, if we sample a signal with its highest frequency content as
10 KHz, it must be sampled using a sampling rate of more than 20 KHz. In
order to satisfy this requirement, an antialiasing filter is used. This filter limits
the frequency contents of the signal to satisfy the sampling theorem. One has
to sacrifice (unimportant, one hopes) frequency contents to avoid violation of
the sampling theorem, or else the sempling rate must be increased. The actual
sampling frequency must be higher than this theoretical limit to avoid tight

" constraints for the implementation of the antialiasing filter.

2.4 Dis'crete Time Sequences

The result of sampling an analog signal is a sequence representing the signal
samples. The sequence that results depends upon the mgnal that is sampled.
For instance, when

x(t) = A cos 2nft
is sampled using T as the sampling interval, it yieldg the samples as
| x(nT) = A cos 2afmT, where n = 0, 1,2,...,etc.
For simplicity, the sequencé x(nT) is &enoted as x{n). Thus,
| x(n) = A cos 2nfnf‘
>Since the sampling frequency f, = 1/T, and substituting for 2zf T, we obtain
;c(n) = A cos 2nfnT = A cos 27:}‘3‘1/]‘§ =A ;:os fn

The quantity, denoted by 8, is called the digital frequency. Note that the units
for the digital frequency are radians. The general equation that relates the
digital frequency to analog frequency is

8 = 2nf T = 2xnflf, (2.2)
Note that the digital frequency range, for a properly sampled signal (f, >
2fmax) as obtained from Eq, 2.2, is Zrom 0 to 7.
The above x(n) sequence, called the sinusoidal sequence, occurs frequently
in DSP systems. Another important sequence that arises in DSP schemes is the
complex exponentlal sequence given by

plm) =N = -1,0,1,2..., etc.

where N is an integer. Ty

10 Chapter 2 Introduction to Digital Signal Processing

A sequence that repeats is called a periodic sequence. Periodic sequences
result from sampling periodic signals and satisfy the following relation:

x(my=xn+N), n=...~1,0,1,2,... (2.3)

where N is called the sequence period. It is easy to show that the sinusoidal

sequence x(n) above has a period f/f, and the exponential sequence p(n) has
a period equal to N samples.

The frequency response associated with a time domain N-point sequence
x(n) can be determined from » ‘

. N-1 ' ,
X(e)y = Z x(n)e " : (2.4).

=

where @ is the digital frequency, which ranges from 0 to 2z radians corre-
sponding to the analog frequency from 0 to f; Hz. Note that the frequency
response is a complex continuous function of & and provides both the mag-
nitude response and the phase response.

2.5 Discrete Fourier Transform (DFT) and Fast Fourier
Transform (FFT)

2.5.1

The discrete Fourier transform, or DF’E, is used to transform a time domain
x(n) sequence to a frequency domain X(k) sequence. To transform X(k) to

‘x(n), the inverse discrete Fourier transform, or IDFT, is used. Algorithms for

fast computation of DFT and IDFT are known as FFT algorithms.

The DFT Pair

The two equations that relate the time domain x(71) and the frequency domain

X(k) sequences are called the DFT pair.and are given as

- N1
X(k) = x(me ™ N, k=0,1,2,...(N—1) (2.5)
n=0 .
N-~-1

x(n) = UN > X(k)e™ N, n=0,1,2,... (N-1) (2.6)
k=0 .

The first equation is called the DFT and the second is called the IDFT. The N
in the DFT pair denotes the number of elements in the x(n) or X(k) sequence.

252

2.5.3

2.5 Discrete Fouiier Transfonﬁ (DFT) and Fast Fourier Transform (FFT) 11

The Relationship between DFT and Frequéhty Response

The frequency response of a sequence (Eq. 2.4) and its DFT (Eq. 2.5) are
related as follows:

X(k) = X()pyps k=0, 1,2, ... (N — 1) @)

" The elements of X(k) as obtained from this equation are spaced at a digital

frequency of 27/N radian. The equation allows us to use DFT to compute
points on the frequency response of the x(n) sequence. The corresponding
analog frequency spacing Af, between elements-of the X(k) sequence, using
Eq. 2.2, can be shewn to be

Af = f,/N = 1/NT = 1/T, (2.8)

~ where Ty is called the signal record iength. From the above relation, it is easy

to conclude that the larger the signal record, the smaller (or better) is the fre-
quency spacing.,

The significance of this result lies in the fact that it describes the trade-
off between the sampling rate (f;), number of sequence points (N), and the
frequency spacing (Af). To decrease the frequency spacing, N-can be in-
creased by simply appendmg zeros to the x{n) sequence before computmg
X(k).

The: Fast Fourier Transform (FFT)

The direct computation of DFT and IDFT requires a large number of complex
multiplies. A number of algorithms have been developed to efficiently com-
pute DFT and IDFT. These algorithms use power of 2 points and exploit the
periodic nature of the complex exponential e2™*¥ occurring in the DFT and
IDFT equations. Table 2.1 compares the complex multiplies needed to com-
pute DFT directly by using an FFT algorithm called the radix-2 algorithm. |
The radix-2 algorithm uses N that is an integer power of 2, such as 2, 4, 8, 16,
etc. - ‘

It is possible to show that the DFT requires N2 complex multiplies and the

N -
radix-2 FFT algorithm requires 3 log, N. This produces computational sav-
ings for larger values of N.
An application of FFT can be to use it to compute signal power spectral

density (PSD) or simply the signal spectrum. The FFT result X(k) can be used
to compute the spectrum as follows:

S0 = UMIXR = UNXERX B, k=0,1,2,. LN=1 (@9)

The plot of S(k) prowdes power density a.ssoc1ated with various frequenaes
and is used to charactenze the signal in the frequency domam

12 ‘Chapter 2 Introduction to Digital Signal Processing

Table 2.1 Cémptex Mulﬁplies for Direct DFT and FFT-based DFT Computations

Direct DFT FFT Based DFT Multiplies/FFT

N . Computation Computation ‘ Multiplies
2 4 . 1 40

16 4 40
16 256 32 8.0
64 4096 192 : 213
256 65536 1024 : 640
512 ' 5122 . 512/2log, 512 ~ 2x512+log, 512

2.6 Linear Time-Invariant Systems

To represent the input/output relation of a discrete system, the block diagram
of Figure 2.3 can be used. A system to which the superposition theorem can be
applied is known as a linear system. A system that is described by the same
input/output relation at -all times is called a time-invariant system. A system
that is both a linear as well as time-invariant is called linear time-invariant, or
LTI, system. - ‘ - : ~
The LTI systems can be represented in the time domain using linear con-
stant coefficient difference equations. A unit sample (or impulse) response is
used to characterize an LTI system. Time domain convolution can be used to
determine the response of an LTI system. ,
~ In the frequency domain, the system transfer function is used to represent
such a system. We now briefly discuss these concepts.

x(n) S y(n)
: I - LTI System S

Figure 2.3 Representation of a linear time-invariant system

2.6 Linear Time-Invariant Systems 13

'2.6.1 Convolution .

262

2.6.3

Convolution is an operation that relates the input/output of an LTI system to
its unit sample response. It is given by the equation

o0

y(n) = fz h(n)x{n — m) = 3 x(mh(n — m) = hin) + x(m) (2.10)

== —00 me=s -y

where x{n) represents the input, y(n) the output, and k(n) the unit sample
response of the system. The * in Eq. 2.10 is used to represent the convolution
operation. This result can be derived using the impulse response definition as
applied to the sampled x(n) sequence. This equation is used to compute the
time-domain response of a system to an arbitrary input sequence.

Z-Transform

We have seen in Section 2.4 that the frequency response associated with the N-
point sequence x(n) is given as

N—1 ’
X(e#) =" x(mpe " @11)
V n=0 ‘) .
‘Using the substitution
z="e/ ‘ @12)

in the above equation yields
. N-1
X(z) = Z x(nyz ™" (2.13)
n=0 : »
where, X(z) is called the Z-transform of x(n). Since the parameter z is re-

lated to the digital frequency, X(z) represents the frequency response in terms
of z. ‘

The System Function
The ratio of Z-transform of }’(n),to that of x(n)

H(z) = Y(2)/X(2) : (2.14)

http:system.to

e

16 Chépter 2 Iritroduétibn to Digital Signal Processing

Figure4 2.5

> Example 2.1

x(n) x(n-1)

Unit
_ Delay

(@)

Magnitude Response

T ¥ " T T - Y

0.8}
) 0.61
- 04}

02}

. Phase Response

' -2 L 1 - i IR T i - 1
0 0.5 1 1.5 2 25 3
: -. Radians

- 35

FIR filter in Example 2.1: (a) block diagram, (b) magmtude frequency response,
© phase frequency response

A FIR Filter
The equation o ’
‘ y(n) = 0.5x(n) + 0.5x(n — 1)

describes a simple FIR filter whose output is the average of the current input
x(n) and the past input x(n — 1) V

2.7.2

2.7 Digital Filters: 17

The unit sample response of this filter is obtamed by substxtutmg d(n) for
x{n). Thus, we have

‘ h(n) = 0.55(11) + 0.56;(1‘!,-,‘" 1)
= [0.5 0.5] as a sequence.
The frequency response, using Eq. 2.17, is 6btained as
H(e?) - 0;5 + 0.5 = ¢ 7702 cos 012
or
_ H(z) =05 + .52}
‘The magnitude response is given as
C |H(?)| = M) = cos 012

and the phase response is given as ‘

LH(e#) = P(6) = —612 + Lcob 12 -

The group delay, which represents the delay to various signal frequencies, can
be obtained by dlfferennatmg and negatmg the phase response function. For
this example case it is obtained as

Group delay =

Figure 2.5 describes this filter with its magnitude and phase responses. Im-
plementing this filter requires a unit delay, two multiplies, and an addition.

Infinite Impulse Response (lIR) Filters

The general difference Eq 2.15 for an LTI system defines an infinite impulse
response (IIR) filter. The corresponding transfer function for this filter can be
shown to be

bo + bz bzt 4 bsz 4+ byt
@127 g2t g3z — e gz N

H(z) = (2.19)

~

Since an IIR filter has feedback in its structure, its stability depends upon
the number and values of coefficients. In general, an IIR filter has nonlinear
phase response and does not provide constant group delay. This property
makes this filter unsuitable for applications that cannot tolerate phase distor-
tion. The advantage of an IIR filter is its smaller number of coefficients to re-
alize a desired frequency response relative to an FIR filter. Fewer coefficients
require shorter computation time, providing capability to handle a larger
bandwidth for a signal-processing scheme.

18 Chapter 2 Introduction to Digital Signal Processihg

B> Example 2.2 An HR Filter

0.1

) .y
: Unit)
. i
yin-1 Delay
Magnitude Responge
. 1 Y T T T T T
o8\ | | 1
- 06} : ' ~ o 4
® . ‘
041 ‘ 4
02} ' .
0) L i L 1 1 e i
0 0.5 1 15 .2 2.5 3 35
: Phase Response
0 ¥ H ¥ H ¥ T

-1.5 — .

0 05 - 1 1.5 2 2.5 3 3.5

Radians

Figure 2.6 The IR filter in Example 2.2: () block diagram, (b} magnitude frequency response,
{c) phase frequency response '

The difference equation ,
y(n) = 0.9y(n — 1) + 0.1x(n)

http:Respon.se

2.73

2.7 Digital Filters 19

defines an IIR filter whose output is computed by taking 90% of past output

~ y(n—1) and 10% of the current input x(n).

The transfer function of this filter is obtained as

' 0.1 0.1z
Hz) = (1-09z"1) (z—0.9) _
or '
, 0.1e/
joy — 7%
H(e”™) (e/f —0.9)

Figure 2.6 describes this filter and its magnitude"and phase frequency re-
sponses. The magnitude and phase frequency responses can be computed by
substituting values for the digital frequency 6 in the equation above and find-

ing the absolute value for the magnitude and angle for the phase. To imple-
‘ment this filter requires a unit delay, two multiplies, and an addition.

FIR Filter Design

~ We have seen that a FIR filter’s frequency response can be obtained from Eq.

2.17. Solving the equation for b for a desired frequency response H(e/%) yields
the design equation for the FIR filter. The solution involves integration and is
given as

n
by = '1/27rj. H(e/%)e 7" do (2.20)
n

where k is an integer from i—co0 to 4-00. An algebraic closed-form solution of
the above equationn may not be possible for an arbitrary frequency function
H(e’®). In such a case, a computer-based solution can be obtained.

The impulse response by as obtained by solving the above equation may
be extremely long and may have to be truncated. The truncation results in a
distortion called Gibb’s phenomenon that introduces ripple in the passband

. of a filter’s frequency response. To control the Gibb’s phenomenon, special

truncation windows are used. These windows, in general, provide smooth
truncation to control the ripple in the passband of the filter. Window-based
FIR filter design methods are covered in many DSP books, including the ref-
erences at the end of this chapter. ’

Parks—McClellan FIR Filter Design
This is a'computer'method for the design of FIR filters. It is based on the

_ Remez exchange algorithm and Chebyshev approximation theory and involves

minimization of the maximum error between the actual and. the desired

http:H(ejo).In

20 Chapter 2 Introduction to Digital Signal Processing

274

Figure 2.7

frequency responses. It allows arbitrary frequency response specification and
designs an equiripple FIR filter. This techmque has been implemented in
many filter design packages and is available iu the MATLAB program. The
technique will be used to design FIR filters for the examples in this book.

IR Filter Design

Two approaches are used to design IIR filters. One is based on analog filter
design techniques and the other, called direct design, is based on a least-
squares fit to achieve the desu"ed frequency response

llR Filter Design Based on‘Anaiog Filter Design Techniques
Digital IIR filters are designed using techniques that are based on analog filter |

“design methods such as Butterworth filter design, Chebyshevl filter design,

Chebyshevz filter design, and elliptic filter design. These methods are covered
in many DSP books, including the references at the end of this chapter.

The approach consists of designing an analog filter to satisfy, the filter
specifications and then converting it to the equivalent digital filter using an
appropriate transformation. The filter specifications consist of: passband rip-
ple (dB), stopband attenuation (dB), and the transition width (ws — wp). For a
lowpass filter the specifications are illustrated in Figure 2.7. These design
methods are available in the MATLAB program and are used for examples in

this book. -

Magnitude

(dB)
Passband
Ripple
Stopband ‘ : ,
Attenuation " L A

Transition Frequency

Width

 Lowpass filter design specifications-

2.9 Analysis and Design Tool for DSP Systems: MATLAB 23

> Example 2.4 The Interpolation Process

Let x(n) = [0 3 6 9 12] be interpolated using L = 3, After inserting zeros to
increase the sampling rate, we get

win)=[000300600900 12]

Using the lowpass filter given by br=1[1/3 2/3 1 2/3 1/3], we get the inter-
polated sequence as ‘

ym)=[012345678910 11,12]

This is-an example of linear interpolation, as the filter used computés linearly
the interpolated samples from the original samples.

2.9 Analysis and Desugn Tool for DSP Systems:
MATI.AB

A tool for DSP analysis and design must provxde funcuons for carrying out
the following basic operations:

. Signal data generation and presentation
. Convolution

. Frequency response

. Discrete Fourier transform (DFT)

. Filtering

. Spectrum estimation

. FIR filter design, and

. IIR filter design

 MATLAB [3, 4] is a program that provides the above functions to process -
signals in addition to many more. The program is:based on manipulation of -
data represented as vectors. The data can be one-dimensional, such as speech,
or two-dimensional, such as an image.

Signal data input to MATLAB is by way of data files or direct keyboard
entries for matrix elements. For signal processing, program files incorporating
the DSP functions can be used. These files are called M-files. MATLAB also
provides the capability to use command mode execution. In the command
mode, the commands can be entered directly to process signals. ’

MATLAB provides an extensive list of commands or statements usable
for mgnal-processmg analysis and design. The signals can be presented and
viewed using its extensive data presentation capability, including various types
of plots. ‘

24 Chapter 2 Introduction-to Digital Signal Processing

MATLAB is supported with Help and Demo facilities that can be used
to learn the program. It also provides an editor to create program and data
files. This is the program we use in this book to design and analyze the DSP
algonthms

2.10 Digital Signal Procéss’mg Usiﬁngk,MATLAB

>

&

Example 2.5

Figure 2.10

Example 2.6

In this section, we present MATLAB examples to illustrate the basic digital
signal-processing operations covered in this chapter, Each program is fol-
lowed by the results it produces when executed. The reader is advised to be-

come familiar with the commands used in the followmg programs by using

MATLAB’s extensive Help and Demo facility.

Convolutloh of Two Sequences [Figure 2.10] ‘ ‘ /

% Convolution of sequence x and sequence h to generate sequence y
x = [1234];

h=1[321];

y = conv{x,h)

Y

38 14.20 11 4

Result of convolution of seque‘nce [1 2 3 4}and seqUence 321}

Frequency Response of aﬁ FIR Filter [Figure 2.11]

Frequency response of a digital differentiator (FIR Filter}:
y(n} = x(n) - x(n - 1)

N

o0

Filter definition
= [1-1];
- 1;

a0

oo

oF

"Frequency response comptjtation

[h,th] = fregz(b,a,32);

Frequency response plot.
c]f
figure(l) . ‘
subplot (211}, p1ot(th abs(h)) title(’Magnitude Response'),

“subplot{212), plot(th, ang]e(h)) t1t1e(Phase Response’ },

xlabel('Radians"')

2.10 Digital Signal Processing Using MATLAB 25

Magnitude Response

2) L Mg N H - 1 :)
L5} J
1t -
05| |
0 - . . 1 \ ! A A - L
0 0.5 1 15 2 25 3 35
Phase Response ‘
2 ! T

¥ T N T T

1] i ‘ i 1 i L

0 0.5 1 1.5 2 2.5 3 3.5
Radians :

Figure 2.11 Frequency response of the FIR filter, y(n) = x{n) — x(n - 1)

P> Example 2.7 Spectmmofa Noisy Sinusoidal Sequence [Figure 2.12]
' Genera’ce a5 Hz s1gna1 of 1 sec duration sampled at 100 Hz.
= 0:.01:1;
X = sin(2*pi*b*t);
cif
figure(l)
plot(t,x), title('Original Signal'), xlabel('Time in'sec.') -

% Add random noise mth a standard deviation of 1 to produce a noisy.
% signal y
y = x + l*randn(l, 101),
figure(2) :
plot(t,y), title('Noisy Signal!'), xlabel('Time in sec.')

% Compute the DFT and power spectral density of the noisy signal y
using 128 point FFT

Y = fft(y,128);

Pyy = Y.*conj(Y)/128;

Original Signal

1 T 1 T ¥ H T T ¥ H

0.8

0.6

0.2+
~0.4
-0.60}F

~(1.8

’ A-’] L \ju i l L L [I

0 .1 0.2 0.3 04 03 06. 07 0.8 09 l
‘ Time in sec. :

(a)

Noisy Signal

T T T T —T T |

P ——————

. I | |
O f ()
o I
-1 }ﬁ
21 h)
—-2.5 . L M o L ! L
0 0l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
' Time in sec. ’
(b)

Figure 2.12 Power spectral density of a noisy sinusoidal signal: (a) original sinusoidal signal,
{b) noisy sinusoidal signal, (c) power spectral density of the noisy sinusoidal signal
: {(continued)

>

Figure 2.12

Example 2.8

N 0,

2.10 Digital Signal Processing Using MATLAB 27

Power Spectral Density

Y T T T T T ¥

12 r T

s]

0 5 10 15 20 25

30 35 40 45 50
Frequency (Hz)
N (5 I

Continued

% Change the horizontal axis to represent ana]ogﬁ frequency in the
frequency response plot

f = 100/128*(0:63);

figure(3) - ,

plot(f,Pyy(1:64)), title('Power Spectral Density'),
xlabel('Frequency (Hz)') ‘

FIR Filter Analysis {Figure 2.13].

g,

% Example 2.8: FIR Filter Analysis

Filter definition (a 5-point averager)
=[.2.2.2.2.2];)
{1. .0 .0 .0 .0];

[P =

i

% Frequency response calculations and plots

[h,th] = fregz(b,a,32); .
figure(l) - S ,
plot(th,abs(h)), title('Magnitude Response'), xlabel('Radians');

Figure 2.13

0.9t : » - h ~ 4

Magnitude Response

1 - T T T " ¥ ==

0.8} | ‘ - | _ N
07} | - 1
0_6-’ . . ’) 1-
05} : " -
04} . |]

03) : -

0.1} ' ‘ :

Radians
(@

dB Magnitude Response

T T T T T

0 0.5 1 1.5 2 2.5 3 35
Radians

(b

Anélysis of a FIR filter: {a) magnitude response, (b) dB magnitude response,
(c) phase and group delay responses, (d) impulse response, (e) pole-zero plot -
o ’ (continued)

2.10. Digital Signal Processing Using MATLAB

" Phase Response

T T T T

1
'73 i \)) . S ; i
0 0.5 1 1.5 2 . 2.5 3 3.5
Group Delay Response
2 T ¥ T T g K H
2 i
2 4
2 i i 3 PR i F
0 0.5 1 1.5 2 25 3 35
Radians
()
Impnlse R_esponse
0.2 TRIPE VA b T T T —7 —
0.18 L . i
0.16 -) - ’ i
0.14L 4
0.121 i
0.1k -
0.08 1 ‘ 4
0.06 - ; .
0.04| " 1
0.02+ . . J
0 R AT g A A T A R R A R ATy e CAT ATy TR T AT TR o aCY
0 5 1 15 20 30 35
Seconds
@

29

Figure 2.13 " Continued

Figure 2.13

30 Chapter 2 Introduction to Digital Signal Processing

e ,
- “,
08 - N -~
Nl o ’ . .,
. S
- - ,

0 S
5 . 0
« X,
.,
A . N, -
. \,
. P2
/

02L /

. Imaginary Part
=

Real Part
@

Continued

figure(2) _

plot(th,20*Togl0(abs(h})), xTabel('Radians'), title{'dB Magnitude
Response*); S ‘

figure(3) : _ .
subplot(211), plot(th, angle(h)), title('Phase Response’) .
subplot(212), plot(th, grpdelay(b,a,32)), xlabel('Radians'),"
title('Groupdelay Response'); ’

% Impulse response calculations and plot
x = [1 zeros(1,31)];

y = filter(b,a,x);

figure(4)

stem(y), title('Impulse Response'), xlabel('Seconds');.

% Pole-Zero Plot
[z,p,k] = tf2zp(b,a);
figure(5}

zplane(z,p)

http:zeros(1.31
http:grpdelay(b,a.32

2.10 Digital Signal Processing Using MATLAB 31

> Example2.9 IR Filter Analysis [Figure 2.14]

Example 2.9: IIR Filter Analysis [Figure 2.14]
Filter definition

[.0013 .0064 .0128 .0128 .0064 .0013};

[1.0 -2.9754 3.8060 -2.5453 0.8811 -0.1254];

N

2 w
i

Frequency response

[h,th] = .freqz(b,a,128);

clf ‘

figure(l)

plot(th,abs(h)), title('Magnitude Response'), xlabel('Radians')
figure(2) '

subplot(211), plot(th,angle(h)), title('Phase Response'),
ylabel('Radians'); ‘ :

subplot(212), plot(th,grpdelay(b,a,128)), title('Groupdelay
Response'}, xlabel('Radians'}), ylabel('Seconds');

ae

Magnitude Response
14 - T T

T T T

1.2+ ’ ’ . .

L5 2 2.5 3 35
Radians

(a)

Figure 2.14 Analysis of an IR filter: (4) magnitude response, (b) phase and group Qelay
' responses, (¢} impulse response, (d) pole-zero plot (continued)

~ Phase Response
4 ¥ T ¥ -) H 1

Radians
=)

Group Delay Response ;
10 r (i g T T T "t T

Seconds
O -

1] 0.5 1 1.5 2 2.5 3 3.5
Radians

G

Impulse Response .
0.25 r . r — T T

Y 20 40 60 80 100 120 140

(©

Figure 2,14 Continued

2.10 Digital Signal Processing Using MATLAB

1_ H T ’.f.. H H i
0.8 4
0.6 o -

x
0.4+ .
O
E 0.2 x 4
£
?:..
3 Ok- -« .- R A M e e e e et .
®
_§~O.2~ o A : X o
041 " i . -
. . - X
06 © N - - i
0.8t .
-1k N i}
-1.5 -1 -0.5 0 0.5 1
‘Real Part

(d)

Figure 2.14 Continued

o

Impulse Response

x = [1 zeros(1,127)]1;
y = filter(b,a,x);
figure(3)

stem{y), title{'Impulse Response'), xlabel('n')

% Pole-Zero Plot
[z,p,k] = tf2zp(b,a);
figure(4)

zplane{z,p)

D> Example 2.10 Butterworth Lowpass liR Filter Design [Figure 2.15]

% Filter specifications

N = 5; % Filter order

fs = 200; % Sampling frequency
fc = 30; % Cut-off frequency

f

% Filter desigﬁ
[b,a] = butter(N, 2*fc/fs)

34 Chapter 2 Introduction to Digital Signal Processing

Figure 2.15

Te

i 0. 0069 0.0347 0.0693 0.0693 0.0347 0.0069
i a= X . - ‘ .
1.0000 -1.9759 2.0135 -1.1026 0.3276 -0.0407
| (@
. 4 . Magnitude Response
1. T . . , ;

0 10 20 30 40 50 60 70 8 9 100
. Hz }

)

Lowpass IIR filter design using ihe Butterworth technique: (a) designed filter
coefficients, (b) designed filter magnitude response, (c) designed filter phase and
group delay responses » : (continued)

% Designed filter frequency response
[h,th] = freqz{b,a,128);
= (th/pi)*(fs/2);
clf
figure(1)
plot(f,abs(h)), t1t1e(Magnitude: Response), ‘x1abel ('Hz")
figure(2)
subplot(211), plot(f,angle(h)), t1t]e(Phase Response ¥
ylabel('Hertz')

Figure 2.15

> Example 2.11

2.10 Digital Signal Processing Using MATLAB 35

Phase Response

. A Groupdelay Response
8 ¥ 1 ¥ T

T ¥ T H 1

Seconds

0 10 20 30 40 50 60 70 8 90 100
Hz

©

Continued

subplot(212), plot(f,grpdelay(b,a,128)), title('Groupdelay
‘Response'), xlabel (*Hz'), ylabel('Seconds')

Yulewalk IIR Filter Design [Figure 2.16]

% Filter specifications (Bandpass filter).
=[0.1.2.3.4.6.7.8.91];
=[001_1110000];

% Filter design ,
N = 10; % Filter order
[b,a] = yulewalk(N,f,m)

% Designed filter frequency respénse
‘[h,th] = freqz(b,a,128);

% Speci ﬁed(sohd curve) and de51gned(x curve)fﬂter frequency
responses comparison

36 Chapter 2 Introduction to Digital Signal Processing

Figure 2.16

06}

02t

b=
Columns 1 through 7 (
0.1467 0.1368 -0.1699 =~0.3064 0.0072 0.2344 0.0883
Columns 8 through 11
~0.1106 —0.0771 0.0366 0.0664

a=
Columns 1 through 7 ‘ ‘ .
1.0000 -0.9551 1.2125 ~1.5030 1.6430 -0.9850 0.8491

Columns 8 through 11 o
~0.5510 0.2769 —0.0668 0.0462

@

Specified (s‘olid;cﬁrve) vs. Designed (x curve) Filter Frequericy Response

1.4 - x. L T ‘I,A T T T T T

12+ N

0.8

04F

. 1' i 11) i | }
0 01 02 03-.04 05 06 07 08 09
- Normalized frequency, fs/2=1

()]

Bandpass HR filter design using the Yulewalk techmque (@ desngned filter,
(b) desugned vs. specified filter magmtude response

figure(l)

“plot(f,m,th/pi,abs(h), x'), title('Specified (solid curve) vs
" Designed (x curve)Filter Frequency Response)s x1abe1(Normalized

frequency, fs/2 = 1')

[> Example 2.12

Figure 2.17

14

- 041

2.10 Digital Signal Processing Using MATLAB 37

Parks-McClellen FIR Filter Design [Figure 2.17]

% Filter specifications :
f=1[0.1.2.3.4..6.7.8.91];
m=[0011110000];

% Filter desigh.

N = 20; % Filter order;

b =Vremez(N,f,m)

b=

Columns 1 through 7 , -
0.0520 0.0101 —0.0001 0.0398 ~0.0339 -—0.0822 0.0000
Columns 8 through 14 : .
—0.1181 -0.2571 0.1348 0.5000 - ¢.1348 -0.2571 -0.1181
* Columns 15 through 21 ‘ ,
. 0.0000 -0.0822 -0.0339 0.0398 —0.0001 0.0101 0.0520

(@)

- ’S‘peciﬁed’:‘(scvslid curve} vs. Designed (x curve) Filter

T . T T g 4 T

L s A
WW*

08¢

06l

0.21

0 01 02 03 04 05 06 07 08 09 1
Normalized Frequency, fs /2=1
k ()

Filter design using the"Parks—Mc,Cullen technique: {a) designed filter,

(b} designed vs. specified filter magnitude response

38 Chapter 2 Introduction to Digital Signal Processing

% Frequency response
[h,th] = freqz{b,1,128);

% Specified vs designed frequency response

figure(1) :

plot{f,m th/p1 abs{h),'x")

title('Specified (solid curve) vs Des1gned {x curve) Filter'),
xlabel'Normalized Frequency, fs}/2

2.1 Summary

This chapter is a brief review of digital signal-processing fundamentals. The
basic DSP concepts are discussed from the implementation point of view. The .
topics that are covered consist of: a digital signal-processing system, sam-
pling process and the sampling theorem, digital signal sequences, DFT and
FFT, linear time-invariant systems, the convolution theorem, digital filters,
FIR and IIR filters, and filter design techniques. Thus most of the basic tech-
niques of DSP analysis and design have been introduced. The techniques are
illustrated with MATLAB examples.

References
1. Strum, R. D., and Kirk, D. E., First Principles of Discrete Systems and Digital
Signal Processing, Addison-Wesley, 1988.
2. [Ifeacho, E. C.,, and Jervis, B. W., Digital Signal Processing: A Pmctzcal
Approach, Addison-Wesley, 1993.
3. Mitra, S. K., Digital Signal Processing Laboratory using MATLAB McGraw-
Hill, 1999,
4. The Math Works, Student Edition of MATLAB and various Toolboxes, http:/
www.mathworks.com/products/education/, 2003.
Assignments
2.1 A signal whose spectrum is shown in Figure P2.1 is to be sampled so that no

aliasing results. Determine the minimum sampling rate that can be used to

_ sample the signal. If the sampling rate must be 8 KHz, determine the type and

the cutoff frequency of the antialiasing filter.

www.mathworks.comlproductsleducationl

‘Figure P2,1
2.2

2.3
2.4

2.5

2.6

2.7

2.8

Assignments 39

»

Magnitude, dB y

ui >
0 o ‘ 5 Frequency,
. ‘ KHz

Magnitude spectrum for the signal in Problem’ 2.1

Redraw the frequency spectrum for the signal in 2.1 using the digital fre-
quency as the horizontal axis. Let the sampling frequency be 8 KHz. Deter-
mine the analog frequencies for the digital frequencies 0, n/4, /2, 3n/4, and
radian. :

Determine the periods for the periodic sequences: (a) e 78, (b) ¢=/"37/8,

The signal in 2.1 is filtered and sampled using the sampling rate of 8 KHz. If
512 samples of this signal are used to compute the Fourier transform X(k),
determine the frequency spacing between adjacent X(k) elements. What is the
analog frequency corresponding to k = 64, 128, and 200. Repeat this problem
using 1024 samples and an 8 KHz sampling rate.

Assuming X(k) as a complex sequence, determine the number of complex and
real multiplies for computing IDFT using direct and radix-2 FFT algorithms.
For the FIR filter ,

y(n) = (x(n) + x(n — 1) + x(n — 2))/3

determine the (a) system function, (b) magnitude fesponse function, {c) phase
response function, (d) impulse response, (e) step response, and (f) poles.and
Zeros.

For the IIR filter

_ (z—1)
H& = 5z 03

determine the (a) magnitude response function, (b) phase response function,
(c) impulse response, (d) step response, and (e) poles and zeros.

_Determine the lowpass filter cutoff frequency that must be used to decimate to

reduce the sampling rdte from 8 KHz to 4 KHz.

40 Chapter 2 Introduction to Digital Signal Processing

2.9 The signal sequence x(n) = [0 2 4 6 8] is interpolated using the interpola-
tion filter sequence by = [.5 1 .5] and the interpolation factor is 2. Determine
the interpolated sequence y(m).

Laboratory Assignment

Use the MATLAB program to do the follomng laboratory asmgnments
L2.1 Generate and plot each of the following sequences:
ax(n=[32-207,n=0,1,2,34
b. a ramp of length 64 with minimum value 0 and maximum value 1

¢. a triangular. waveform of length 64, permd 16 minimum value 0, and
maximum value 1 -

;d x(n) = 1.5 sin{nn/10 + 7:/4), n=~0,1,...,63.

L2.2 Generate x(n) = 2 sin{0.1zn 4 0.1) + w(n), n=20,1,...,255 where w(n) is
Gaussian noise with zero mean and unit variance. :

L2.3 Given the sequences
xm(n) = sin 27m/100, n=20,1,...,255
and ’ o :
~xc(n) = sin2zn/10, n=0,1,...,255
use the given sequences to generate the following sequences:
a. xam(n) = [1 + .7xm(n)]xc(ﬁ), n=01,...,255
b. xse(ny = xm(n)xc(n),n=10,1, ..., 255
L2.4 For the 12-point sel:luence »
x(m) =1, n=01...,5
=0, n=67...,11 Ny
use 64-point FFT to compute the following seQuences:
a |[X(k),k=0,1,...,63 - ‘
b. £X(k), k=0,1,...,63
¢ Real(X(k)), k=0, 1,.
d. Imag(X(k)), k=0,1,...,63

Also plot all the above sequences. Determine the frequency resolution of the
-FFT. How can the resolution be nnproved and at what cost?:

L2.5 Given the sequences’
‘ x1(n)=[3421107 -102], n=0,...,7
x2n)=[1230 —52], n=0,...,4

L2.6

L2.7

L2.8

L2.9

L2.10

L2.11

L2.12

L2.13

Laboratory Assighment 41

compute and plot the sequence x1{(n) * x2(n). Determme the length of the
computed sequence.

For the sequence in Problem L2.5, find the sequences, X1(k) and X2(k) using
8-point FFT. Next, multiply the two sequences to generate the sequence
Y{k) = X1(k).X2(k). Now use 8- -point IFFT to compute y(n). Repeat using 16-
point FFT and IFFT. Compare these results to the one obtained in Problem
L2.5 and explain any discrepancy in the two approaches.

Find and plot the (a) impulse, (b) unit step, (c) magnitude, (d) phase, and (e)
group delay responses for the system with transfer function

(z—1)
(z - 0.25}{(z — 0.5)

H(z) =

Given a three-tap averaging filter 5 ‘
- y(n) ="[{x(n) +x(n—1) + x(n — 2)}/3

obtain and plot the (a) magnitude, (b) dB magnitude, (c) phase, and (d) group
delay frequency response for the filter. Comment on the lowpass filtering
nature of the filter, '

Repeat Problem L2.8 for the filter :
Yn) = [—3x(n) + 12x(n — 1) + 17x(n = 2) + 12x(n — 3) — 3x(n — 4)1/35

Design a 31-tap bandpass FIR filter with cutoff frequencies of 25 and 75 Hz
and sampling frequency of 200 Hz. Calculate the passband ripple and the
stopband attenuation for the designed filter.

Use this filter to filter the noisy signal -

“x(t) = 2 sin(1007t) - w(t)
where w(t) is a uniformly distributed noise with ampiitude range from —.25 to
+-.25. Evaluate the performance using FFT. ' '

For the filter of Problem L2. 10, determine the transition widths, when gain
drops from 90% to 10%,-around the cutoff frequencies. How will you reduce
the transition to obtain a sharper response? Demonstrate with an example.

Design a second-order Butterworth IIR lowpass filter with a cutoﬁ frequency.
of 50 Hz for a signal sampled at 250 Hz. Determirie its dc gain, poles, and

ZEeros.

Design an elliptic IIR lowpass filter with cutoff frequency of 50 Hz for a signal

. sampled at 250 Hz. The filter order should be such that the passband ripple i is,

less than .2 dB and the stopband attenuation is more than 20 dB.

Chapter 3

42

Computatlonal Accuracy in DSP
Implementatlons

3.1 Introduction | .

In this chapter, we shall study the issues related to.computational accuracy of

algorithms when implemented using programmable digital signal processors.
We shall first study the various formats of number representation and their
effect on the dynamic range and precision of signals represented using these
formats. We shall also study the various sources of errors in the implementa-
tion of DSP algorithms and how to control these errors while designing DSP
systems. Specifically, we discuss the following topics in this chapter:

Number formats for signals and coefficients in DSP systems
Dynamic range and precision

Sources of error in DSP implementations

A/D conversion errors

DSp computational errors -

D/A conversion errors

3.2 Number Formats for Slgnals and Coefflaents in

DSP Systems

Ina digital signal processor, as in any other digital system, signals are repre-
sented as numbers right from the input, through different stages of process-
ing, to the output. The DSP structures, such as filters, also require numbers to
specify coefficients [1]. There are various ways of representing these numbers
[4], depending on the range and precision of signals and coefficients to be
represented, hardware complexity; and speed requirements. In this section, we
look at the typical formats used for numbers to represent signals and co-
efficients in DSP systems.

3.2 Number Formats for Signals and Coefficients in DSP Systems 43

3.2.1 Fixed-Point Format

Figure 3.1(a)

Figure 3.1(b)

The simplest scheme of number representation is the format in which the
number is represented as an integer or fraction using a fixed number of bits.
An n-bit fixed-point signed integer shown in Figure 3.1(a) specifies the value x
given as : '

x=-s2"1 4 b, 2" + b, 5273 +oee ok by.2! + be.2° (3.1)

“where s represents the sign of the number: s = 0 for positive numbers and

s = —1 for negative numbers. The range of signed integer values that can be
represented with this format is —2"! to +(2"! — 1).-

Similarly, a fraction can also be represented using a fixed number of bits
with an implied binary point after the most significant sign bit. An n-bit fixed-
point signed fraction representation shown in Figure 3.1(b) specifies the value
given as - :

cx= =820 4 b 27 b 2 e by 27D L by 27D (32)
The range of signed fractions that can be represented with this format is —1 to

+H(1 — 27Dy,

nln2 o S 2 1 0

s b,,_; b, by| by
Implied
binary
_ point

(@ \

Fixe_d-point format to represent signed integers "

n-1 n-2 .2 1 0

s ib, 7 ‘ bpop| b by
Implied -
binary point

®

Fixed-point format to represent signed fractions

44 Chapter 3 Computational Accuracy in DSP Implementations

B

Example 3.1

Solution

322

323

What is the range of numbers that can be represented in a fixed-point for-
mat using 16 bits if the numbers are treated as (a) s1gned integers, (b) signed
fractions? S ‘ -

a. Using 16 bits, the range of integers that can be represented is determined
by substltutmg n= 16 i Eq. 3.1 and is given as- '

—25 to +2%% —
ie., —32,768 to +32,767.

. b. The range of fractions, as determined from Eq. 3.2 using n = 16, is given as

, \ ~1to +(1—277)
i.e, 1 to +.999969482. '

. In DSP implementations, multiplication of integers produces numbers that
may require more bits to represent, and in the event of a fixed number of
available bits, it may create wraparound. The wraparound generates the most
negative number after the most positive number, and vice versa. The prob-
lem can be tackled by using fractional representation. When two fractions are -
multiplied, the result is still a fraction. The resulting fraction may use the same
number of bits as the original fractions by discarding the less significant bits.

Double-Precision Fixed-Point Format

To increase the range of numbers that can be represented i fixed-point
format, one obvious approach is to increase its size. If the size is doubled,
the range of numbers increases substantially. Simply doubling the size and
still using the fixed-point format creates what is known as the double-precision
fixed-point format. However, one should remember that such a format re-
quires double the storage for the same data and may need double the number
of accesses for the same size of data bus of the DSP device.

Floating-Point Format

For DSP applications, if an algorithm involves summation of a large number
of products, it requires a large number of bits to represent the signal to allow:
for adequate signal growth over the summation. However, since a processor
architecture will not allow for an unlimited number of bits, some processors
choose a floating-point format for signal-processing computations. A floating-

point number is made up of a mantissa M, and an exponent E, such that.its _
value x is represented as

x=M2"™ 6y

>

Figure 3.2

Example 3.2

Solution

3.2 Number Formats for Signals and Coefficients in DSP Systems 45

‘ .. 0n
! 8 AL

-
— |]

[R 1
Sig Exponent Mantissa
S - B : ' ' ‘ F

IEEE-754 format for floating~peint numbers

If two floating-point numbers x and y are multlphed the prodnct xyis gwen

. by

xy = M,,My:szy Y

" Implementation of a floating-point multiplier must contain a multiplier for
the mantissa and an adder for the exponent. An addition of floating-point

numbers requires normalization of the numbers to be added so that they have

‘the same exponents.

A commonly used smgle-precxsmn floating-point representatlon (IEEE-754
format) is shown in Figure 3.2, ‘
The value represented by the data format in Figure 3.2 is given as

x=(-1Sx 28I 1 p (3.5)

F represents the magnitude fraction of the mantissa, and the exponent E is an
integer. Further, in determining the mantissa, an implied 1 is placed immedi-
ately before the binary point of the fraction. The sign bit provides the sign of
the fractional part of the number. That is to say, with n bits for F, the range
of fractional numbers that can be represented in the mantissa is —(2 —27")
to +(2 — 27"). The bias depends upon the bits reserved for the exponent. In
Figure 3.2, the bias is 127, the largest positive number represented by 8 bits.
The value of E can be from 9 to 255. In double-precision representatmn, the
exponent uses 11 bits, making the bias value as 1023.

Find the decimal equi\}alent of the floating-point binary number
1011000011100. Assume a format similar to IEEE-754 in which the MSB is the
sign bit followed by 4 exponent bits followed by 8 bits for the fractional part.

The number is negative, as the sign bit is 1.
‘ F=27%4+27°+27%=.109375
E=2'+2"=6

46 Chapte}' 3 Computational Accuracy in DSP Implementations

B>

Example 3.3

Solution

3.2.4

Thus the value of the number is _
= —1.109375 x 267 = —0.5546875.

| Using 16 bits for the mantissa and 8 bits for the exponent, what is the range

of numbers that can be represented using the floating-point format similar to
1EEE-754?

The most negative number will have as its mantissa —2 -+ 272 and as its
exponent (255 — 127) == 128. The most negative number is; therefore,

~1.999984741 x 2!%

Similarly, the most positive number is

+1.999984741 x 2128

Floating-point format, used to increase the range of numbers that can
be represented, suffers from the problem of speed reduction for DSP compu-
tation. More steps are required to complete a floating-point computation
compared to a fixed-point computation. For instance, a floating-point multi-
plication requires addition of exponents in addition to the multiplication of
mantissas. Floating-point additions, on the other hand, require the exponents
to be normalized before the addition of the mantissas. For these reasons, a
floating-point processor requires a more complex hardware compared to a
fixed:point processor and requires more time to do computations.

Block ‘Floating-Point Format

An approach to increase the range and precision of the fixed-point format is

“to use the block floating-point format [3]. In this approach, a group or block of

fixed-point numbers are represented as though they were floating-point num-

~ bers with the same exponent value and different mantissa values. Mantissas

are stored and handled similar to fixed-point numbers. The common expo-
nent of the block is stored separately and is used to multiply the numbers as
they are read off the memory. The exponent is decided by the smallest number
of leading zeros in the fixed-point representation of the given block of num-
bers. The numbers are then shifted by this value to accommodate the maxi-
mum number of nonzero bits using the given fixed-point format.

The block floating-point format increases the range and precision of a
given fixed-point format by retaining as many lower-order bits as is possible.
The scheme does not require any additional hardware resources except an
extra memory location to store the block exponent. However, programming
overhead is needed to find the block exponent and to normalize and de-
normalize the given numbers using this exponent.

>

3.3 Dynamic Range and Precision 47

Example 3.4 The following 12-bit binary fractions are to be stored in an 8-bit memory.

- Solution

Show how they can be represented in block floating-point format so as to im-

- prove accuracy.

- 000001110011
000011110000
000000111111
000010101010

If these fractions are represented using an 8-bit ﬁxed-poiﬁt format, they will
be represented as

00000111
00001111
oodooou
~ 00001010

"The last 4 bits of the numbers would have been discarded, thereby losmg the

precision corresponding to those 4 bits.
However, since all four‘numb“ers ha\(é at least four leading zeros, they can be

rewriften as

| 01110011 x 27
11110000 x 27
- 00111111 x 274

10101010 x 27

Eight bits of each number can be stored without discarding any bit. The block

exponent is —4 and will have to be stored separately. When the numbers are
read from the memory for any computation, they have to be shifted by four

- bit positions to the right to bring them to their original values.

Snmlar operation can also be performed ona block of integers if there are
zeros to the right.

3.3 Dynamic Range and Precision

The dynamic range of a signal is the ratio of the maximum value to the mini-
mum value that the signal can take in the given number representation

- scheme. The dynamic range of a signal is proportional to the number of bits .

used to represent it and increases by 6 dB for every additional bit used for the

48 Chapter 3 Computational Accuracy in DSP Implementations

> Example 3.5

Solution

representation. The number of bits used to represent a signal also determines

the resolution or -the precision with which the signal can be represented.

However, the time taken for certain operations such as-the A/D conversion

.increases with the i increase in the number of bits.

Resolution is the minimum value that can be represented using a number
representation format. For instance, if N bits are used to represent a number
from 0 to 1, the smallest value it can take is the resolution and is given as

. Resolution = 1‘/_2N for large N - (35)

Resolution of a number representation format is normally expressed as
number of bits used in the representation. At times, it is also expressed as a
percentage. :

Precision is an issue related to the speed of DSP nnplementatmn In gen-
eral, techniques to improve the precision of an implementation reduce its
speed. Larger word size improves the precision but may pose a problem with
the speed of the processor, especially if its bus width is limited. For example,
if the 32-bit product of a 16 x 16 multiplication has to be preserved without
loss of precision, two .memory accesses are required to store and recall this
product using a 16-bit bus.. Another example is the rounding off, as against
the truncation, used to limit the word size in the fixed-point representatlon of
numbers, The former is slightly more accurate than the latter, but requires -
more time to carry out computations.

When the floating-point number representation is used the exponent de-
termines the dynamic range. Since the exponent in the floating-point repre-
sentation is a power, the dynamic range of a floating-point number is very
large. The resolution or precision of a floating-point number is determined by
its mantissa. Since the mantissa uses fewer bits compared to fixed-point rep-
resentation, the precision of floating-point number representation is smaller

than a comparable fixed-point representation.

It is important to be aware of the speed implications when adopting
schemes to improve precision or the dynamic range- ‘and not just choose
higher precision or larger dynamlc range than what is required for a given
application. ‘

Calculate the dynamic range and precxslon of each of the following number
representation formats.

a. 24-bit, single- preasxon, fixed-point format
b. 48-bit, double-precision, fixed-point format
c. a floating-point format with a 16-bit mantissa and an 8-bit exponent

a. Since each bit gives a dynamic range of 6 dB the total dynamic range is

24 x 6 = 144 dB. Percentage resolution is (1/2%) x 100 =6 x 107°.

b. Since each bit gives a dynamic range of 6 dB, the total dynamic range is
48 x 6 = 288 dB. Percentage resolution is (1/2%%) x 100 = 4 x 1072,

3.5 A/D Conversion Errors 49

¢. For floating-point representation, the dynamic range is determined by the
number of bits in the exponent. Since there are 8 exponent bits, the dy-
namic range is (2° — 1) x 6 = 255 x 6 = 1530 dB.

The percentage resolution depends on the number of bits in the mantissa.
Since there are 16 bits in the mantissa, the resolution is. '

(1/2!) x 100 = 1.5 x 1073%

These résults are summarized in Table 3.1,

Table 3.1 Dynamic Range and Precision for Various Number Representatidns

: Percentage
Format of Number of Dynamic Resolution
Representation Bits Used) " Range {Precision)
Fixed-point 24 bits . 144 dB 6x107°
Double-precision 48 bits 288 dB 4x1078
Floating-point 24 bits (16-bit mantissa, 1530 dB 15 x 1073

8-bit exponent)

3.4 Sources of Error in DSP'I_mplémentatioris

A DSP system consists of an A/D converter, a DSP device, and a D/A con-

verter. The accuracy of a DSP implementation depends upon a number of

factors contributed by the A/D and D/A conversions and how the calculations

_are performed in the DSP device. The error in the A/D and D/A in the repre-

- sentation of analog signals by a limited number of bits is called the quantiza-
- tion error [2]. The quantization error decreases with the increase in the num-

ber of bits used to represent signals in A/D and D/A converters.

_ The errors in the DSP calculations are due to the limited word length used.

These errors depend upon how the algorithm is implemented in a given DSP

architecture. This error can be reduced by using a larger word length for data

and by using rounding, instead of truncation, in calculations.

- In the following sections, we consider the quantization and rounding errors
in A/D converters, DSP computations, and D/A converters, -

3.5 A/D Conversion Errors

Consider an A/D converter, shown in Figure 3.3(a), with b bits used to
represent an unsigned signal value. Its digital representation is of the form -

50 Chapter 3 Computatidnal Accuracy in DSP Imiplementations

Figure 3.3

Aa)

a=xq—~x

\]\]\ | o

A=2"for x4 represented by b
fractionat bits

{c)-

{(a) An A/D converter with b bits for signal representation, (b} quantization
model for the A/D converter, () quantization error in truncation A/D converter,
(d) quantization error in rounding A/D converter, (e) probability density function
for truncation error, (f) probability density function for rounding error
' ~ (continued)

" xxx ... x, where there are b bits after the assumed binary point. In this kind

of binary representation, the value of the least significant bit is given by
A=27" | (3.6)

The maximum error due to quantization depends on b. The quantization
error for a given conversion as shown in the model of Figure 3.3(b) is given by

g = xq - X ‘ 3.7)

3.5 A/D Conversion Errors 51 -

A2

_\173;1/2\]-13/2’ N AR \J;m X

@
- Ap(e) N S ‘RP(é)
va ' . YA
~ NG e .
A0 - A2 o +AR2
(e) ' ' t9]

—

Figure 3.3 Continued

where x is the input and x, is the quantized output. This error is called the
truncation error if the signal value above the largest integral multiple of A is
simply dropped. It is called the rounding error if the value is rounded to the
nearest integral multiple of A. This way the rounding limits the error to +A/2.
Figures 3.3(c) and (d) show these two types of errors. The statistical inter-
pretation of these errors can be used to evaluate their effect on DSP imple-
mentations. Assuming that the truncation’ and rounding errors in the A/D
converter are uniformly distributed, their: probability density functions are
given in Figures 3.3(e) and (f), respectively. Analysis of Figure 3.3(e) for the
mean and the variance of the error yields

me = A2 = —20bD ‘ (3.8)
. :
ol = J (e — (=AI2))p(e) de
. -A =
T . ‘
= J (e+ AI2)*1/A de
LA .

= ~-AY12 =27%/12 . : (3.9)

' 52 Chapter 3 Computational Accuracy in DSP Iniplementatiox;s

Similarly, the analysis of Figure 3.3(f) yields

m,=0 ' (3.10)
2 =27"2%12 (3.11)

That is, the variance of etror is the same in both cases; the mean is zero in
rounding and nonzero in truncation. The signal-to-noise ratio (SNR) is a
measure that is used to evaluate the performance of the A/D converter. It can -
be calculated from

" SNR = 10 log(0:%/;?) (3.12)

where .2 is the signal power and ¢, is the noise variance.
The SNR cannot be calculated unless an assumption about the input signal
amplitude is made. Practically speaking, too little a signal amplitude will result
~ in a poor SNR, yet assuming the maximum signal amplitude in Eq."3.12 will
show only the best SNR. For the signal representation considered here (value
from 0 to 1), it is customary to assume the root mean square (rms) value of
the signal (o,) as 1/4 for SNR calculations. This leaves enough bits for the
maximum possible value of the signal, yet it yields a more realistic SNR for
evaluation of an A/D converter. With this assumption and substituting for o,
and 0,2 in Eq. 3.12, we get

'SNR = 10 10g(1116)/(2‘2b/12) =10 103((3/4)(22”)) (3.13)

It is clear from Eq. 3.13 that using an A/D converter with a larger word length
~ ‘gives a 1arger SNR. As an example, if b = 14, the SNR is given as -

SNR=10 1og((314)(22><“)) = 83.04 dB.

3.6 DSP Computational Errors

The DSP computations involve using the digitized signal values and DSP
structures represented by coefficients. These numbers are typically repre-
sented in the signed fractional 2’s complement form. The computations
almost always involve multiplications or’ Vmultiply‘ and accumulate (MAC) op-
erations. In this section, we discuss the errorin the multiplication carried out
using the fixed word length arithmetic logic unit. Consider a specific DSP-
device that provides a 16 x 16 multiplier with a 32-bit result interfaced to a

16-bit A/D and a:16-bit D/A converter. The error in the computation will be
due to discarding the 16 least significant bits of the 32-bit multlphcatrbn
product. Assuming that the signal and the coefficients use s.xxx ... x format

3.6 DSP Computational Errors 53

representation for signed numbers, and the multiplier used is also a signed
binary multiplier, the multiplier result will be of the form ss.xx. ... x. Before
truncating (or rounding), this result can be shifted left by 1 bit (to discard the
extra sign bit) to generate s.b_1b_; ... b_3,0 and then the 16 least significant
bits can be dropped. The error in this computation is then given by

e=0+2" b 3 +27%b_y ~|— 27Bh g+t 2—’6.6,16. (3.14)
Maximum error occurs when all the discarded bits are 1s. That is,
| | e = 2—30 ;}_2—29'_% 2716 (.2—15 — 27y,
and the minimum err-ori is when all the disca;déd bits a1:e 0s. That is,
" eminA =0
Assuming that ¢ is uniformly distributed, we can compute mean as
me = —A2 = (27" —2)2 = (7:15 Myl (3.15)
and the variance’as | |
ol = A2 = (275 — 2)12 2712 | " (3.16)
Using the argu'menf of the last sectién, we can assume that the multiplier re-
sult has the rms value o, of 1/4. Using this assumption leads to the following

SNR:

SNR =10 log(o.*/o,?)
= 10 log(1/16)/(27*/12)
= 10 log((3/4)(2*%))
~89.06dB - 617
Ina muitiply and accumulate process using a fractional signed multiplier and
a 32-bit accumulator, assuming no overflow condition, the SNR will be even

better due to the averaging effect of the accumulator. It can be shown that in
such a case the error variance is given as -

ol =(UN)2*n2) ‘ (3.18)
for N accumulations. As is obvious, in most cases an individual DSP operation

is not the dominant factor in error calculations. The overall calculation error
depends upon the DSP algorithm that is being implemented.

54 Chapter 3 Computational Accuracy in DSP Implementations

Anothier type of computational error in DSP nnplementatlons is the over-
flow error. »

.If the result of a computation cannot be held in the accumulator register,
an overflow condition occurs. If nothing is done to avoid or correct the over-
flow condition, the arithmetic -wraparound occurs, in which case after the
most positive number an overflow generates the most negative number, and
vice versa. In a signal, it amounts to presence of a glitch with serious con-
sequences.

A solution to the overflow problem is to provide extra bits called guard bits
in the accumulator to accommodate the overflow bits. For instance, a provi-
sion of 4 extra bits ensures that there w111 not be any overflow for up to 16
accumulations.

If enough guard bits cannot be provxded there is need to implement satu-
ration logic to at least keep the overflow under control and not let it produce
a glitch in the signal. This is done by replacing the overflowed result with the
most positive number, in the case of overflow from the most positive number
to a negativé number. For the case where the wraparound occurs from the
most negative to a positive number, the result is replaced with the most neg-
ative number. This implementation ensures a glitch-free signal, although it
still has calculation error, the amount of which depends upon the amount of
the overflow.

3.7 DIA 'Cohve»rsion Errors

A source of error in a D/A converter is due to the fact that, typically, a D/A
converter uses fewer bits in conversion than the number of bits required by
the computed result, produced by the DSP device. This is equivalent to the
truncation or the rounding off error in the A/D converter and can be handled
in the same way as the computational error described in the previous section..
 Another and more serious error occurs in the D/A converter due to the fact
that the D/A converter output is not ideally reconstructed. Typically, the out-
put samples from the DSP are applied to the input of a reconstruction filter
through a zero-order hold, which maintains the input to the filter constant
during the periods between successive samples. This is equivalent to saying
that the input to the reconstruction filter is the convolution of the DSP output
samples with a unit pulse of width equal to the sampling interval. The effect of -
this convolution is a reduction in the amplitude of the analog output. A com-
pensating filter can compensate. for this reduction in the amplitude. The fre-
quency response of the compensating filter should be the inverse of the
frequency response of the convolving pulse.
The source of error explained above can be illustrated by means of Figure
34. Consider the sequence of output samples of a DSP as shown in Figure
3:4(a). These samples are passed through a D/A converter with a zero-order

x(h)
Iy
1 ——
] ¢ I t + ol {2
'9_’12;34516170 ,
T .
-1 4
- T, >
@)
xwh
0o 1 2 3 4 9 6 7 To >t
L e
T
S
(O
h(?t)
14
-
0 7
' (C).
h(f)
- A
1 Amplitude error
‘:; . Z p
(=15 ‘ 3
@

Figure 3.4 An example showing the D/A converter error due to the zero-order hold at its
- output: (a) DSP output, (b) D/A output, (c) the convolving pulse that generates (b)
from (a), (d) frequency contents of the convolving pulse in (¢)

56 Chapter 3 Computational Accuracy in DSP Implementations

B>

Example 3.6

Solution

Table 3.2

hold at its output. The output of the D/A converter is shown in Figure 3.4(b).
Figure 3.4(c) shows the shape of the convolving pulse that generates the out-
put of Figure 3.4(b) from the DSP output of Figure 3.4(a). Figure 3.4(d) shows
the frequency contents of the convolving pulse as well as the degradation
(amplitude error) of the output of the reconstruction filter from an ideal out-
put. The compensating filter to restore the required output of the reconstruc-
tion filter should have a frequency response, which is the inverse of Figure
3.4(d). ’

¥ind the degradation in amplitude gain when a sine wave of unit amplitude
and 50 Hz frequency, sampled at 400 Hz, is reconstructed using a zero-order -
hold. .

The amplitude of the sine wave at a sampling instant is given by
' x(n) = sin 2nfnlf; ' : . (3.18)

where f is the frequency of the sine wave and f; is the sampling frequency. In
this example, f = 50 Hz and f, = 400 Hz. Substituting these values in Eq. 3.18
yields ‘ '
' ~ x(n) = sin 2nn/8 o (3.19)

The values of the amplitude computed using Eq. 3.19 are valid only for the
ideal case. In order to compute the degradation in the amplitude due to the
zero-order hold, these values have to be modified by the frequency response
of the convolution pulse shown in Figure 3.4(d). In the frequency domain, the
amplitude or the gain is a sinc function and is given by

Gain = H(f) = (sin #f/f;)/(nf/f.) (3.20)

Table 3.2 gives the values of the gain given by Eq. 3.20 for different frequencies
expressed as a fraction of f,. The gain at 50 Hz (f,/8) is 0.9745 instead of 1.

Amplitude Degradation of D/A Output Due to the Zero-Order Hold.

Frequency Gain 1/Gain

0 1 1

f/32 09984 10016
£,/16 0.9936 " 1.0064
£,/8 09745 1.0261
f/4 09003 1.1107
£/3 - 08270 12092
£,/2.5 0.7568 13213

f/2 06366 15708

3.7 D/A Conversion Errors 57

3.7.1 Compensating Filter

One can design a filter with a frequency response, which is the inverse of the
gain H(f) as shown in Table 3.2, and place it at the output of the D/A con-
verter to compensate for the amplitude degradation of the D/A output due
to the zero-order hold. Such a filter can be an IIR filter that can be designed
using the techniques discussed in Chapter 2. :
. | : ‘ ‘ :

> Example 3.7 Design a first-order IIR compensating filter having the frequency response

depicted in Table 3.2.

Solution A first-order IIR filter can be deszgned using the program in Figure 3.5(a).
v Notice that the program uses the direct design method called the Yulewalk
technique. As shown in Figure 3.5(b), the design produces the following co-

efficients for the ﬁlter

b = [1.1752 0.0110]
a = [1.0000 0.1495]
which corresponds to the difference equation

y(n) = —0.1495y(n — 1) + 1.1752x(n) -+ 0.0110x(n — 1) (3.21)

Compensatir{g filter ‘specifications
= [0 1/32 1/16 1/8 1/4 1/3 1/2.5 1/2]*2;
= [1 1.0016 1.0064 1.055 1. 1107 1.2092 1.3213 1. 5708],

: % Filter design
s ~[b,a] = yulewalk(l,f,m)

% Designed filter frequency response

fh,th) = freqz(b,a,128);

p]ot(th/m ;abs(h)), title('Designed Compensating Filter Frequency
Response'), xlabel('f*2/fs'), ylabel('Magnitude')

- @
b= .
1.1752 0.0110
am
1.0 0.149F

Figure 3.5 Design of the cbmpen’sating filter of Example 3.7: (a) a MATLAB program,
(b) designed filter coefficients, (c) designed filter frequency response .
: : ‘ (continued)

58 Chapter 3 Computational Accuracy in DSP Implementations

Figure 3.5

Designed Compensating Filter Frequency Response
- 1.4 T T T R T T 4 -

T T

1.35
13
1.25

12

Magnitude

1.15
1.1

1.05

0 01 02 03 04 05 06 07 08 09 1

Continued

The transfer function of the filter in thé z-domain is given by

(1.1752 + 0.0110z71)
H{z} = —
1+ 0.1495z° 1)

(3.22)

The frequency response of this comperisating filter is shown in Figure 3.5(c}.

_ Since the compensating filter is a digital filter, it can be merged with the DSP.

calculations. That is, the input to the D/A converter is first passed through the
filter before it is applied to the D/A converter, thus eliminating the need for a
filter to be placed after the D/A converter. In general, making the compensat-
ing filter a part of the DSP eliminates additional computations, since the filter
computations can be merged with the DSP computations. '

The analysis presented above can be extended to correct degradation more

accurately. However, it should be noted that the compensating filter in such a

case will be more complex and will be of orders higher than 2.

Assignments 59

3.8 Summary

In this chapter, we studied various number formats for representing signals

“and coefficients, consisting of the fixed-point format, floating-point format,
double-precision format, and block floating-point format. We also studied the
dynamic range and precision of signals represented by each of these formats.
We identified. the sources of errors in DSP implementations, such as A/D
conversion errors, DSP computational ertors, and D/A conversion errors. For

- each category, we have estimated the errors and have suggested ways to min-
imize them in the implementation of DSP systems.

References

1. [Ieacho, E. C., and Jervis, B. W.,. Digital Signal Processing: A Practical

Approach, Redding, MA, Addison-Wesley, 1993.

2. Bateman, A, and Yates, W. Digital Signal Processing Design, Los Alamltos, CA,
Computer Science Press, 1989.

3. Higgin, R. J. Digital Signal Processmg in VLSI, Englewood Cliffs, Prentice Hall,
- 1990,

4. Lapsley, P, Bier,], Shoham, A., and Lee, E A. DSP Processor Fundamentals
Architectures and Features, Piscataway, NJ, IEEE Press, 1997.

Assignments

3.1 Determine (a) the most poéitive, (b) the least positive, (c) least negative, and
(d) the most negative values for the following number representation formats.

a. 32-bit 2’s complement integer format
b. 32-bit floating-point format given as:

~

s eee...e fif....f ;
1 8 23 (bits)
s exp frac :

(unsigned) (unsigned)
where the value of the number is computed as L.frac x 2% if s = 0, and
—1frac x 2P if s = 1. '

3.2 Determine the maximum truncation error for both posnwe and negative
numbers for the two.formats in Problem 3. 1.

60 Chapter 3 'Computational Accuracy in DSP Impleméntations

3.3

3.4

3.5

3.6

Figure P3.6

3.7

3.8

Show that the dynamic range of a signal increases by 6 dB for each additional .
bit used to represent its value.

Compute the dynamic range and percentage resolution of a sxgnal that uses
a. 16-point fixed-point format

b. 32-point floating-point format with 24 bits for the mantissa and 8 bits
for the exponent. »

Compute the dynamic range and the percentage resolution for a block
floating-point format with a 4-bit exponent used in a 16- bxt ﬁxed-pomt pro-
Cessor.

For the DSP system shown in the block diagram of Figure P3.6, the analog
input is a 50 Hz sinusoidal signal with 2 V peak value. Both the A/D and D/A
converters are 0-5 V devices. Determine (a) the SNR of A/D, (b) the SNR of
DSP, and (c) the peak output of the D/A converter. Assume a sampling rate of
400 samples/sec. State other assumptions that are needed for calculations.

16-bit fixed-point processor with a
16x16 2’s complement multiplier

/

v 12 Bit . g Bit -
—» AD 7w DSP “» DA }—m»
Analogin LConverter | 15 i g LConverter | Analog out
L, 16
y
Mem;)fy

16-bit coefﬁcients

A DSP system block diagam

One can use the filter of Eq. 3.22 to compensate for the D/A converter error
in Problem 3.6. This filter, however, does not compensate the D/A error com-
pletely. There remains some error at different frequencies. Prepare a table to
show the error that remains uncompensated.

Determine the frequency response for the filter

1.125
(1 +0.1807z1)

Compare its frequency response to the one in Table 3.2 and discuss its suit-

H(z) =

ability as a zero order hold D/A compensating filter.

Chapter 4

_ Architectures for Programniable, Digital
Signal-Processing Devices

4.1 Introduction

In this chapter, architectural features of programmable DSP devices are de-
scribed based on the DSP operations these devices are generally required to
perform. The features are examined from the points of view of functional

needs, programmability, speed, and interfacing requirements of these devices. -

Commonly used hardware implementations are also described for various
functional units. Following are the topics covered in this chapter: ‘

Basic architectural features
DSP computational building blocks
Bus architecture and memory
Data addressing capabilities
Address generation unit
_ Programmability and program execution
Speed issues . »
- Features for external interfacing

4.2 Basic Architectural Features

A programmable DSP device should provide instructions similar to a micro-
processor. These instructions can then be used to design programs for im-
plementing DSP algorithmis. The basic computational capabilities provided by
way of instructions should include the following [1-3, 11]:

® Arithmetic operations such as add, subtract, and multiply.
‘w Logic operations such as AND, OR, XOR, and NOT.

61

62 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices

>

Example 4.1

Solution

» Multiply-and accumulate (MAC) operaﬂon

® Signal scaling operations for scaling the signal before and/or after dlgltal
“signal processing.

' It is important that dedicated high-speed hardware be provided. to carry
out these operations. For instance, multiply operation can be done much
faster on a hardware multiplier than on a microcoded multiplier realized
using the shift and add technique, as is often done in microprocessors.

In addition to the computational units, support architecture should include
the following hardware features {10]:

® On-chip registers for storage of intermediate results.
~ ® On-chip memories for signal samples' (RAM).

® On-chip program memory for programs and fixed data such as filter
coefficients (ROM)." ~

Investigate the basic features that should be provided in the DSP architecture -
to be used to implement the following N®-order FIR filter:

N-1
y(n) Zh(i)x(n—i); n=o012,... (4.1)

i=0
where x(n) denotes the input sample, y(n), the output sample, and h(i), the ith
filter coefficient. x(n — i) is the input sample i samples earlier than x(n).
The FIR filter requires the following basic features for implementing Eq. 41
1. Memory for storage of signal samples x(n), x(n — 1), ..., etc. (RAM)..
2. Memory for storage of filter coefficients: h(0), h(1), ..., etc. (ROM).

3. A hardware multiplier and an adder to carry out the multiply and accu-
mulate (MAC) operation.

4. A register to kégp track of accumulation (accumulator).

5. A register to point to the current signal sample being used (signal pointer).

6. A register to point to the current filter toefficient being used (coefficient
pointer). : .

7. A register to keep count of the MAC operations that remain to be done
(counter).

8. Capability to scale the signal value x(n) as it is read from the memory and
the computed signal y(n) as 1t is stored in the memory (shifters at input
and output).

Computational units such as the multiplier, the arithmetic logic unit (ALU),
shifters, etc. will be described in the next section. Subsequent sections will

examine the other functional units such as the memory, the addressing unit
and the program execution unit.

4.3 DSP Computational Building Blocks 63

4.3 DSP Computational Building Blocks

4.3.1

In this section, we learn about the hardware buﬂding blocks that carry out the
basic DSP computations. While choosing these computational building blocks,
we keep in mind the requirements of speed and accuracy, which are the two

key issues in the design of DSP systems. At the same time, we should ensure

that such building blocks ‘could be configured to implement many different

applications. That is, while each building block should be optimized for func-

tionality and speed, the design should be sufficiently general so that it can be

easily integrated with other blocks to implement overall DSP systems.
Following are-the basic building blocks that are essential to carry out DSP

computations [5-9]: '

* Multiplier
Shifter
M\iltiply and accumulate (MAC) unit
Arithmetic logic unit '

In the following subsections, we shall discuss each of these blocks in detail.

Multiplier

The advent of single-chip multipliers and their integration into the micro-
processor architecture are the most important reasons for the availability of
commercial VLSI chips capable of implementing DSP functions. These multi- -

“pliers, called parallel or array multipliers, implement complete multiplication

of two binary numbers to generate the product in a single processor cycle.
Earlier multiplication schemes relied either on software such as the shift and
add algorithm or on microcoded controllers, which implement the same al-
gorithm in hardware. Both these options require several processor cycles to

~ complete the multiplication. The advances made in VLSI technology, both m

terms of speed and size, have made possible the hardware implemeucation of
parallel multipliers.

. From earlier chapters, it is apparent that multiplication is one of the key

operations in implementing DSP functions. However, before we design an

actual multiplier, we should be clear about its specifications such as speed,

accuracy, and dynamic range. The number of bits used to represent the

multiplication operands and whether they are represented in fixed-point or

floating-point format decide the accuracy and dynamic range of the multi-

plier. The speed, on the other hand, is decided by the architecture employed.

For a given technology, there are several architectures for parallel multipliers,

which trade off speed for reductions in circuit complexity and power dissipa- -
tion. The choice of the architecture depends on the application.

64 Chapter'4 Architectures for Programméble Digital Signal-Processing Devices

Figure 4.1(a)

A A Aq Ao
Bg Bz i B'l BO .

AsBg © AyBg. AqsBo AgBo
A AsBi AB; A4B4 AgB,
AsBy AzB: A1B; AgB2
A3Bz AzB3 AiBs ~ AoB3

P,° Ps Ps Pa P - P . P Po

(a) .

Thed4 x4 biﬁary multiplication

Parallel Multiplier

Let us consider the multiplication of two unsigned numbers A and B. Let the
number A be represented using m bits (Ap-1Am-2...Aq) and the number B,
using n bits (B,_1B,—2...By). The multiplicand A, the multiplier B, and the

_product P are given by [4-6]

m-1" '
A= Z AR’ ‘ 4.2)
i=0) . .
"—1 Pl .
B=) B2/ . ; @3
j=0 .
) n—1 [m-1 N)
‘P= Z Z Aisz H—J:I ‘ (4.4)
=0 Li=0 :

‘and can have a maximum of (im+ n) bits. Each bit of the product P is

obtained by a summation of bits A;B; using an array of single-bit adders.
The bits A;B;, where the index i takes on values from 0 to m — 1, and the
index j from 0 to n — 1, are formed using AND gates. Figure 4.1(a) shows the
multiplication operation using 4 bits for both A and B (A = A3;A;A;A, and
B = B3B,B,By). Figure 4.1(b) shows the hardware structure of the multiplier
for this example. The structure is regular and requires twelve 3 input, 2 output
adders. It can be shown that for an n x n multiplier, the number of adders
required is n(n — 1)

Multiplier for Signed Numbers

The multiplier shown in Figure 4. l(b) is known as Braun multiplier [7] and is
the basis for most of today’s commercial implementations. Several improve-

A3B0 A2B0 A]BD ‘ AOBO

Figure 4.1(b) The structure of a 4 x 4 Braun multiplier

ments on this basic structure are possible and have been used to increase the
* speed and reduce the hardware complexity and power dissipation. We will not

be dealing with these variations here. However, we will consider one modifi-

“ cation of the Braun structure, which is essential to carry out multiplication of
. signed numbers.

Braun’s multlpher does not take into account the signs of the numbers that
are being multiplied. Additional hardware is required before and after the
multiplication when signed numbers, represented in 2’s complement form, are
used. It would be desirable to have a structure that can directly operate on 2’s

complement numbers.

Consider two numbers A and B represented in 2’s complement format. Let
A have m bits and B, n bits. A and B can be written as follows:

-2
A= —A,,,_ 2m! +ZA,2‘ (4.5)
f==0)

B=-B,, 2"‘ +ZB,2«’ (4.6)
=0

66 Chapter 4 Architectures for 'Progmable Digital Signal-Processing Devices

The product P = Prin-1.. .PyPg can be written as

m—2 n—2 m—2"

P = An-iBr 2min2 SO upai S g, By, 2"
i=0 j=0 =0
n—2 |
- Z Ap lsz"'-‘ﬂ 47)
=0) ,

" Thé two subtractions in Eq. 4.7 can be expressed as additions of 2’s comple-

ment numbers. In doing so, Eq. 4.7 gets modified to an expression with only
additions and no subtractions and can then be implemented through a struc-
ture similar to the Braun multiplier using only adders. The modified structure
for handling signed numbers is called the Baugh-Wooley multiplier [8].

Speed

The shift and add techmque of multiplication normally used in micropro-
cessors requires n processor cycles to carry out an n x n multiplication. The

 cycle time is the time to access the operands, perform add and shift, and store

the result in the product register. The parallel multiplier, on the other hand,
is a fully combinational implementation, and once the operands are made
available to the multiplier, the mult1p11cat10n time is only the longest path
delay time through the gates and adders.

Normally, one would want to achieve the highest posstble speed of opera-
tion for a given DSP function. This would mean a multiplication time com-
parable to the processmg times of other computational units as well as the

- access times of memories holding the program and data. As memory tech-

nology advances, lower and lower access times are achieved. In order to make
the best use of such speeds in a DSP implementation, it would be highly
desirable to design multipliers operating at the highest possible speeds. This is
possible only with a fully parallel implementation.

Bus Widths

Consider a multiplier with inputs X and Y and the product Z. If X and Y are
represented with n bits each, Z can have a maximum of 2n bits. Let us assume
that both X and Y-are in the memory and the product Z has also to be written
back to the memory. A single-cycle execution of the multiplication will then
require two buses of width n bits each (for X and Y) and a third bus of width
2n bits (for Z). This type of bus architecture is expensive to unplement A
number of practical considerations, however, make it possible to realize the
multiplication with a less extensive bus architecture. First, the program bus
can be used to transfer one of the operands (say, Y) after the. multiplication
mstmctlon has been fetched from the program memory. This does not cause

4.3 DSP Computational Building Blocks - 67

an additional overhead when repeated multiplications are carried out, as is
generally the case with many DSP algorithms. This is because, the instruction,
once fetched, usually resides in an on-chip cache. Second, a separate bus for
the product Z can be dispensed with, since one of the buses (say, that of X)
can be used to transfer the product to the memory as the operand X would
have been latched long before the product Z is made available. To handle the

2n bits of Z, there are two available alternatives;

a. Use the X bus (n bits) and save Z at two successive memory locations
using two memory accesses.

b. Discard the lower n bits of Z and save only the higher »n bits. This is the
option most often used since one of the two operands X and Y (usually
Y) is normalized to one before multiplication so that the n bits dis-
carded from Z are the less significant fractional bits. However, if the
product Z is to be further processed (e.g., added to the previous result
as is the case in a multiply and accumulate operation), all 2n bits of
the product Z are retained and passed on to the next stage to retain the
accuracy -of the product. The decision on discarding lower-order bits
or saving the entire word is made. after the accumulation process is
completed. - '

For applications in which speed is not the main issue, buffers and latches
may be provided at inputs and the output, as shown in Figure 4.2. A single bus
can then be used to preload the operands in the input latches before the mul-
tiplication and transfer the result from the output latches/buffers to the
memory or the next stage, if necessary in two cycles after the multiplication.

Databus -
P
" n
An
. R
/n
 Multiplier 7" 2 7
2n n
L » » -
/n

X, Y, Z are latches/ buffers

Figure a2 A multiplier with ihput a'nd output latches/buffers

68 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices

>

4.3.2

Example 4.2

Solution

- Shifter

Shifter is ar essential component of any DSP architecture. Shifters are re-
quired to scale down or scale up operands and results to avoid errors resulting
from overflows and underflows during computations. Let us consider the fol-
lowing cases:

a. It is required to compute the sum of N numbers, each represented by n
bits. As the accumulated sum grows, the number of bits required repre-
senting it increases. The maximum number of bits to which the sum can
grow is (n + log, N) bits. However, if each of the N numbers is scaled
down by log, N bits prior to the addition, the loss of the result due to
overflow can be avoided. The accumulator will then hold the sum scaled
down by log, N bits. Although the accuracy of the sum is reduced be-
cause of the loss of log, N lower-order bits, the summation would be
completed without the occurrence of the overflow error. The actual sum
can be obtained by scaling up the result by log, N bits, when required.

b. Whén two numbers, each represented by n bits, are multiplied, the
product can have a maximum of 2n bits. When this product is saved in
memory, which is also n bits wide, the lower- order n bits are generally
discarded, resulting in loss of accuracy. However, in the case of multi-
plication of two signed numbers, the accuracy can be slightly improved
by shifting the product by one bit position to the left before saving the n
higher-order bits. This is because the 2n-bit product will have two sign
bits, and even after discarding one of them (by a smgle -bit left shift), the
sign of the product is still preserved. The accuracy improves because,
instead of discarding all the n lower-order bits, we now dlscard only
{n — 1) bits.

¢. When carrying out floating-point additions, the operands should be
normalized to have the same exponent. This is accomplished by shifting

one of the operands by the required number of bit posmons so that it
has the same exponent as the other operand.

- The cases illustrated above are examples of situations that requlre shlftmg
of data whlle implementing DSP operatlons

It is required to find the sum of 64 numbers each represented by 16 bits. How
many bits should the accumulator have so that the sum can be computed
w1th0ut the occurrence of overflow error or loss of accuracy?

When 64 numbers are added, the sum can grow by a maximum of log, 64 =
6 bits. To avoid overflow, the total number of bits the accumulator should

haveis 16 + 6 = 22.

>

Example 4.3

Solution

D> Example 4.4

&>

Solution

Example 4.5

Solution

4.3 DSP Computat‘ion‘al Building Blocks 69

If, for the problém of Example 4.2, it is decided to have an accumulator with
only 16 bits but shift the numbers before the addition t6 prevent overﬁow, by
how many bits should each number be shifted?

Since the sum can grow by 6 bits, in order to prevent overflow, each number
should be shifted by 6 bits to the right before the addition.

If all the numbers in the problem of Exampie 4.3 are fixed-point integers, what
is the actual sum of the numbers?

Since each number has been shifted to the rlght by 6 bits, the sum should be
shifted left by 6 positions to get the actual value.

The a;tual sum = (content of the accumulator) x 2°

What is the error in the computatwn of the sum in the problem of Example
442

Since the six lowest significant bits have been lost in the process of summa-
tion, the sum could be off by as much as 2% — 1 = 63.

Barrel Shifter -

In conventional microprocessors shifting is normally implemented by an op-

eration similar to the one performed in a shift register. The operation takes
one clock cycle for every single bit shift. Such a scheme requires unduly large
amounts of time to implement muitibit shifts, which are generally required
in DSP computations. In DSPs, on the other hand, in order to preserve the
computational speed of single-cycle instruction execution, shifts by several
bits should be accomplished in a single cycle. This is possible by a combina-
tional circuit known as the barrel shifter. The barrel shifter connects the input
lines representing a word to a group of output lines with the required shift
determined by its control inputs, as shown in Figure 4. 3(a). Control input also
détermines the direction of the shift (left or right). If the input word has n

- bits, and shifts from 0 to n — 1 bit positions to the right or left are to be im-

plemented, the control input requires log,n lines to determine the number of
bits to be shifted. Further, an additional line is also required for the control
input to indicate the direction of the shift. In practice, however, the direction
of shift is usually fixed, with the result that only log, n lines are required for
the control input. Bits shifted out of the input word are discarded and the new
bit positions are filled with zeros in the case of left shift. In the case of right
shift, the new bit positions are replicated with the most significant bit to
maintain the sign of the shifted result.

Figure 4.3(b) shows an implementation of a barrel shifter with four 1n§ut
bits, (A3A;A;Aq) and four output bits (B;B;B;Bo). Using this shifter, it is

70 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices

Input n

n Output

SHEFTER -~ [7.

- Number of bit positions for
the shift

Control Inputs

Figure 4.3(a) Block diagram of a barrel shifter

Input
Bits
" | '—‘I:}J
S,
A,
—r 1 ¢
] So S 1
A;
— —{ — 11—
SQ S] S?,
As - : o
- S.ly SZa S3 S2’ S3 S3
Output ' « -
Bits — B, ‘ B2 By By
Input - Shift (Switch) Output (B;B,B;By)
AsAA A | 0(Se) AsArAAg '
AAA A, [1(5) AsAALA,
AsAA1Ag | 2(Sy) AsAsALA,
AsAxAG A | 3(8;) AsAsAzA,

Figure-4.3(b) lmbiementation of a 4-bit, shift-right barrél shifter

>

Example 4.6

Solution

433

4.3 DSP Computational Building Blocks 71

possible to realize right shift by 0, 1, 2, or 3 bit positions by setting the control
inputs (S, S, S, or Ss) high, respectively. Only one of the control inputs can
be high at any time and this input closes all the switches controlled by it and
enables the appropriate paths between the inputs and the outputs.

Since the circuit for a barrel shifter is a combinational logic circuit, the time
taken to implement the shift is the total combinational delay involved in de-
coding the control lines and setting up the path from the input lines to the’

“output lines. This delay is only a fraction of a clock cycle. In fact, in practical

DSPs, shifting is combined with data transfer. Both operations are executed in
a single clock cycle.

A barrel shifter is to be designed with 16 inputs for left shifts from 0 to 15 bits.
How many control lines are required to implement the shifter?

The number of control lines required is four, since 4 bits are needed to code’
any number between 0 and 15, the range over which the shift is required to be
accomplished.

Multiply and Accumulate (MAC) Unit

Most DSP applications such as filtefs require the accumulation of the products
of a seriés of successive multiplications. In order to implement this accumu-
lation, we need an add/subtract unit and an additional register called the
accumulator at the output of the multiplier. The configuration of such a mul-
tiply and accumulate unit, commonly known as the MAC unit, is shown in

Figure 4.4.

The MAC unit consists of a multiplier that multiplies two n-bit numbers X
and Y and gives a product 2# bits wide. This is added to or subtracted from

~the contents of the accumulator in the add/sub unit. The result is saved in the

accumulator. The MAC unit can thus be used to implement functions of the
type A + BC. If the accumulator is cleared -at the start of a series of multi-
plications, it will contain the accumulated sum of the products on completion
of all the multiplications.

Although multiplication and accumulation are two distinct operations, each
normally requiring a separate instruction execution cycle, the two can work in
parallel. At a time when the multiplier is computing a product, the accumula-
tor accumulates the product of the previous multiplication. If N products are
to be accumulated, N — 1 multiplies can overlap with accumulations. During
the very first multiply, the accumulator is idle since there is nothing to accu-
mulate. Likewise, during the very last accumulation, the multiplier is idle since
all the N products have been computed. Thus it takes a total of N +1 in-
struction execution cycles to compute the sum of products of N multiplica-
tions. If N is large, this works out to a speed of nearly one multiply and
accumulate (MAC) operation per instruction execution cycle. This pipelined

72 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices

>

Figure 4.4

Example 4.7

Solution

Multiplier

Product Register

2n

3 I

\4 /
ADD/SUB .

n
/

Y

Accumulator

2n

A MAC unit

operation of a multiplier and an accumulator working in parallel to effectively
execute a MAC operation per cycle is a standard feature of many commercial
DSP devices.”

If a sum of 256 products is to be computed using a pipelined MAC unit, and if
the MAC execution time of the unit is 100 nsec, what will be the total time
required to complete the operation?

To carry out 256 MAC operations, 257 execution cycles are required.
The total time required = 257 x 100 x 107° sec = 25.7 psec.

Overflow and Underflow

When designing a MAC unit, one has to pay attention to the word sizes en-
countered at the input of the multiplier and the sizes of the add/subtract unit
and the accumulator, as overflow and underflow conditions may be encoun-

g

Example 4.8

Solution

- 4.3 DSP Computational Building Blocks 73

tered otherwise. Provision of barrel shifters at the inputs and the output of the
MAC unit, provision of guard bits in the accumulator, and provision of satu-
ration logic are the frequently used techniques to prevent overflow and tn-_
derflow conditions from occurring in the MAC unit. Now let us consider each
of these provisions in detail.

Shifters

Shifters are normally provided at the inputs and the output of the MAC unit.
The input shifters help to normalize data samples and/or filter coefficients as

they are fed into the multiplier, to avoid overflow of the accumulated result at

the output. Likewise, the shifter at the output is used to denormalize the result
after the sum of products computation, before being saved in the memory. In

“addition, the output shifter may also be used to discard the redundant sign bit

in 2’s complement product or to shift the output by the required number of
positions before saving to preserve the maximum possible accuracy. This is
done when the number to be saved is preceded by several leading Os or 1s.
As shifters provided in the MAC unit are typically barrel shifters, they do not'
require additional clock cycles to implement the shifts.

Guard Bits

Sometimes, in order to preserve accuracy, the inputs to the multiplier are not -
normalized. In such a case, when repetitive MAC opérations are performed,
the accumulated sum grows with each MAC operation. This increases the
number of bits required to represent the result without loss of accuracy. One
way to handle this growth is to provide extra bits in the accumulator. These
extra bits, called guard bits or extension bits, allow for the growth of the ac-
cumulated sum as more and more product terms are added up. When the
computation of the required sum of products is completed, the extension bits
may be saved as a separate word, if required. Alternatively, the sum along with
the guard bits may be shifted by the required amount and saved as a single
word. When guard bits are provided in the dccumulator, the size of the add/
subtract unit also increases cqrrespondmgly

Consider a MAC units whose inputs are 16-bit numbers. If 256 products are to
be summed up in this MAC, how many guard bits should be provided for the
accumulator to prevent overflow condition from occurring?

In general, the product of a 16 x 16 multiplication has 32 bits. Since 256 such
products are-to be summed, the sum can grow by a maximum of log, 256 =
8 bits. Therefore, the number of guard bits required to- ‘prevent the occurrence
of overflow is 8. :

74 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices

Figure 4.5

X Y
16 16
Multiplier
32
40
y . Y
\ ADD/SUB /
o 40
Guard bits
8 32

A MAC unit with accurﬁulator guard bits

Figure 4.5 shows a block dlagram of the MAC umt with guard bits for this
example. .

Saturation Logic

With or without guard bits, an ,overflow condition occurs when the accumu-
lated result becomes larger than the largest number it can hold. Likewise,

“when handling a negative number, an underflow will occur if the contents of

the accumulator become smaller than the smallest number it can hold. In

" such situations, it may be better to limit the accumulator contents to the most

positive (or the most negative) value to avoid an error known as the wrap-
around error. :

Limiting the accumulator contents to its saturation limits is achieved with
a simple logic circuit called the saturation logic. The circuit, shown in Figure
4.6, detects the overflow and underflow condition and accordingly loads the
accumulator with the most positive or the most negative value, overriding the
value computed by the MAC unit. The overflow/underflow condition is de-
tected by monitoring the carry into the MSB and the carry out of the MSB. If
cairy-in is not equal to carry-out, the overflow/underflow condition' occurs.
The selection between the most negative and the most positive numbers “is
madé based on the sign bit of the number. .

Figure 4.6

434

4.3 DSP Computational Building Blocks 75

Least negative ———) ‘ . Accumulatol;
value . Load

. ‘ (Multiplexer
Most positive ———m ‘
value

Qverflow/
) Underflow

C; = Carry into the MSB
Co= Carry out from the MSB

Sign
(MSB)

A schematic diagram of the saturation logic

Arithmetic_ and Logic Unit

In addition to shift, multiply, and mxﬂtlply«and-accumulate (MAC) opera-
tions, a DSP'is required to carry out several arithmetic and logic operations.
These are the operations, such as add, subtract, increment, decrément, negate,
AND, OR, NOT, EXOR, and.compare, that are also implemented in a conven-
tional microprocessor. This means that the ALU of a DSP is similar to the

- ALU of a microprocessor but with additional features such as shift and mul-

tiply discussed in the earlier sections. Figure 4.7 shows the block diagram of

- the ALU of a typical DSP device.

Apart from providing arithmetic and 10g1c functlons, the design of an
ALU for a DSP incorporates several other features borrowed from a general-
purpose microprocessor. Three of these features are discussed next

- Status Flags

It is important to know the status of the accumulator after arithmetic or a
logic operation. This information is used for program sequencing and scaling.

The ALU includes circuitry to generate status flags after arithmetic and logic

operations. These flags include sign, zero, carry, and overflow. For instance, if
the execution of an instruction results in overflow, the overflow flag is set;
otherwise it is reset.

Overflow Management

Features similar to those explained in the previous section on MAC are also .
required in the ALU for overflow management. These features are generally

76 Chapter 4 Architectures for Progi'ammable Digital Signal-Processing Devices

Data Bus
o : A A A
1 4 L 'Y 4
Register Register | | Multiplier
File File
// // // //
. y i R
Mux Mux
A , A
y] A
ALU Status
//
y
Accumulator
//
¥y
* Data Bus

Figdre 4.7 Block diagram of an arithmetic logic unit

combined with the status flags. For example, depending on the status of the
_ overflow and the sign flags, the saturation logic can come into effect to limit
the accumulator contents to its most positive or the most negative value.

Register File

A feature tat improves the efficiency of an ALU is the implementation of a
large general:purpose register file. Instead of moving data in and out of the
ALU to memory during the course of an arithmetic computation, it may be
faster to have intermediate results of arithmetic computations stored in the .
ALU until the computation is complete and the result is ready to be saved.

This is possible by providing a file of general-purpose registers in addition to
- the accumulator as part of the ALU architecture. *

http:overfl.ow

4.4 Bus Architecture and Memory 77

4.4 Bus Architecture and Memory

In conventional microprocessors, the von Neumann architecture is used,
~ wherein the program and the data reside in the same memory and a single bus
(Address + Data) is used to access both, as is shown in Figure 4.8(a). This
slows down the program execution considerably as the processor has to wait
for the data even after the instruction is made available to it. In order to avoid
this waiting and to speed up the program execution, it is desirable to have the
program and data reside in two separate memories and have two buses for
the processor to access the two memories, This modification, which is called

Address ~
™
Proceésor . Memqry
el . W
< g N
Data
(a)

Figure 4.8(a) The bus structure of von Neumann architecture

Address
b
| Program
Memory
K. .
Data
Processor
Address =
Data
P | Memory
(\ -
: Data
)

Figure 4.8(b) The bus structure of Harvard architecture

78 Chapte‘f 4 Architectures for Programmable Digital Signal-Processing Devices

Figure 4.8(c)

Address
A
Program
Memory
~ Data V
Address
\)
7| Data
Processor :
P «| Memory
P
Data. :
Address
s “
“| Data
N Memory .
7~
Data
©)

The bus structure for the arch:tecture with one program memory and two data
memories

the Harvard architecture, is shown in Figure 4.8(b). In fact, even this may not-

solve the problem completely. For example, the multiplication operation re-

_quires two operands to be fetched from the memory; one may be a data.sam-

ple and the other, a coefficient. Even with separate memories for the program
and data, it is not possible to fetch the two operands required for th¢ multi-
plication along with the program instruction, and the processor has to wait for
the second operand. It would therefore be required to provide dual data
memories (for data and filter coefficients, for example) in addition to program
memory and provide each with a separate bus for the processor to access
them simultaneously. Figure 4.8(c).shows a possible bus structure of this type.
As we can see, this will requlre a lot of hardware and interconnections to im-
plement, thereby increasing the cost. Therefore, a compromise solution needs
to be found to strike a balance between the hardware complexity and speed
requirement of the multiplication operation, which-is the most critical DSP
operation in terms of the overall speed of algorithm implementation:

http:memori.es

4.4 Bus Architecture and Memory -79

4.4.1 On-Chip Memory

A compromise between having multiple memories with individual buses for
each and having fewer memories and buses is to provide some of the memo-
ries along with their buses on-chip. Even though the processor has to make
simultaneous accesses to all the memories, only some of these are to the mem-
ories external to the DSP, thereby reducing the interconnection requirements
to external devices.

On-chip memories help in running DSP a‘Jgonthms faster than when the
memories are located off-chip. This is because on-chip memories can have
dédicated address and data buses unlike off-chip memories, whose buses.
are often multiplexed to reduce the pin count on the DSP. There are several

issues related to the design of on-chip memories; two. of these are considered
next. '

Speed . .

The on-chip memories should match the speeds: of the ALU operations in
order to maintain the single-cycle instruction execution requirement of the
DSP. However, this is not a serious constraint because execution times of
complex arithmetic operations such as multiplication are generally longer
than memory access times. In fact, very often, more memory accesses than
one are possible within a single instruction cycle, as will be explained later.

Size

Size is a major constraint for on-chip memories. In a given area of a DSP chip
~ as many DSP functions as possible must be packed in order to get the best.
possible performance. On the other hand, the more area occupied by the on- -
chip memory, the less will be the area available for the other functions. The’
sizes of the on-chip memories are optimized taking into account the speed
- advantage, but without compromising any essential features required on the
- DSP. ,

442 Organization of the On-Chip Memory

Ideally, the entire memory required to implement a DSP algorithm should re-
side on-chip. This means, that the on-chip memory should be partitioned into
program and data spaces. If necessary, the data memory should be further
divided into separate areas for storing data samples, coefficients, and results.
This way, an instruction with two operands can be fetched and executed and
the result saved all in a single cycle. Writing the program and data into the
on-chip memories is done before the program executmn Likewise, the results

http:witho.ut
http:functio.ns
http:o.peratio.ns
http:serio.us
http:o.peratio.ns
http:simultaneo.us

80 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices

are read off the on-chip memory after the program execution is completed.
However, this scheme is not practical because the different memory blocks
and their buses take an enormous amount of chip area, thereby limiting the
scope of other functions that are to be provided on the chip. There are several
other ways in which the on-chip memory can be orgamzed efficiently and in-a
cost-effective manner.

1.

Many DSP algorithms require repeated executions of a single instruction
such as the multiply and accumulate or a loop consisting of a few in-
structions. The result is normally saved only after the repetitions are
completed. It is, therefore, sufficient to provide only two blocks of on-
chip memories to hold the operands required for the execution of the
instructions. The instruction or instructions required to carry out the
repetitive calculations can reside in the external memory and, once
fetched, can be repetitively used by keeping them in an instruction -
cache. Since the result is to be saved less frequently, there is no need to
provide a separate memory for this purpose.

On-chip memories can be designed such that they can be accessed
more than once in an instruction cycle. This way, fewer memory blocks
can serve to hold the program, the operands, and results. This means
that their access times should be sufficiently small to match the tim-

" ing requirements of single-cycle instruction execution. Considering the

advances made in memory design technology, it is possible to integrate

dual-access on-chip memories on today’s commercial DSPs. For exam-

ple, let us assume that there are two on-chip memories and two buses in

a DSP device. If each of these memories is fast enough to be accessed

twice in each instruction cycle, execution of a multiply instruction that

includes an instruction fetch, two operand fetches, and a memory access
to save the result can be completed in one clock cycle. :

On-chip memories can be configured for different uses at different times
depending on the requirements. For example, if a DSP has two blocks of
on-chip memory, ordinarily one of them will be configured as program
memory and the other as the data memory. However, for execution of
instructions, which requires two operands to be fetched simultaneously,
they can both be configured as data memories. The instruction itself
can be fetched from an external memory or it can reside'in an on-chip
cache.

In addition to program memory and data memories, DSP architecture
should provide for a separate stack that can be directly accessed by the pro-
“gram counter. This provision can considerably reduce the overheads during
. the subroutine and interrupt calls and returns. If the cost becomes an issue in
the choice of access times required for memories in a multiple memory sys-
tem, it is preferable to provide faster memories for those segments that are
more frequently accessed than the others.

4.5 Data Addressing Capabilities‘ 81

4.5 Data Addressing Cababilities

Table 4.1

4.5.1

The data processed by a digital signal-processing scheme typically consist of
signal samples and filter coefficients. An efficient way of accessing data while
performing computations can go a long way in the overall performance of an
implementation. The provision of flexibility in accessing data helps in writing
efficient programs for various applications. The data addressing capability of a
programmable DSP device is provided by means of its addressing modes. The
addressing modes that can enhance DSP implementations consist of immedi-
ate, register, direct, and indirect addressing modes. We now discuss each of
these modes. These modes are summarized in Table 4.1.

-Summary of DSP Addressing Modes

Addressing - Sample

Mode "~ Operand Format Operation
Immediate Immediate value | ADD #imm #imm+ A - A
Register Register contents ADD reg reg+A— A

Direct ~ Memory address contents ADD mem mem+ A — A .
Indirect © Memory contents with ADD *addrreg *addrreg+ A — A

address in the register

Notations used in describing the operation in the table:

#imm = value represented by imm,)

reg = contents of registér reg,

mem = contents of memory location with address mem, and

*addrreg = contents of memory location whose address is the contents of address
register addrreg,

— represents the transfer from left to right.

Immediate Addressing Mode

The capability to'include data as part of the instruction is provided by the
immediate addressing mode. For example; a DSP processor may allow the
programmer to write the instruction :

ADD #imm

to add the value represented by imm to the accumulator register, A. In other
words, the operanon »

#imm+4 A — A

is implemented. In such an addréssing mode data has to be a fixed number

known at the time of writing instructions. Filter coeﬂ‘icxents are examples of
this kind of data. ‘

82 .Chapter 4 Architectures for Programmable Digital Signal-Processing Devices

452

453

4.5.4

Register Addressing Mode -

7

In the register addressing mode a processor register prowdes the operand.
Using this addressing mode the DSP processor may prov:de an instruction

' ADD reg
to implement

reg+A— A

Direct Addressing Mode

In the direct ar.idressmg mode a memory operand is specified by providing its
memory address. For mstance a DSP processor may allow an instruction

ADD mem
to implement

mem+A-»A ‘

A signal sample stored in a memory location can be accessed using direct
addressing mode. This mode, however, requires an explicit knowledge of the
memory address, mem. .

Indirect Addressing Mode

In the indirect addressing mode an operand is accessed using a pointer. A’
pointer is typically a register that holds the address of the locafion where the
operand resides. For example, to add to the accumulator, A, the content of the
memnory location whose address is held in addrreg, the following instruction is
implemented:

ADD *addrreg
which means

*addrreg + A — A

In order to use this addressing mode; addrreg needs to be loaded before the
use. Any memory location can be accessed by slmply changing the register
contents.

_ The indirect addressing mode can be enhanced by providing an automatic
capability to manipulate the pointer register just before (pre) or just after
(post) the use. The pointer register may be incremented or decremented. It

4.5 Data Addressing Capabilities 83

may also be possible to add or subtract the contents of another register (offset
register) provided in the architecture, This leads to the following enhanced
indirect addressing modes:

Post_increment addressing mode,
APost_decrement addressing mode,
Pre_increment addressing mode,
Pre_decrement addressing mode, -
Post_oﬁ”set_;ad& addressing mode,
Post_offset_subtract addressing mode,
Pre_offset_add addressing mode, and
f Pre_ojfsetmsubtmct‘addressing mode.

These enhanced indirect addressing modes are summarized in Table 4.2.

Table 42 Enhancements to Indirect Addressing Mode

Addressing Mode Sample Format ' Operation

Post_increment ADD *addrreg+- A
o ' ' R A+ *addrreg,
addrf'eg —
. , ‘ , addrreg +1
Post_decrement ADD *addrreg—. ‘ A
- ' - A+*addrreg,
addrreg «—
S addrreg -1
" Pre_increment ADD + *addrreg’ © addrreg «—
o ‘ - addrreg + 1,
A
A 4 *addrreg
Pre_decrement ADD — *addrreg addrreg +—
' ‘ addrreg — 1,
A
o : } A+ *addrreg
Post__add__oﬁset ‘ " ADD *addrreg, ofﬁetrég+ A
‘ A+ *addrreg,
addrreg «— addrreg -+ offsetreg

{continued)

84 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices

Table 4.2

. > Example 4.9

Table 4.3

Continued

}Addrvessiﬁy Mode Sai‘nple Format Operation

Post_subtract_offset ~ ADD *addrreg, offsetreg— A
' A+ *addrreg,
dddrreg -
. , addrreg — offsetreg
Pre_add_offset - ADD offsetreg+, *addrreg addrreg —
‘ V' addrreg + offsetreg,
A ‘
‘ A + *addrreg
Pre_siibtract_offset ADD offsetreg—, *addrreg addrreg —
: addrreg — offsetreg,
A ;
A + *addrreg

In order to realize the indirect addressing mode and its enhanced versions
in a DSP architecture, additional hardware operating in conjunction with its
addressing unit is required. For example to provide pre_offset_add addressing
mode, an adder and another register to hold the offset are needed. It also
means extra time for operand accessing or, alternatively, the need for com-
puting the operand address using a dedicated address arithmetic unit working
in parallel with the main arithmetic unit.

What are the memory addresses of the operands in each of the following
cases of indirect addressing modes? In each case, what will be the content of
the addrreg after the memory access? Assume that the initial contents of the

- addrreg and the-offsetreg are 0200h and 0010h, respectively.

a. ADD *addrreg—,
b. ADD + *addrreg

Solution for Example 4.9

Contents of addrrég

Addressing ~ after the Memory
Instruction Mode Operand Address Access
a Post_decrement 0200h (0200h — 1h = OIFFh
b Pre_increment 0200h+ 1h = 0200h 0201h
d Pre_add_offset 0200h + 10h = 0210h 0210h
d

Post_subtract_offset 0200h : 0200h — 10h = 61Foh

Solution

455

4.5 Data Addressing Capabilities 85

C. ADD offsetreg+, *addrreg

- d. ADD *addrreg, offsetreg—

The solution is given in Table 4.3.

Special Addressing Modes

In addition to the addressing modes mentioned earlier, special addressmg
modes are provided in the architecture of a DSP to implement real-time signal
processing and to compute DFT using FFT algorithms. Real-time signal proc-
essing is enhanced by the provision of a circular buffer and the addressing
mode-that goes with it. The FFT implementation requires data to be accessed

in a nonsequential, yet regular, manner. The data for FFT is accessed by what

is called as bit-reversed index. A bit-reversed addressing mode is generally
provided in the architecture to support FFT implementations. Similarly, to
process .two-dimensional data, it will be .advantageous to provide a special
addressing mode that can help access data organized in a matrix form. Now
we consider two of these special addressing modes. ' ‘

Clrcular Addressmg Mode

The provision of a circular buEer allows one to handle a continuous'stream of
incoming data samples. In a circular buffer, successive data samples are stored
in sequential buffer locations until the end of the buffer is reached. After
reaching the end we start all over from the beginning of the buffer. This pro-
cess can go on forever as long as the data samples get processed in a timely

" manner at a rate faster than the incoming data. To access a data sample from a

circular buffer, a circular addressing mode is of great help. The implementation
of such an addressing mode in hardware requires three registers: a pointer reg-
ister (PNTR) to keep track of current address, a start address register (SAR) to
hold the start address of the buffer, and an end address register (EAR) to hold
the end address of the buffer. The pointer register should have the capability of

- getting incremented/decremented. Different forms of the indirect addressing

mode for the pointer register are required in order to update the pointer for
different applications. The pointer-updating algorithm is given in Figure 4.9.

The different cases that are encountered during the updating process of the
pointer are shown in Figure 4.10. These cases are:

1. SAR < EAR, and updated PNTR > EAR

2. SAR < EAR, and updated PNTR < SAR
3. SAR > EAR, and updated PNTR > SAR
4. SAR > EAR, and updated PNTR < EAR

The buffer size in the first two cases = (EAR — SAR -+ 1) and in the last two it
is = (SAR — EAR + 1).

86 Chapter 4 Architectures for Programmablev Digital Signal-Processing Devices

Figure 4.9

> Example 4.10

~ Solution

[f>j Example 4.11

“Solution -

; Pointer Updating Algorithm for the Circular. Addressing Mode

Updated PNTR <« PNTR % increment
If SAR < EAR
and if Updated PNTR > EAR, then
New PNTR < Updated PNTR - Buffer size
and if Updated PNTR < SAR, then
New PNTR <« Updated PNTR + Buffer size - .-
If SAR > EAR
and if Updated PNTR » SAR then-
B New PNTR <« Updated PNTR - Buffer size
and if Updated PNTR < EAR, then :
" 'New PNTR < Updated PNTR + Buffer size
Else
New PNTR *—'Updated PNTR

Register pointer updating algorithm for circuiar buffer addressing mode.
SAR = start address register contents, EAR = end address register contents,
PNTR = pomter ‘j

A DSP has a circular buffer with the start and the end addresses as 0200h and
020%h, respectlvely What would be the new values of thie address pointer of

- the buffer if, in the course of address computatxon, it gets updated to (a)

0212h, (b) 01FCh?

The buffer length = 020Fh — 0200h + 1 = 10h

"a, The new value of the pointer is updated value — buffer kngth, ie.,

0212h — 0010h = 0202h.

b. The new value of the pomter is updated value+buﬂ?er length, ie.,
01FCh+ 0010h = 020Ch. .

Repeat the pr;)blem of Examplé 410 if the start and end addresses of the cir-
cular buffer are 021¢h and 0201h, respectively.

a. The new value of the pointer is the updated value — buffer length, ie.,
0212h — 0010h = 0202h. -

b. The new value of the pointer is the updated value+buifer length, ie.,
01FCh + 0010h = 020Ch.

Note that these values are the same as those in the previous example. This
shows that in-acircular buffer, the address. pointer wraps around to point to
an address inside the buffer, irrespective of whether the buffer start address is
hlgher or the end address is h1gher

SAR

Y

EAR . ,

Updated PNTR

4.5 Data Addressing Capabilities 87

Low address

High address

Case 1: SAR < EAR, and Updated PNTR > EAR

‘Updated PNTR — >

SAR : »

R 1/

Low address

High address

Case 2: SAR < EAR, and Updated PNTR < SAR

Figure 410 Different cases that arise in updating the pointer in circular buffer addressing

rmode

Bi‘t-Rev‘ersed Addressijng Mode

(continued)

Special data access capability is needed in the FFT algorithm implementation,
In the algorithm called decimation in time (DIT) FFT, the naturally ordered
data needs to be accessed according to the indices, as shown in Table 4.4 for

88 Chapter 4 Architectures for'Progfammable Digital Signal-Processing Devices

Low address

:

Equal
SAR . /
Updated PNTR — - }
High address
Case 3: SAR > EAR, and Updated PNTR > SAR
Low address
 Updated PNTR oo,
'EAR - } ,
, Equal
NewPNTR o f— /
SAR - }
High address

Case#: SAR >EAR, and Updated PNTR <EAR

Figure 4.10 Continued

an 8-point FFT. That is, in the case of an 8-point FFT, the input data x(0),
x(1), x(2), x{3), x(4), x(5), x(6), and x(7) need to be accessed in the order x(0),
x(4), x(2), x(6), %(1), x(5), x(3), and x(7). The interesting point is that the
indices describing the order of data access can be obtained as follows: start

Table 4.4

D> Example 4.12

Solution

4.5 Data Addressing Capabilities 89

lndéx Computation Using Bit-Reversed Addressing Mode for an 8-point FFT

input index Output Iindex
(natural order) (bit-reversed order)
000 =0 000=10
001 =1 T 100=4
010 =2 010 =2
011 =3 110=6
100 = 4 001 = 1
101 =35 101 =5
10=6 . 0ll=3
1l =7 l=7

with index 0, obtain each current index by adding (in a special way) half the
size of the FFT to the corresponding previous index, ie.,

Current jndex = previous index + B(1/2(FFT size)) (48)

The addition however, is different in the sense that during addition the carry
must propagate from the most significant to the least significant bit, '

The reverse~carry-add operation can be provided in the architecture to
implement this special addressing mode. The architecture will require a regis-
ter to keep track of the index at any time in addition to the capablhty to
propagate the carry in the reverse direction during the add operation in order
to generate the next index to be used to access data. To provide this capability
in parallel with the instruction execution, a special address generation unit is
employed. :

Compute the sequence in which the input data should be ordered for a 16-
point DIT FFT.

Assuming that the first saniple is located at address 0, the next sample should
be located at address 0+ B(length of FFT/2) = 0 + 8 = 8. This address can be
arrived at by carrymg out binary addition with reverse carry propagation as
follows:.

Initial address in binary = 0000

Half the length of the FFT in binary = 1000

Next address (add with reverse carry propagation) = 1000

To compute the address of the third éample, repeat the operation.
Initial address in binary = 1000

90 Chapter 4 Architectures for Programmable Digital Signal—Prbcessing Devices

Table 4.5

Half the length of the FFT in binary = 1000

Next address {add with reverse carry propagation) = 0100
The process is repeated until the addresses of all the 16 samples are computed.

Table 4.5 gives the results.

Solution for Example 4.12

Sample Binary Hexa-decimal
Number Address Address

0000
1000
0100
1100
0010
1010

0110
1110
0001
1001
0101
1101

0011
1011
owl
1t

(Y-S RS D - LT B S

DR W M e O
R T v I R - T e B

S
=31

4.6 Addi-ess Generation Unit

The function of the address generation unit is to provide the addresses of the
operands required to carry out the DSP operations. Since many instructions,
such as the multiply instruction, require more than one operand for their ex-
ecution, the address generation unit should work fast enough to provide the
addresses within the time constramts unposed by the instruction execution

requirements.

Further, in a DSP implementation, the - addreSS generation unit may be
required to perform some computation of its own in order to arrive at the
operand addresses. This is because of the need for the various enhancements

4.7 Programmability and Program Execution 91

to the indirect addressing mode as well as some special addressing modes,
such as the circular addressing mode and the bit-reversed addressing mode.
These special features were discussed in Section 4.5. In order to carry out the
computations required for the specialized addressing modes the address gen-
eration unit in a DSP implementation is provided with a separate arithmetic
unit of its own. This way, address computation overhead is removed from the
main ALU, thereby allowing it to petform more efficiently.
Address generanon typically involves one of the following operations:

1. Gettmg a new value from an immediate operand, a reglster, or a mem-
ory location. .

2. Incrementmg or decrementing the current address.
3. Adding or subtracting an offset to the current address.

4. Adding or subtracting an offset to the current address, comparing the
new address with the limits defined for a circular addressing mode, and
generating a new address as per the circular addressing mode algorithm.

5. Generating a new address from the current address by applying the bit-
reversed addressing mode algorithm.

_The hardware necessary to carry out the various operations listed above
may consist of the following: an ALU; registers to store the current value, the
offset, and the new value; registers to store the limits of the circular buffer;
logic to implement the circular addressing mode; and the logic to implement
the bit-reversed addressing mode. The block diagram of a typical addressmg
unit is shown in Figure 4.11.

4.7 Programmability and Program Execution

A programmable DSP device needs to provide programming capability similar
to that of a microprocessor. It should be possible to write programs involving
branching, loops, and subroutines. The branching capability is needed in
order to alter conditionally or unconditionally the normal execution sequence.
The looping operation is desirable in order to repeat a-section of the program
the desired number of times. The subroutine handlmg instructions provide
the capability to develop-structured software.
The implementation of repeat capability should be hardware based so that
it can be programmed with minimal or zero overhead. For instance, a counter
is needed to keep track of the number of times the execution of a block of
instructions remains to be repeated. A dedicated register for this purpose can
enhance the performance. Repeat is an operation that is needed in the imple-
mentation of many DSP algorithms, and hence its hardware implementation
has a direct bearing on the overall performance of a DSP scheme.

92 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices A

1 Circular Buffer FFT
. Offset . Length
1 ‘ ; Length
A
Mux

y Y i y 1 4 y A
4 - Bit-Reversed

Modulo Adq " Add

| Add/Sub

Next-Address Reg

-y
Next Address

Figure 4.11 Block diagram of an address generation unit

The subroutine implementation requires saving the return address in the
stack. In a general-purpose microprocessor, a part of the memory is used to
implement the stack. This means that to save the return address as well as
to restore it on return, the processor requires to carry out memory read and
write operations using the system data bus. These operations add to the
overhead and make the overall program execution slow, thereby lowering the

o performance, For a DSP device, it is desirable that a last-in-first-out (LIFO)
* buffer directly interfaces to the program counter (instruction pointer) to save
the return address. This approach avoids the use of the system bus for ac-
cessing the stack and thus speeds up the subroutine branching as well as its

return.

4.7 Programmability and Program Execution 93

4.7.1 Program Control

4.7.2

Like microprocessors, a DSP requires a control unit, which provides the nec-
essary control and timing signals for proper execution of instructions. In
microprocessors, the control unit is generally implemented by means of a
microcoded sequencer. Each instruction of the microprocessor is broken
down into several microinstructions and stored in a microstore as a micro-
code. Whenever one of the instructions is to be executed, the corresponding
microcode is called from the microstore and executed, in a manner very sim-
ilar to the execution of subroutines in a program. This type of control unit is
easy to design and implement and uses less hardware. However, it is not very
fast since execution of each instruction requires several accesses to the mi-

* crostore, For a DSP, on the other hand, the speed of execution of instructions

is a critical issue. For this reason the design of various building blocks is
optimized for speed. In a DSP, the microcoded control unit is replaced by a
hardwired design. In a hardwired design, the control unit is designed as a
single, comprehensive, hardware unit taking into account the complete in-
struction set of the DSP. Although the hardware complexity is high and the
design is not easy to change to incorporate additional features, this works
much faster compared to the microcoded design and reduces the overhead for
the instruction execution time.

Program Sequencer

The program sequencer, which is a part of the control unit, generates instruc-
tion addresses in the sequence needed to access instructions. Normally, in-
structions are executed in the order in which they are stored in the memory.
However, there are several exceptions to this normal flow. Examples are sub-
routines, loops, and branching. The program sequencer hardware computes

“the instruction address under various conditions.

After fetching each instruction from the program memory, the sequencer

- generates the address from which the next instruction is to be fetched. The

next address is from one of the followmg sources:

1. The program counter, which is incremented after each instruction fetch.

2. The ‘instruétion‘regist'er, which holds the address of the instruction in ‘
‘branching, looping, and subroutine calls.

3. The interrupt vector table, in the case of interrupt service routines.

4. The stack, which holds the return addresses in the case of return from _
subroutines, return from interrupt service routines, and end of loops.

Figure 4.12 showﬁ the block diagram of a program sequencer. The program
sequencer, in effect, acts as a multiplexer, which selects the address of the next

94 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices

RET .) Address.
Stack . —»

IRET —»

Interrupt Address
Interrupt ~—»! Vector >

Table

Next Address
Multiplexer [~ >

IMP ' , Address ‘

' Instruction —
CALL ——p :
PC Address)
Increment [™| -

Figure 4.12 A conceptual diagram'of a program sequencer

instruction to be obtained from one of the sources listed above. In order to
carry out this task, several hardware features are incorporated in the program
sequencer. The program counter has to be updated after every fetch. Circuitry
is provided for this purpose. Counters are provided to hold the counts in the
case of loop and repeat instructions. Stacks push the return addresses for
subroutines and interrupt service routines and while executing loops and re-
peat instructions. The program sequencer also requires a logic block to test
conditions under which jump and loop instructions are executed as well as to

4.8 Speed Issues 95

determine when to terminate loop and repeat instructions. This logic, called

‘the condition logic, tests various arithmetic conditions by means of status flags

to decide if conditional jump and loop instructions are to be executed: This

_logic also monitors repeat and loop counters to determine when these have to
~ be terminated to return to the normal program flow.

4.8 Speed Issues

481

Fast execution of algorithms is an essential requirement of a digital signal-
processing architecture. In order to meet this requirement, DSP architecture

" must include features that facilitate high speed of operation and large through-

puts. Many of these features are possible due to advances in VLSI technology
and design innovations. In this section, we will discuss some of these features

“and see how they can increase the execution speed of the DSP architecture.
We shall also discuss certain trade-offs between speed and performance in

relation to'some of these features.

Hardware Architecture

‘Functions such as multiplication, scaling, loops and repeats, and special

addressing modes are essential for signal-processing algorithms. The archi-
tectures designed for the signal-processing applications should implement
these functions in the quickest possible time. This is achieved by hardware -
units, which are specially demgned to implement these functions. For example,
conventional microprocessors implement the multiplication by means of a
microprogram (microcode) using the well-known shift and add algorithm.
This approach takes a large number of clock cycles to implement. In order
to increase the speed of the operations ‘considerably, parallel multipliers have
been used to carry out the entire multiplication in a single clock cycle. Thanks

- to breakthroughs in VLSI technology, this is possible today. Similar hardware
" $olutions have also been found to implement the other functions mentioned
-~ earlier to reduce overheads and to increase the speed. Such methods typmally
_replace the slow microprogrammed solutions used in conventional micro-

processors.
' Harvard architecture, which separates the program and data memories with

separate buses for each, increases the speed of execution of programs consid-
- erably. Dual data memories with individual buses for each help in accessing

“ * dual operands simultaneously.

Multiple external memories reqmre multiple buses external to the DSP. In
addition to being expensive, external buses are slow for program access and
execution. By providing on-chip memories and an instruction cache, program

96 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices

482

execution is speeded up considerably. Further, these on-chip memories can

-also be accessed twice in a clock cycle, thereby reducmg the number of sepa-

rate memories and buses required in a device.

In addition to the hardware issues mentioned earlier; there are many tech-
niques used in DSP architectures to increase their speed of operation. We shall
consider two of these techniques: parallelism and pipelining.

Parallelism’

A very major requirement to-achieve high speed of operatxon in DSP archi-
tecture is. the provision of parallelism. Parallelism may mean, several things.
One is the provision of functional units, which may operate in parallel and
increase the throughput. For example, instead of the same arithmetic unit
being used to do computations on data and address, a separate address arith-
metic unit can be provided to take care of address computations. This frees

‘up the main arithmetic unit to concentrate on data computations alone and

thereby increases the throughput. Another example, which was discussed ear-
lier; is the provision of multiple memories and multiple buses to fetch an
instruction and operands simultaneously. In short, there are many functional
blocks operating simultaneously for each of the most commonly used DSP
operations, such as add, multiply, shift, etc. This way, algorithms can perform
more than one operation at the same time, such as adding while carrymg outa
multiply, shifting while reading data from memory, etc. _

Availability of multiple functional units can increase the speed of the DSP
architectures. They should be exploited to their full potermal by structuring .
the instructions to carry out the required operations in parallel. This requires
complex hardware to control these units, and the controller is hardwired
rather than mlcroprogrammed in order to ensure high speed. The architecture
should be such that instructions and data required for a computation are
fetched from the memory sunultaneously ,

An ideal parallelism in the DSP architecture w1th regard to the mult1ply-

~and accumulate operation, which is the most used operation in DSP im-
‘plementations, should be able w0 qccomphsh the following operations in a
- single clock cycle:

Fetch instructions and multiple data required for the computation
Shift data as they are fetched in order to accomplish scaling

Carry out a multiplication operation on the fetched data

Add the product to the previously computed result in the accumulator
Save the accumulator contents in the memory storage, if reqmred and

Compute new addresses for the instruction and data reqmred for the -
next operation '

http:whichw.as

4.8 Speed Issues 97

4.8.3 Pipelining

An architectural feature to increase the speed of the DSP algonthm is pipe-
lining, In a pipelined architecture, an instruction to be executed s broken into
a number of steps. A separate unit of the architecture performs each of these
steps. When the first of these units performs the first step on the current in-
struction, the second unit will be performing the second step on the previous
instruction, the third unit will be performing the third step on the instruction
prior to that, etc. If p steps were required to complete the execution of each
instruction, it would take p units of time for the complete execution of each
instruction. However, since all the units will work all the time, one output will
flow out of the architecture at the end of each time unit, and the throughput
can be maintained as one instruction per unit time. A problem with this
approach is dividing each instruction into steps taking equal amounts of time
ta perform and designing the architectural units accordingly. In practice,
however, this may not be entirely possible and the slowest unit decides the
- throughput. A second problem is the extra time required at the start of algo-
rithm execution, as the pipeline has to be filled before the result of the first
instruction can start to flow out. This initial delay in units of time, called the
pipeline latency, is related to the number of units in the pipeline. Likewise,
when there is a change in the instruction sequence, as in the case of a branch
or a loop, the pipeline needs to be cleared before the steps of the new instruc-
tion can be loaded into the pipeline, thereby causing a delay. This condition
can, however, be avoided, at the cost of additional hardware to anticipate the
branch instruction ahead of time and not filling the pipeline beyond the
branch instruction. As an example, let us assume that the execution of an in-
struction can be broken into five steps: instruction fetch, instruction decode,
operand fetch, execute, and save the result. Figure 4.13 shows how a pipelined

Time Slot Step1 Step2 Steﬁ 3 Step4 Step5 Result

. ~Inst 't
ty CInst 2 Inst1 ‘
t Inst 3 Inst 2 Inst 1
ts Inst4 Inst3 Inst2 Inst 1

.7 Inst5 Inst4 Inst3 Inst2 Inst 1 ~ Inst 1 complete
ts inst6 Inst5 inst4 | Inst3. Inst2 Inst 2 complete
[I T e L) o ’ ' L] '

Figure 4.13 Pipelining for speeding 'up the execution of an instruction -

98 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices

- 484

processor will handle this. For the sake of simplicity we will assume that all
the steps take equal amounts of time.

As we can see from the figure, the output corresponding to the first in-
struction is available after 5 units of time. However, once the result starts to
come out, we get an output after each unit of time. In other words, the steady-
state throughput of the system is one instruction per unit time.

System Levél Parallelism 'andeipelining :

The parallehsm and plpehmng concepts explamed in the last two subsections
can be extended to the implementation of DSP algorithms. Consider the ex-
ample of an 8-tap (8 coefficients) FIR ﬁlter given by

) = Zh(t)x(n— z) . @9)

=0

The filter can: be implemented in many ways depending on the number of
multipliers and accumulators available. Let us look at some of these im-
plementations.

Implementatlon Using a Smgle MAC Umt

If only one mulnpher and accumulator is avallable, it must be used 8 times to
compute the eight product terms in Eq. 4.9 and find their sum. Figure 4.14(a)
shows such an implementation. Each input sample is delayed from the previ-
ous sample by 8T, where T is the time taken by the multiplier and accumula-

- tor to compute one product term and add it to the previously accumulated
sum in the accumulator. Input samples and the filter coefficients are fed to the
multiplier through multiplexers, which are controlled such that the correct
combination of a sample and the corresponding filter coefficient are fed to the
multiplier at a given time. As each product term is generated, it is added to
the previously accumulated sum in the MAC unit. After all the eight product
terms are accumulated, the MAC contents are available as the output. Output
y(n) is available 8T units of time after x(n) is made available to the filter.
At this time, a new sample x(n+ 1) is applied to the filter. The filter then
uses eight samples, namely, x(n + 1), x(n), x(n — 1), ..., x(n — 6) to compute
y(n+ 1) after another 8T units of time. Thus, this implementation can take in

" a fresh input sample once every 87T units of time and generate an output
sample at the same rate. In other words, the maximum sampling rate that

‘this filter implementation can handle is 1/8T.

x(n) x(n~1) x(n-=2) x(n~3) x(n—4) x(n—~5) x(n—6) x(n—7)
8T 8T of 8T | .| 8T 8T o 8T 8T

- > . »

¥

‘Y ¥ ¥ 9 v

Multiplexer

v

MAC — y(n)

Unit -
‘ B

Multiplexer

TTTTTTT

h(0) h(1) h(2) K(3)h(4) K(5) M6) h(T)
Y

~ Figure 4.14(a) _ Single MAC implementation of an 8-tap FIR filter

x(n)k x(n-1) x(n-2) x(n-3) xn-4 x(n-5 x(n-6) x(n-17)

*IT}———-ITl""i;I‘J—"IT]—rT}'—"{T]—‘

3

(1),

TENT PN ENTEN
OIZH)AX) (K

y(ﬁ)

MAC
®

‘_ Figure 4.14(b) Pipelined implementation of an 8-tap FIR filter using eight MACs -

100 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices

O A h2)

It

H3)

Multiplexer- -

|

MAC

Multiplexer

e

4T.

x(n) x(n—1) qc(n - 2)

x(n-7) x(n-6) x(n=5)

x(n~-3) _ » :
’ C‘r}—»y(n)

x(n-4))

o . y

-

¥ v

J—4'1“ :‘]4'1":{'

4T

Multiplexer

.Mulﬁplrexer' .

1

:

T) RO hG) e

(c}

Figure 4.14(c) Paralle! implementation of an 8-tap FIR filter using two MAC units

Table 4.6

4.8 Speed Issues 101

E Plpehned Implementatlon Using Eight Multipliers and Eight

Accumulators

The implementation of the FIR filter of Eq. 4.9 can be speeded up if more
multipliers and accumulators are available. Let us assume that there are eight .
multipliers and eight accumulators connected in a pipelined structure, as
shown in Figure 4.14(b). Each multiplier computes one product term and
passes it on to the corresponding accumulator, which in turn adds it to the
summation passed on from the previous accumulator. Since all the multipliers
and accumulators work all the time, a new output sample is generated once
every T units of time. This is the time required by the multiplier and accu-
mulator to compute one product term and add it to the sum passed on from

the previous stage-of the pipeline. This implementation can take in a new in-

put sample once every T units of time and generate an output sample at the
same rate. In other words, this filter implementation works 8 times faster than

.the simple one MAC implementation.

Parallel implementation Using Two MAC Units

A third implementation of the FIR filter of Eq. 4.9 is shown in Figure 4.14(c).
This implementation uses two MAC units and an adder at the output. Each

- MAC computes four of the eight product terms in Eq. 4.9. Input samples and

the filter coeﬁic;ents are fed to. the MACs using multiplexers that are con-
trolled such that correct combinations of samples and the corresponding filter
coefficients are fed to the two MACs at any given time. If T time units are
required to compute one pair of products and add them to the previously
accumulated sum in the MAC units, it will require 4T units of time to generate
the final output by adding the outputs of the two MACs. At this time, a new
input sample can be applied to the filter for computatlon of the next out-
put sample. The speed of this implementation is 2 times that of one MAC
implementation of Figure 4.14(a) and one fourth of that of the pipelined elght-
multiplier, eight-accumulator implementation of Figure 4.14(b). The maxi-
mum rate at which input samples can be applied to this filter implementation
is 2 times that of the first implementation and one fourth that of the second.

Performance Summary of Different implementations of an 8 -tap FIR Filfter

. Typeof , ~ Maximum ‘ E
Implementation Sample Rate = Maximum Throughput
One MAC ' 8T L One sample in 8T units of time
Pipelinéd‘ (8 Multipliers yT One sample in T units of time
and 8 Adders) ' , v
Two MAC ‘ 1/4T One sample in 4T units of time

T=MACtime

102 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices

Table 4.6 summarizes the performance of the three implementations de-
scribed above. The example shows that it is possible to achieve higher-speed
implementation by the use of parallelism and/or pipelining. This, however,
increases the hardware complexity.

4.9 Features for External Interfacing

It is important for a DSP device to be able to communicate with the outside
world. The outside world provides the signal to be processed and receives the
processed signal. Therefore, most of the peripherals used with conventional
microprocessors are also needed in a DSP system. These peripherals include
interfaces for interrupts, direct memory access, serial I/0, and parallel I/0. In
addition, since DSP is a digital device that is expected to process analog sig-
nals, conversions from analog-to-digital and digital-to-analog representations
need to be carried out outside the device. From signal interfacing viewpoint, a

' DSP device should be capable of handling commonly available serial and par-

allel signal converters. All these features require the availability of appropriate
address, data, and control signals to set up interfaces with the peripherals. The
inclusion of a timer in the architecture is also very desirable to implement
events at regular intervals, such as periodically initiating an A/D converter to
start the conversion. A timer should be able to interrupt the processor to get
its attention when needed so that the data acquisition can go on in the back-
ground simultaneously with the execution of the signal-processing program.

4.10 Summary

In this chapter, architectural features of programmable DSP devices have been
examined based on the most frequently used DSP operations. Computational
building blocks and other functional units have been described along with
examples of implementations. Bus architecture and memory organization are
explained to show how they help in realizing fast implementations of DSP
algorithms. Trade-off between complexity and speed has also been discussed
to show how the architectural features of programmable DSP devices can be
optimized fot efficient implementations.

In summary, the following is a list of architectural features of a program-
mable DSP device that should be evaluated before implementing an algorithm:

® Data representation format: fixed-point, floating-point formats and data
word length for accuracy and dynamic range.

® Computational capability: an ALU with a hardware multiplier and
shifters-for scaling.

References 103

® Harvard architecture: provision of separate memories for program and
data to fetch instructions and data simultaneously.

® On-chip memories: provision of on-chip program and data memories to
avoid bus contention and to speed up program execution.

® Addressing modes: data addressing capabilities including indirect, in-
dexed, circular buffer, and bit-reversed addressing modes.

™ Programmability: programming capabilities mcludmg subroutines,
branching, loops and repeats.

® Hardwired control: fast implementation of sequencing and control for »
single-cycle instruction execution.

® Parallelism: multiple functional units for parallel implementation of
different functions such as simultaneous execution of an arithmetic
operation and an address computation.

® Pipelining: simultaneous operation of different stages of an instruction
execution by splitting it into steps. handled by mdmdually designed
units.

B Interfacing: provision to interface serial devices such as A/D and D/A
converters, parallel I/0, mterrupt and direct memory access.

References
1. Allen,]. “Computer Architecture for Digital Signal Processing,” IEEE Pro-
ceedings, Vol. 73, pp. 852-873, May 1985,
2. Lee, E. A. “Programmable DSP Architectures: Part 1,” IEEE ASSP Magazine,
pp- 4-19, October 1988.
3. Lee, E. A. “Programmable DSP Architectures: Part IL,” IEEE ASSP Magazine,
pp- 4-14, October 1989.
4. Kung, S. Y. VLSI Array Processors, Englewood Cliffs, NI, Prentice Hall, 1988.
5. Higgin, R. J. Digital S:gnal Processing in VLSI Englewood Cliffs, NJ, Prentice
- Hall, 1990.
6. Kung, S. Y., Whitehouse, H. T., and Kailath, T. VLSI and Modern Signal Pro-
cessing, Englewood Cliffs, NJ, Prentice Hall, 1985.
7. Braun, E. L. Digital Computer Design, New York, Academic Press, 1963.
8. Baugh, C. R, and Wooley, B. A. “A 2’s Complement Parallel, Array Multipli-
cation Algorithm,” IEEE Trans. Computers, Vol. C-22, pp. 1045-1047, Decem-
ber 1973.
9. Lapsley, P, Bier, J., Shoham, A., and Lee, E. A. DSP Processor Fundamentals:

Architectures and Features, Piscataway, NJ, IEEE Press, 1997.

104 Ckapter 4 Architectures for Programmable Digital Signal-Processing Devices

10.

1.

Eyre, J., and Bier, J. “DSP Processors Hit the Mainstream,” Computer, pp. 51~
59, August 1998.

Bates, A., and Paterson-Stephens, 1. The DSP Handbook: Algorithms, Applica-
tions and Design Techniques, Englewood Cliffs, NJ, Prentice Hall, 2002.

Assignments

4.1

4.2

4.3

4.4

4.5

4.6

4.8

4.9

- 4.10

What distinguishes a d1g1tal signal processor from a general-purpose micro-
processor with regard to basic capabxlmes?

Specify the basic architecture reqmred to unplement the following operations
so that they can be executed in the least possible time:

a. (x1 + jy)(x2 + jy2)
b. (0.5x; + 4x;)/256

Draw a structure similar to that of Figure 4.1(b) for an 8 x 8 unmgned binary
multiplier.

How will you xmplement an 8x38 mulnpher usmg 4x4 multlpllers as the
building blocks? -

Suggest a scheme to implement a multiplier to multiply two complex numbers
using the multiplier shown in Figure 4.1(b) as the building block.

Draw a structure based on Eq. 47 to- multlply two 4-bit signed numbers, A

~ and B.
4.7

a. Assuming the availability of a single 16-bit data bus, how many memory
accesses will be required to access two 16-bit operands from the mem-
ory, multiply them, and save the 32-bit product back in the memory?

b. Suggest a suitable hardware scheme to implement the multiplication
specified in part (a).

. Figure 4.3(b) shows the structure of a 4-bit barrel shlfter The switches shown

corinect each input bit to one of the output lines, depending on the number of
bits to be shifted. Suggest a suitable hardware scheme for the switches and
redraw Figure 4.3(b) by replacing the switches with its hardware. Also show
how the control inputs control the switches to achieve the desired shift.

What should be the minimum width of the accumulator in a DSP device that
receives 10-bit A/D samples and is required to add 64 of them without causing
an overflow? :

a. What is meant by overflow in an arithmetic computation? How is an
-overflow condition detected in an ALU?

~ b. By means of numerical examples using 8-bit, 2’s complement numbers,
illustrate the conditions of (i) no overflow, (i)' overflow, (iii) no under-
flow, and (iv) underflow resulting from arithmetic operations in an ALU.
-~ In each case, verify if the circuit of Figure 4.6 can detect the condition.

4.1

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

Assignments 105

‘Suggest the memory architecture required for a DSP device to xmplement each
~ of the following algorithms:

a. N-tap FIR filter
b. 2M-point FFT
c. autocorrelation of a segment.of N samples
. d. crosscorrelation of two sequences of N Samples each.
Figure 4.8(c) allows for an instruction and two operands to be fetched simul-

 taneously from the memory to the DSP to execute a multiply instruction in a

single cycle. However, to save the result in memory, one more memory access
is required. Can you specify an architecture that allows the result to be written

- back to the memory in the same cycle? -

Identify the addressing modes of the operands in each of the fo]lowmg in-
structions (AR stands for address register) ’

ADD #1234h
. ADD 1234h

ADD *AR+

* ADD offsetaddr—, *A : ‘
What is the bxtareversed sequence of 32 samples xf,, Xis X2, 0y X31 @S obtained
by sampling a signal? ‘
Table 4.4 shows how bit reversing is- -done for 8 points. A similar algorithm

can be used for any 2" points. Specify using a block dlagram how it can be
implemented in hardware.

How will you organize sampies ‘and Alter coefficients using a circular buffer
addressing scheme to implement a 32 ap FIR filter given by

y(n) }:bkx(n k)

k=0

When a two-dimensional array of data such as a matrix is organized in a
memory with linear (or one-dimensional) addressing, it is usually arranged in

" a row-ordered format. That is, all the elements of the first row are placed first
_in successive memory locations, starting with the very first location. This is
- followed by the elements of the second row, and so on, until alf the elements

of all the rows are arranged. Write a pseudocode to compute the address of
any given element of this matrix, say, the element (i, j), assuming that there
are N rows and M columns in the matrix.

Suggest a hardware architecture for the addressing unit that computes the
two-dimensional address described in Problem 4.17 w1thout the overhead re-
quired for computing it in software.

Given below is the pseudocode of a software loop normally used in a general-

“purpose microprocessor for repetitive execution of an arithmetic operation.

106 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices

4.20

4.21
4.22

4.23

4,24

Modify the code for a DSP with zero-overhead looping hardware:
Load count register ’
Back: Get operands; Compute; Update pointers
Decrement Count '
If Count is not zero then j)ump Back
Proceed .

Explain the difference between a single-instruction, zero-overhead hardware
looping and multiple-instruction, zero-overhead hardware looping in terms of
architectural requirements and the performance, .

What is the difference between a microcoded program control and a hard-
wired program control? Why is the latter preferred for DSP implementations?

List the major architectural features used in a digital signal processor to
achieve high speed of program execution.

What architectural features are required in a DSP device to unplement an FIR
filter with N taps so that a steady-state throughput of one output sample per
cycle is achieved?

List the essent1a1 peripherals requu'ed to unplement the following DSP sys-
tems:

A speech processing system
A biomedical instrumentation system
An image processing system

Programmable Digital Signal Processors

5.1 Introduction

'In Chapter 4, we learned about the architectural requirements of digital signal

processors. In this chapter, we first examine the basic architectures of three
commonly used commercial DSP families and see how they incorporate the
various features discussed in Chapter 4. We then study in detail, the Texas
Instruments’ TMS320C54xx processors, which, while retaining all the features
of the basic architecture, provide a number of additional features for im-
proved speed and performance. These devices will be used in the later chap-
ters of this book to illustrate programming and interfacing concepts. The
topics covered in this chapter are as follows:

Commercial digital signal-processing devices
The architecture of TMS320C54xx digital signal processors
Data atildressing modes of TMS320C54xx processors
Memory space of TM5320C54xx processors ‘
Program control in TMS320C54xx processors

. TMS$320C54xx instructions and programming
On-chip peripherals of TMS320C54xx processors
Interrupts of TMS320C54xx "processors
Pipeline operation of TMS320C54xx processors

5.2 Commercial Digital Signal-Processing Devices

There are several families of commercial DSP devices. Right from the early
eighties, when these devices began to appear in the market, they have been
used in numerous applications, such as communication, control, computers,

107

108 Chapter 5 Programmable Digital Signal Processors.

instrumentation, and consumer electronics. The architectural features and the
processing power of these devices have been constantly upgraded based on’
the advances in technology and the application needs. However, in their basic
versions, most of them have Harvard architecture, a single-cycle hardware
multiplier, an address generation unit with dedicated address registers, special
addressing modes, on-chip memories with off-chip expansion capability, hard-
ware support for loops, and on-chip peripheral interfaces.

Of the various families of programmable DSP devices that are commercially
available, the three most popular ones are those from Texas Instruments, Moto-
rola, and Analog Devices. Texas Instruments was one of the first to come out
with a commercial programmable DSP with the introduction of its TMS32010
in 1982. This was followed in 1984 by TM$32020, which had many additional
features compared to TMS32010, and in 1985 by TMS$320C25 [1] with a speed
improvement by a factor of 2 when compared to the TMS$32020. Since then,
'TMS320C25 has been used widely in many communication, control, and instru-
mentation applications. Likewise, around the same time, Motorola introduced
'DSP 56000 [2], and Analog Devices, ADSP 2100 [3]. Both of these devices have
features, speed, and performance comparable to those of TMS320C25 and have

-also been used in many similar applications as the Texas Instruments’ device.

Over the years, each of these families has evolved into several devices to fit
different application needs and constant demands for improved performance
and speed. Although these improvements have been brought about by an in-
crease in the number of features with better performance, there have been no
major changes in the basic architectures of these DSP devices. Therefore, we.
consider the architectures of TMS320C25, DSP 56000, and ADSP 2100 in order -
to get an insight into how the various features discussed in Chapter 4 are in-
corporated in typical commercial DSP devices. Figures 5.1-5.3 show the basic
architectures of the three processors respectively. Table 5.1 summarizes these
features for the three processors. Architectures and features of these devices
will form the basis for exploring the more advanced architecture of the
TMS320C54xx processors in the subsequent sections of this chapter.

5.3 Data Addressing Modes of TMS320C54xx Digital
Signal Processors

TMS320C54xx processors retain the basic Harvard architecture of their pre-
decessor, TMS320C25, but have several additional features, which improve
their performance over it. Figure 5.4 shows a functional block diagram of
TMS320C54xx processors. They have one program and three data memory
spaces with separate buses, which provide simultaneous accesses to a program
instruction and two data operands and enables writing of a result at the same
time. Part of the memory is implemented on-chip and consists of a combina-
tion of ROM, dual-access RAM, and single-access RAM. Transfers between the
niemory spaces are also possible.

5.3 The Architecture of TMS320C54xx Digital Signal Processors 109

SYN'I% é_' g Program Bus
DS —— 2 ' BT
oS g8 16 216 . }is
}uu" Qﬁc"}(’f) 16 ’
W —e PEC(16) : QIR(16)
o ’ e . R(16)
READY ~——e— N5 = | » STO(16)
BR—+ & 1 164 . » ST1(16)
- XFD —- 3 16 16 - . RPTC(16)
Horos —«] £ , ~_IFR(16)
MSC —e] O MCS(16) PC(16) R
BIO — \ i : . CLKR
RS —e{ 12 16 f16 ' mn——
TACK e 4 Y Shicx
PRI } AIG Address Stack :_' }16 YYY | = F8X
MPAK 3 1% I Program (8x16) 164 RSR(16)
2-0) ————— 16 ROM/ . . XSR(16) -
16 b EPROM . 4 AN DRR(16)
Al5-A0 (4096 X 16) " ‘ 16 o DXR(16)
Instruction ig' > TIM(16)
#16 > PRD(16)
RBIT] \ ; > IMR(16) -
16 ~ > | St GREG(16)
D15-D0 g 16 2 16

£16 16 9 4
AR0(16) :
ARI(16)
»{ AR2(16
ARBE I 6; DP(@ ¥ Multiplier
Shifter(0-16
AR4(16) b9 IE’()
AR5(16) 1. —»{ _PR(32)
AR6(16) | - I r32 ¥
AR7(16) L 16 ' ks
T k]Shiﬁer(—s,o,l,4)l
Y V¥
16 : : y32:
ARAU(IE) MU_"‘EI7 116 Yy
"5 Y16 L
Y ¥ ! 3 : ,32.
> 432 -
o 16 ALU(32
Block B2 ' DATA/PROG 1%
OC] . . .
(32X 16} RA%{QE%%{ 1631 el CH‘;é =
— ’ ock BO_ AC ’) CCL(16)]
Block Bl 16 432
(256 X 16) , » i v
‘ /MUX\ | Shifter(0-7)
16 16 16
Data Bus ” . 14

Figure 5.1 Architecture of the Texas Instruments’ TMS320C25 signal processor

{Courtesy of Texas Instruments Inc.)

110

Chapter 5 Programmable Digital Signal Processors

o —, .EXPANSION
- . AREA
- PERIPHERAL} PROGRAM | |||x MEMORY]| ||{Y MEMORY| & -
+— 1| MODULES RaM/ROM | |1} RaM/ROM | |]| RAM/ROM
< > : EXPANSION] |||ExPANSION] ||[EXPANSION
¥)) Tt A A b A
2] . R e
22 it T 1
A Ay -
YAB v
— |- - —>
e el —{EXTERNAL > E\
24-Bit 56K —>»| ADDRESS a
Modul UNIT Y BUS
odule
4 4 SWITCH
B s
]
-4
BUS g(S
CONTROL > =
o}
O
' : YDB v
« ————— e | —— -
INTERN.) XDB v 4‘
DATA | | | | e | s | —bEXTERNAL‘ &/
BUS \ PDB _ | DATA BUS [@=g=> g
SWITCH - "~ GDB | SWITCH
y A
4- 0 — — —) .
v
«—» PLL || ¥ M y -
' PROGRAM PROGRAM PROGRAM DATA ALU- ‘
— INTERRUPT 4 DECODE b ADDRESS 24X 24+ 56— 56-BIT MAC OnCE™
 CENERATO! C:’:““J:L‘L‘ CONTROLLER] | GENERATOR || | TWO 56-BIT ACCUMULATORS |
‘— MODC/NMI .)
TeT —— 16-BIT
L MODB/RQB A BIT
L MODA/IRQA
RESET

Figure 5.2 Aréhitecture,of Motorola’s DSP 56000 signal processor

{Courtesy of Motorola Inc.)

The central processing unit (CPU) of TMS320C54xx processors consists

of a 40-bit arithmetic logic unit (ALU), two 40-bit accumulators, a barrel
shifter, a 17 x 17 multiplier,” a 40-bit adder, data address generation logic
(DAGEN) with its own arithmetic unit, and a program address generation
logic: (PAGEN). These major functional units are supported by a number of
registers and logic in the architecture.

5.3 The Architecture of TMS320C54xx Digital Signal Processors 111

DATA ADDRESS MEMORY FLAGS
GENERATORS || PROGRAM ‘ PROGRAM DATA (4DSP-2111)
SEQUENCER MEMORY | | MEMORY . '
- y S 7 EXTERNAL
l ! ADDRESS
{ PROGRAM:MEMORY ADDRESS , \ BUS

L~

! DATA MEMORY ADDRESS ;

. I L4 .
] PROGRAM MEMORY DATA \
v v l S
DATA MEMORY DATA
- y 1 | # V" EXTERNAL
] . ! ‘ j ‘ ! DATA
. BUS
- ARITHMETIC UNITS SERIAL PORTS | |TIMER HOST
‘ INTERFACE
ALU{ |MAC] | sHFTER : [SPORTO ” SPORT 1 l ‘ PORT
(ADSP-2111)

N ADSP-2100 CORE —/ '

Figure 5. 3 Architecture of the Analcg Devices' ADSP 2100 signal processor
(Courtesy of Analog Devices Inc.)

A powerful instruction set w1th a hardware-supported, single-instruction
repeat and block repeat operations, block memory move instructions, instruc-
tions that pack two or three simultaneous reads, and arithmetic instructions
with parallel store and load make these devices very ‘efficient for running high-

. -speed DSP algorithms.
~ Several peripherals, such as a clock generator, ‘a hardware timer, a wait
state generator, parallel I/O ports, and serial 1/0 ports, are also provided on-
chip. These peripherals make it convement to interface the signal processors
to the outside world.

In- the following sections, we examine in detail the various architectural
features of the TM$320C54xx family of processors [4, 5]. '

5.3.1 Bus Structure

The performance of a processor gets enhanced with the provision of multiple
buses to provide simultaneous access to various parts of memory or periph-
erals. The *54xx architecture is built around four pairs of 16-bit buses with
each pair consisting of an address bus and a data bus. As shown in Figure 54,

112 Chapter 5 Programmable Digital Signal Processors

Summary of the Architectural Features of Three Fixed-Point DSPs

Table 5.1

Architectural Feature TMS320C25 ' DSP 56000 ADSP 2100
Data representation format 16-bit fixed point 24-bit fixed point 16-bit fixed point
Hardware multiplier 16 x 16 24 %24 16 x 16

ALU 32 bits 56 bits 40 bits

Internal buses

thernal buses

On-chip memory

Off-chip memory

Cache memory ;
Instruction cycle time
Special addressing modes

Data address generators -

Interfacing features

16-bit program bus

~ 16-bit data bus

16-bit prograni/data bus

544 words RAM
4K words ROM

. 64K words program

64K words data

100 nsec.

Bit.reversed

1

Synchronous serial 1/O
DMA

24-bit program bus
2 x 24-bit data buses
24-bit global data bus

24-bit program/data bus

512 words PROM
2 x 256 words data RAM

2 x 256 words data ROM '
" 64K words program

2 x 64K words data
97.5 nsec.

Modulo

Bit reversed

2

Synchronous and
asynchronous serial
/O DMA

24-bit program bus
16-bit data bus
16-bit result bus
24-bit program bus
lﬁ;bit data bus

16K words program
16K words data

16 words program
125 nsec.

Moduio.

Bit reversed

2

DMA

-5.3.2

these are the program bus pair (PAB, PB), which carries the instruction code
from the program memory, and three data bus pairs (CAB, CB; DAB, DB; and
EAB, EB), which interconnect the various units within the CPU, In addition,
the pairs CAB, CB and DAB, DB are used to read from the data memory, while
the pair EAB, EB carries the data to be written to the memory. The *54xx can
generate up to two data-memory addresses per cycle using the two auxiliary
register arithmetic units (ARAUQ and ARAU1) in the DAGEN block. This en-
ables accessing two operands simultaneously.

Central Processing Unit (CPU)

The *54xx CPU is common to all the *54xx devices. The *54xx CPU contains
a 40-bit arithmetic logic unit (ALU); two 40-bit accumulators (A and B); a

53 The Architecture of TMS320C54xx Digital Signal Processors

113
System control Program address generation Data address generation
interface logic (PAGEN) logic (DAGEN)
<:>[P pe PR RC, | [ARAUS ARAUL
'BRC,RSA,REA | AT{P'BK:DP SP .
+ A A A AA A
PAB | ‘)
Memory
&
external
) interface
Penpheml
mterface
A
EXP encoder
F Y Y
X| D AlB
‘Y v,
\»MUX/A
T register 4
: .
: Dy S BIAC| D
TIRATP A, yCva : ‘ \VAV]%VC;V 4 y YYYY
\§1gn cn-/ \Signety/ | |[CAGDQ)] [[B@0)] \Signct/ \Signcty/ Sign cr/
v 4 ' L
| Multiplier (17x17)] Barrel shift
. h
Fractional
B 2 8
4
. ; Adder (40) > NSW/LSW
N . select .
. 4 - '[rRB ’E
[zero | saT |ROUND |
. ' TC

Flgure 5, 4 Functlonal archntecture for TMS320CS4xx processors

{Courtesy- Qf Texas lnstruments)

114 Chapter 5 Programmable Digit_al Signal Processors

vy

Figure 5.5 Functional diagram.of the central processing unit of the TMS320C54xx processors
(Courtesy of Texas Instruments Inc.) ' ‘

barrel shifter; a 17 x 17-bit multiplier; a 40-bit adder; a compare, select and
store unit (CSSU); an exponent encoder (EXP); a data address generation unit
(DAGEN); and a program address generation unit (PAGEN).

The ALU performs 2’s complement arithmetic operations and bit-level
Boolean operations on 16-, 32-, and 40-bit words. It can also function as two
separate 16-bit ALUs and perform two 16-bit operations simultaneously. Fig-
ure 5.5 shows the functional diagram of the ALU of the TMS$320C54xx family
of devices. 4 : :

Accumulators A and B store the output from the ALU or the multiplier/ .
adder block and provide a second input to the ALU. Each accumulator is
divided: into three parts: guard bits (bits 39~-32), high-order word (bits 31-

>

ALU

5.3 The Afchitecpureof TMS320C54xx Digital Signal Processors 115

|- DBISDBO .
40 [
: 116
pa ‘, 6
40 BlA|D| (]!
vyYyvyvy 4

I Sign control J+— SXM

-«— T:-16 through 31 range

,) 1 shifte
TC (test bit) ——— | ’?‘"f‘i% :’:‘;‘;‘ —4— ASM(4-0) : — 16 through 15 range
» | —4—— Instruction register immediate: ~ 16
Athrough‘ 15 or 0 through 15 range
40
CSsU . | MSW/LSW
. Write select
716

Figure 5.6 Functiohal diagram of the barrel shifter of the TMS320C54xx brocessors

{Courtesy of Texas Instruments Inc.)

16), and low-order word (bits 15-0), which can be stored and re,trieve_d indi-

~ vidually.

The barrel shifter provides the capability to scale the data during an oper-
and read.or write. No overhead is required to implement the shift needed for
the scaling operations. The ’54xx barrel shifter can produce a left shift of 0 to
31 bits or a right shift of 0 to 16 bits on the input data. The shift requirements
are defined in the shift count field of the instruction, the shift count field of
status register ST1, or in the temporary register T. Figure 5.6 shows the func-
tional diagram of the barrel shifter of TM$320C54xx processors.

The barrel shifter and the exponent encoder normalize the values in an
accumulator in a single cycle. The LSBs of the output are filled with 0s, and

\

A

116 Chapter 5 Programmable Digital Signal Processors '

40,

From accumulator A

49‘ From accumulator B

XM YM
Multiplier (17 17)

1
FRCT —-{ Fractint | \MU

v Y

0
XA | YA |
\ Adder (40) OVM

A 4

; A —»— OVA/OVB
Zerodetect | Round | ~ SAT
. —»— ZA/ZB
40, —p— To accumulator A/B

Figure 5.7 Functional diagram of the multiplier/adder unit of TMS320C54xx processors

{Courtesy of Texas Instruments Inc.).

+ the MSBs can be either zero filled or sign extended, depending on the state of
the sign-extension mede bit in the status register ST1. Additional shift capa-
bilities enable the processor to perform numerical scaling, bit extracﬁon, ex-
tended arithmetic, and overflow prevention operatxons

The kernel of the DSP device architecture is its multiplier/adder unit.
The multiplier/adder unit of TMS320C54xx devices performs 17 X 17 2’s-
complement multiplication with a 40-bit addition effectively in a single instruc-
tion cycle. In addition to the multlpher and adder, the unit consists of control

' 5.4 Data Addressing Modes of TMS320C54xx Processors 117

logic for integer and fractional computations and a 16-bit temporary storage
register, T. Figure 5.7 shows the functional diagram of the multiplier/adder
unit of TMS320C54xx processors.

The compare, select, and store unit (CSSU) is a hardware unit specificaily
incorporated to accelerate-the add/compare/select operation. This operation is
essential to implement the Vzterbz algorithm used in many signal- processmg
applications.

The exponent encoder unit supports the EXP instruction, which stores in

~ the T register the number of leading redundant bits of the accumulator con-
tent. This information is useful while shifting the accumulator content for the
purpose of scahng

5.3.3 Internal Memory and Memory-Mapped Registers

The amount and the types of memory of a processor have direct relevance
to the efficiency and the performarice obtainable in implementations with the
processor. The “54xx memory is organized into three individually selectable
spaces: program, data, and 1/O spaces. All *54xx devices contain both RAM
and ROM. RAM can be either dual-access type (DARAM) or single-access type -
(SARAM). The on-chip RAM for these prdcessors is organized in pages having
128 word locations on each page.

The *54xx processors have a number of CPU registers to support operand ~
addressing and computations. The CPU registers and peripheral registers are
all located on page 0 of the data memory. Figures 5.8(a) and (b) show the in-
ternal CPU registers and peripheral registers with their addresses. Figure 5.8(c)
shows the processor mode status (PMST) register that is used to configure the

© * processor. It is a memory-mapped register located at address 1Dh on page 0 of
the RAM: The peripheral registers are covered in subsequent chapters.

A part of on-chip ROM may contain a bootloader and look-up tables for
functions such as sine, cosine, u-law, and A-law. Details of the memory space
of TMS320C54xx processors are discussed in Section 5.5.

5 4 Data Addressnng Modes of TM5320C54xx
Processors

Data addressing modes provide various ways to access operands to execute
instructions and place results in the memory or the registers. The *54xx devices
offer seven basic addressing modes: immediate addressing, absolute address-
ing, accumulator addressing, direct addressing, indirect addressing, memory-
mapped register addressing, and ‘stack addressing. '

118 Chapter 5 Programinable Digital Signal Processors

ADDRESS

NAME ~ DEC HEX DESCRIPTION
IMR 0 0 Interrupt mask register
IFR 1 1 Interrupt flag register
— 2-5 2-5 Reserved for testing

. STO 6 6 Status register 0
ST1 7 7 Status register 1
AL 8 8 Accumulator A low word (15-0)
AH 9 9 Accumulator A high word (31-16)
AG 10 A Accumulator A guard bits (39-32)
BL 11 B Accumulator B low word (15-0)
BH 12 C Accumuiator B high word’(31-16)
BG 13 D “Accumulator B guard-bits (39-32)
TREG 14 E Temporary register '
TRN 15 F _ Transition register
ARD 16 10 Auxiliary register 0
AR1 17 1 Auxiliary register 1
AR2 . 18 12 Auxiliary register 2
AR3 19 13 Auxiliary register 3
AR4 20 14 Auxiliary register 4
AR5 21 15 Auxiliary register 5
ARG 22 16 Auxiliary register 6
AR/ 23 17 Auxiliary register 7

. SP 24 18 Stack pointer register
BK - 25 19 - Circular buffer size register
BRC 26 1A Block repeat counter
RSA - 27 18 Block repeat start address’

. REA - 28 1C Block repeat end address

. PMST 29 1D Processor mode status (PMST) register

- XPC 30 1E. Extended program page register

— 31 1F Reserved
@

Figure 5.8(a) Internal ,membry-mapped registers of TMS320C54xx signalprqcessérs
(Courtesy of Texas Instruments Inc.) ‘

5.4.1 Immediate Addressing

In this mode, the instruction contains the specific value of ‘the operand. The
- operand can be short (3, 5, 8, or 9 bits in length) or long (16 bits in length).
The instruction syntax for short operands. occupies one memory location,

. 54 Data Addressing Modes of TMS320C54xx Processors 119

ADDRESS

NAME DEC HEX DESCRIPTION

DRR20 32 20 MCcBSP 0 Data Receive Register 2
DRR10 33 21 McBSP 0 Data Receive Register 1
DXR20 34 22 McBSP 0 Data Transmit Register 2
DXR10 . 35 23 McBSP 0 Data Transmit Register 1
TiM 36 24 Timer Register

PRD 37 25 Timer Period Register

TCR 38 26 Timer Control Reglster

— 39 27 Reserved ‘ :

SWWSR 40 28 Software Watt-State Register

BSCR 41 29 Bank-Switching Control Regnster

— 42 S 2A Reserved

SWCR 43 2B Software Watt-State Controf Register
HPIC 44 2C HP! Control Register (HMODE = 0 only) -
_ 45-47 2D-2F Reserved

DRR22 48 30 MCBSP 2 Data Receive Reglster 2
‘DRR12 49 £y MCcBSP 2 Data Receive Register 1
DXR22 50 32 McBSP 2 Data Transmit Register 2
DXR12 51 33 McBSP 2 Data Transmit Register 1
SPSA2 52 34 McBSP 2 Subbank Address Register
SPSD2 53 35 McBSP 2 Subbank Data Register

— 54-55 36~37 Reserved

SPSAQ 56 38 McBSP 0 Subbank Address Register
SPSDO 57 39 McBSP 0 Subbank Data Register

— 58-59 3A-3B Reserved

GPIOCR 60 3C General-Purpose /O Control Register
GPIOSR 61 -3D General-Purpose I/O Status Register
CSIDR . 62 3E Device ID Register

— 63 3F Reserved ‘

DRR21. 64 40 McBSP 1 Data Receive Register 2
DRR11 65 41 .MCcBSP 1 Data Receive Register 1
DXR21 66 42 McBSP 1 Data Transmit Register 2
DXR11 67 43 McBSP 1 Data Transmit Reglster 1

— 68-71 44-47 Reserved

SPSA1 72 48 McBSP 1 Subbank Address Reglster
SPSD1 73 49 McBSP 1 Subbank Data Register

—_— 74-83 4A-53 Reserved

DMPREC 84 : 54 ‘DMA Priority and Enable Control Register
DMSA 85 55 DMA Subbank Address Register

Figure 5.8(b) Peripheral registers for the TMS320C5416 processor

(Courtesy of Texas Instruments Inc.y

{continued) -

‘120 Chapter 5 Programmable Digital Signal Processors

DMSDI 86 56 DMA Subbank Data Register with Autoincrement?
DMSDN - 87 57 . ‘DMA Subbank Data Register
CLKMD 88 58 Clock Mode Register (CLKMD) (-
e R 89-95 59-5F ‘Reserved
(b)
Figure 5.8(b) Continued
15-7 5 s 4 3 2 1 0
IPTR : “MP/MC | OVLY | AVIS |DROM| CLKOFF' | SMUL!| SST'

PThese bits are only supported on C54x devices with revision A or later, or on C54x devices numbered C548 or greater. -

©

Figure 5.8(c) Proceés_or mode status (PMST) register of TMS320C 54xx‘processoyrs
(Courtesy of Texas Instruments Inc.) *

542

whereas that for long operands occupies two memory locations. This address-

‘ing mode can be used to initialize registers and memory locations. Examples

of i mstructlons using this addressmg mode are

Li) #20, DP ; This accomplishes #20 — DP
RPT #0FFFFh ; This accomplishes #FFFFh — RC

_ Absolute Addressing

*In this mode, the instruction contains a specific address. The specified address

may be for a data memory location (dmad addressing), a program memory
location (pmad addressing), a port address (PA addressing), or a location in

‘the data space specified directly (*(Ik) addressing). Examples of instructions

- using this mode of addressing are

543

MVKD 1000h, *AR5 ; 1000h — AR5 {dmad addressing)
MVPD 1000h, *AR7 " ; 1000h — *AR7 (pmad addressing)
PORTR 05h, *AR3 ; 05k — *AR3 (PA addressing)

LD *(1000h), A 3 *{1000h) —> A.(*(1k) addressing)

Accumulator Addressing

This mode uses the accumulator contents as the address and is used to move
data between a program memory location and a data memory location. Ex-

- 5.4 Data Addressing Modes of TMS320C54xx Processors 121

amples of instructions in this mode are READA and WRITA. READA trans-
fers'a word from a program-memory location specified by accumulator A to-a
data-memory location. WRITA transfers a word from a data-memory location
to a program-memory location specified by accumulator A.

" Hereis an example

READA *AR2 ; This accomplishes *A — *AR2

5.4.4 Direct Addressing

In the direct addressing mode, the 16-bit address of the data-memory location
is formed by combining the lower 7 bits of the data-memory address con-
tained in the instruction with a base address given by the data-page pointer
(DP) or the stack pointer (SP). Figure 5.9 shows the operation of the direct
addressing mode of TMS320C54xx processors.

Using this form of addressing, one can access a page of 128 contiguous
locations- without changing the DP or the SP. The compiler mode bit (CPL),
located in the ‘status register ST1, is used to select between the two pointers

»| DPO)
e ‘ _ 7LSBs from IR (dma)
> SP(16) —'————+ | |
’ : b Y)
‘ ~ « DAB(16) (read)
CPL} cprL DAGEN

0 EA=DP:offsct(IR) | EAB(16) (write)
1 EBA=SP+offet(IR)y [> O

: i CAB(16)
(32-bit read)

Y

! Data bus DB(16) P \j

[Databus EB(16)- -

. Legend EA Effective address
IR Instruction reglster

Figure 5.9 Block diagram of thé direct addressing mode for TMS320C54xx processors: -

(Courtesy of Texas instruments Inc.).

122 Chapter 5 Programmable Digital Signal Processors

545

used to generate the address. CPL = 0 selects DP and CPL = 1 selects SP. For
example, when CPL = 0, to add the contents of the memory location 0 on

" page 4 in the data memory to accumulator B, we can use the instruction
- sequence:

LD #4, DP ; DP = 4 = upper 9 bits of address
- ADD=0, B ; Lower 7 bits of the address

With this example the contents of the first locations on data page 4 (memory

address 0200h) are added to accumulator B,
"It should be remembered that when SP is used instead of DP, the effective

address is computed by adding the 7-bit offset to SP.

Indirect'Addressing
In indirect addressing, any location in the data space can be accessed by
- means of an address contained in an auxiliary register. The *54xx devices have
eight 16-bit auxiliary registers (ARO~AR7). Indirect addressing is used when
, . AR0O BKlk
ARP(3) — ~ Yvy
»_aRo16) index fpd > ARAUO g
e RS B 41
» (™ +/—-%
> ﬁﬁg - AROBK 1 T DABUS)
g it " (read
> AR4(16) > v vv |t)
> ARS(16) > »| ARAUL | &
— ARG(16) >
> AR7(16) > r 4 EAB(16)
N N +/- % 0 1 (write) or
BK(16) > ' CAB(16)
‘ (32-bit read)

Figure 5. 10 Block diagram for the indirect addressing mode of TMS320C54xx processors
{Courtesy of Texas instruments Inc.)

B>

Exarﬁple 5.1

Solution

5.4 Data Addressing Modes of TMS320C54xx Processors 123

there is a need to step through a sequence of locatxons in the memory in fixed-
sized steps.

Two auxiliary register arithmetic units (ARAUO and ARAUT1) are used to
modify the contents of the auxiliary registers for the indirect addressing mode.
They perform unsigned, 16-bit arithmetic operations. The auxiliary registers
can be loaded with an immediate value, loaded via the data bus, and modified
by the indirect addressing field of any instruction that supports indirect
addressing or by the modify auxiliary register (MAR) instruction and used as
loop counters.

Figure 5.10 shows how ARAUs are used to. generate an address in the indi-
rect addressing mode using a single data-memory operand. An address can be
modified before or after accessing the location or can be left unchanged.

‘Modification can be by incrémenting or decrementing the address by 1, add-

ing a 16-bit offset, or indexing with the value in ARO. Each of these mod-
ifications may be carried out either before or after accessing the memory
location. Table 5.2 gives the operand syntax and the correspondmg ARAU
operations for the single operand indirect addressing mode

Assuming the current contents of AR3 to be 200h, what will be its contents
after each of the following TMS320C54xx addressing modes is used? Assume
that the contents of ARQ are 20h.

a. *AR3+0 _
b. *AR3 -0
¢ *AR3+
d. *AR3~
e. *AR3
f. *+AR3(40h)
g *+AR3(—40h)
a. AR3 «— AR3 + AR(;

AR3 = 200h + 20h = 220h.
b, AR3 — AR3 — AR(};

AR3 = 200h — 20h = 1EOh.
¢. AR3 «— AR3 + 1;

AR3 = 200h + 1 = 201h.-
d. AR3 «— AR3 —1;

AR3 = 200h — 1 = 1FFh.
e. AR3 is not modified.

AR3 = 200,
f. - AR3 «— AR3 + 40h;

AR3 = 200h + 40h = 24011.
g. AR3 «— AR3 — 40h;

AR3 = 200h — 40h = ICOh.

124 Chapter 5 Programmable Digital Signal Processors

Table 5.2

Indirect Addressing Options with a Single Data-Memory Operand
Operaynd Syntax Operation T

*ARx C ‘addr «— ARx
*ARx+ addr ARx
' ARx — ARx + 1
*ARx— addr «— ARx
. ARx— ARx—1
*+ARX ARx — ARx + 1
B addr «— ARx
. *ARx+0 addr —ARx
| : ARx — ARx + ARO
*ARx — 0 addr «~— ARx
‘ ARX — ARx — ARO
*ARx + 0B addr — ARx
ARX — B(ARx + ARO)
*ARx — 0B addr « ARx "
' ARx — B(ARx — ARO)
*ARx + % © addr ARx
ARX — circ(ARx+1) .
*ARx — % ' addr — ARx
ARX « circ(ARx — 1)
*ARX + 0% addr «— ARx
ARX « circ(ARx + AR0)
*ARO — 0% addr — ARx
ARx + circ{ARx — ARO)
*(1k) A addr « Ik
*ARx(1k) addr — ARx+ 1k
*+ ARx(1K) ARX « ARx + Ik
, addr — ARx
*+ ARx(Ik)% ARx — circ{ARx + 1k}
' addr — ARx ‘

Circular Addreésing

Many fast real-time algorithms, such as convolution, correlation, and FIR fil-

ters, require the implementation of a circular buffer in memory. A circular

5.4 Data Addressing Modes of TMS320C54xx Processors

125

buffer is a sliding window containing the most recent data, As new data come
in, the buffer overwrites the oldest data. An indirect addressing mode with
- circular address modification allows implementation of circular buffers.
The circular-buffer size register (BK) specifies the size of the circular buffer.
A circular buffer must start on an N-bit boundary; that is, the N LSBs of the
base address of the circular buffer must be 0. For example, a 31-word circular
buffer must start at an address whose five LSBs are 0 and the value 30 must be
loaded into BK. Similarly, a 48-word circular buffer must start at an address
~ whose six LSBs are 0 and the value 47 must be loaded into BK.
The algorithm for circular addressing works as follows:

If 0 < index + step < BK: index = index + step;
else if index + step 2 BK:- index = index + step - BK;
else if index + step < 0: index = index + step + BK.

First 1 at location N—1'

\

155 N N-i

BK| 0..0 | BL

BL |

15y N N~-1 ¥

15 N N-1 0
ARx | H..H | L L |
R 4
‘ 15_ N N-1y 0
Index | 0..0] L .. L |
Circular
addressing
algorithm
logic
Y
N 4
indos | o [U o L |
159 N N-1 v 0
New ,
ARx | H.oH | L L | |
@

0
"EGB+1] H...H | BL BL
IS N N-1 0
EFB| H.H | 0 o |
* Base (low address) -

Legend: EFB Effective base address
. H High-order bits
L Low-order bits
L’ New low-order bits
BL Low-order bit of circular
size register

buffer

Figure 5.11(a) Block diagram of the dircular addressing mode for TM5320C54xx processors

{Courtesy of Texas Instruments Inc)

126 Chapter 5 Programmable Digital Signal Processors

&

Figure 5.11(b)

Example 5.2

Solution

Address ‘ Data
15 N N-1 0 Top of circular buffer
Effective :
base H| O 0} —» Element 0 .
- Element 1
15 N N-1 0
ARx | H Hix x| —» Element (n LSBs of ARx)
15 N N-1 - 0 Last element
H H LSBsBK . l —> Last element + |

®

Circular addressing mode implementation in TMS320C54xx processors

{Courtesy of Texas Instruments Inc.)

Figure 5.11(a) illustrates the relationships between BK, the auxiliary register
ARx (the pointer), the bottom of the circular buffer, the top o1 the circular
‘buffer, and the index into the circular buffer. Figure 5.11(b) shows how the
circular buffer is implemented and illustrates the relationship between the
generated values and the elements in the circular buffer.

‘Assume that the registér AR3 with contents 1020h is selected as the pointer
for the circular buffer. Let BK = 40h to specify the circular buffer size as 41h.
Determine the start and the end addresses for the buffer. What will be the

" contents of register AR3 after the execution of the instruction LD *AR3 + 0%,

A, if the contents of register ARO are 0025h?

AR3 = 1020h means that c'urfently it points to location 1020h. Making the
lower 6 bits zeros gives the start address of the buffer as 1000h. Replacing the

_same bits with the BK gives the end address as 1040h.
~ The instruction

LD *AR3 +0%, A

modifies AR3 by adding ARO to it and applying the circular modification. It
yields

AR3 = circ(1020h + 0025h) = c1rc(1045h) 1045h — 40h = 1005h.
Thus the location 1005h i is the one pomted to by ARS V

>

Example 5.3

Solution

546

5.4 Data Addressing Modes of TMS320C54xx Processors 127

Bit-Reversed Addressing

Bit-reversed addressing is used in FFT algorithms. In this addressing mode,
ARO specifies one half of the size of the FFT. An auxiliary register points to the
physical location of a data value. The address of the next location is generated
by adding, in a bit-reversed manner, ARO and the other specified auxiliary
register. In the bit-reversed addition, the carry bit propagates from left to
right, instead of right to left as in the regular add.

Assuming the current contents of AR3 to be 200h, what will be its contents
after each of the following TMS320C54xx addressing modes is used? Assume
that the contents of ARO are 20h.

.a. *YAR3+ 0B

b. *AR3 — 0B
a. AR3 « AR3 + ARO with reverse carry propagatiori;
AR3 = 200h 4 20h (with reverse carry propagation) = 220h.

b. AR3 < AR3 — ARO with reverse carry propagation;
AR3 = 200h — 20h (with reverse carry propagation) = 23Fh.

~ Dual-Operand Add/ressing

Dual data-memory operand addressing is used for instructions that simulta-
neously perform two reads (32-bit read) or a single read (16-bit read) and a
parallel store (16-bit store) indicated by two vertical bags, ||. These instruc-
tions access operands using indirect addressing mode.

If in an instruction with a parallel store the source operand and the desti-
nation operand point to the same location, the source is read before writing to
the destination. Only 2 bits are available in the instruction code for selecting
each auxiliary register in this mode. Thus, just four of the auxiliary registers,
AR2-ARS5, can be used, The ARAUS, together with these registers, provide the

* capability to access two operands in a single cycle. Figure 5.12 shows how an

address is generated using dual data-memory operand addressing.

Memory-Mapped Register'Addressing

Memory-mapped register addressing is used to access the memory-mapped
registers without affecting either the current data-page pointer (DP) valué or
the current stack-pointer (SP) value. This mode works for both direct and
indirect addressing: Taking only the seven least significant bits of the 16-bit
direct address or the value of the auxiliary register used for indirect address-
ing, the required address is generated.

For example, if ARI is used indirectly to point to a memory-mapped reg-
ister using the memory-mapped register addressing mode and its contents are

128 Chapter 5 Programmable Digital Signal Processors

AROBKIK 1
ARP(3)Y———————]' YVYYY
: »| ARAUO |
‘ »| ARO(16)index. | " —?
— 57
F [+/ -9 0
e I o
> R3 > (read)
»{ ARA(16) > vy v v |
-» . AR5{(16) > _»1 ARAUI Lo
7 Y Y EAB(16)
. - N +/-% 0 [(write) or
> BK(16) > ~ CAB(16)
: ' - (32-bit read)
{ DatabusDB(16) . , |
\‘ |

| Data bus EB(16)

Figure 5.12 Block di iagram of the indirect addresslng mode of TMS320C54xx processors
using dual memory operands

{Courtesy of Texas Instruments Inc.)

5.4.7

3825h, then AR! pomts to the timer period register (PRD), since the sevenA
LSBs of AR1 are 25h, which is the address of the PRD register. After execution,
ARI contains 0025h.

Consider the following instruction as another example:
LM AR4 A
In this case the data stored at 0014h; which is the memory address of AR4, is
loaded onto A. .
Stack ‘Ad‘d ressing
The stack is used to store the return address durmg the servicing of i mterrupts
and invoking of subroutines. It can also be used to pass parameters to sub-

routines during program execution. The stack is filled from the highest to the.
lowest memory address and emptied from the lowest to the highest address.

http:Figure5.12

? .

5.5 Memory Space of TMS320C54xx Processors 129

A 16-bit stack pointer (SP) is used to address the stack locanon at a given in-
stance. SP points to the last element stored onto the stack. Instructions that -
access the stack for saving and recovering data on the stack consist of PUSHD,
PUSHM, POPD, and POPM :

5.5 Memory Space of TMS320C54xx Processors

TMS320C54xx processors provide for a total of 128K words of memory ex-
tendable up to 8192K words. This includes both program memory and data

memory. Within this space; RAM (both single access and dual access), ROM,
EPROM, EEPROM, or memory-mapped peripherals may reside either on- or
off-chip. The program memory space is used to store program instructions
and the tables used in the execution of programs. The data-memory space is

- used to store data required to run programs and for external memory-mapped

peripherals. Figures 5.13(a) and (b) show memory maps for the basic and ex-
tended memories.of the TMS320C5416 processor.

The size of the data memory is 64K words, part of which is on'ch1p
DARAM. The device automatically accesses the on-chip RAM when the ad-
dress is within its range. Memory-mapped registers are also part of the data-
memory space.

The program memory is orgamzed into 128 pages, each of 64K word size.
Page 0 is part of the basic 128K space, and pages 1 to 127 are extended pages.
Out of the 64K words on page 0, 4K words are on-chip ROM. The remaining
space on page 0 as well as the extended space consist of DARAM and SARAM,
both on-chip and off-chip, as shown in Figures 5.13(a) and (b). The 4K on-
chip ROM space contains a GSM EFR speech codec table, a bootloader, u-law
and A-law expansion tables, a sine look-up table, and an’ mterrupt vector
table. , .

The MP/MC, OVLY, and DROM bits located in the processor mode status
register (PMST) are used to enable and disable on-chip memories in the pro-

N Vgram and data spaces The functions of these bits are described in Table 5.3.

Example 5.4 -

Solution

What is the conﬁguratlon of on-chip DARAM, on-chip SARAM, and ROM if
MP/MC = 0, OVLY =1, and DROM == 0 for TMS320C5416?

a. Since MP/MC = 0, 16K on- chip ROM is enabled as program memory at.
address c000h-fefth.

- b. Since OVLY = 1, DARAM is 'mapped on to the program memory space

at address 0080h-7fith. Memory at addresses 000h-007fh is reserved for
memory-mapped registers and the scratch pad purpose. :

¢. Since DROM = 0, ROM is not mapped on to the data memory.

130 Chapter 5 Programmable Digital Signal Processors

Hex Page 0Program Hex Page0 Program Hex
0000 Reserved 0000 Reserved 0000
(OVLY =1) (OVLY =1) 00SE
External : - External B
007F] (OVLY=0) 007F | (OVLY =0) 0060
0080 On-Chip 0080 On-Chip " 007F
. DARAMO-3 DARAMO-3 0080
{OVLY = 1) (OVLY =1) .
External External
7FFF (OVLY =0) TFFF (OVLY =0) - 9FFF
8000 8000 | - E
BFFF xternal 8000
External €000 | On-Chip ROM
FF7F FEFF | (16K X 16-bit)
~ FF80 Interrupts - gggg Reserved
. (External) FFR0 Interrupts
FFFF FrFF L (On-Chip) FFFF
MPMC=1 MP/MC =0
(Microprocessor Mode) (Microcomputer Mode)

. Data -

Memory-Mapped
Registers

Scratch-Pad
RAM

On-Chip
DARAMO-3
(32K X 16-bit)

On-Chip
DARAM4-7
(DROM = 1)

.oor

External
{DROM =0)

Address ranges for on-chi§ DARAM in data memory are.

Hex
010000

017FFF
018000

(1FFFF

Address ranges for on-chip DARAM in program memory are:

Address ranges for on chip SARAM in program memory are: '

DARAMO: 0080h-1FFFh;
DARAM2: 4000h~5FFFh;
DARAM4: 8000h-9FFFh;
DARAMS: CO00h-DFFFh;

(a)
Program Hex Proéram Hex Program " Hex Program
026000 030000 0400001 :

On-Chip On-Chip On-Chip On-Chip
IDARAMO-3 IDARAMO-3| IDARAMO-3 DARAMO-3
OVLY =1) (OVLY =1) (OVLY=1) (OVLY=1)

External 1 External External External
(OVLY=0)| 027FFF|(OVLY =0)} 037FFF|(OVLY =0){ 047FFF|(OVLY=0)

On -Chip 028000 On-Chip 038000 On-Chip 1 048000
DARAM4-T7 SARAMO-3| SARAM4-7 i
(MPMC =0 (MPMC =0), (MP/MC=0) External

External External External

MC =1 MC= 1 YMC=1 .
(MP) 02FFFF (MP) 03FFFF P) 04FFFF
Page | Page2 Page 3 Page 4
XPC=1 XPC=2 XPC=3 XPC=4

DARAMA4: 618000h—019FFFh;
DARAME: 01D0000h—01DFFFh;
SARAMO: 028000h-029FFFh;
SARAM2: 02C000h-02DFFFh;
SARAM4: 038000h-039FFFh;
SARAME6: 03C000h—03DFFFh;

(b)

DBARAMI: 2000h-3FFFh
DARAM3: 6000h—7FFFh
DARAMS: AGOGh-BFFFh
DARAMT7: EOOOh-FFFFh

Hex
7F0000

Program

On-Chip

IDARAMO-3

OVLY=1)
External

7F7FFF |(OVLY =0}

7F8000

External

7FFFEF

Page 127
XPC =7TFh

DARAMS: 01A000b—01BFFFh
DARAM7: 01 E000h—01FFFFh
SARAMI: 02A000h-02BFEFh
SARAM3: 02E000h-02EFFFh .
SARAMS: 03A000h-03BFFFh
SARAMT: 03E000h-03FFFFh

Figure 5.13 Memory map for the TMS320C5416 processor

{Courtesy of Texas Instruments Inc.)

5.6 Program Control 131

Table 5.3 Processor Bits for Configuring ;che On-Chip Memories
PMST Bit Logic On-chip Memory Configuration

MP/MC 0 ROM enabled
) 1 ROM not available.
OVLY. 0 RAM in data space
' 1 RAM in program space (except page 0) .
DROM 0 ROM not in data space
1 ROM in data space

[> Example5.5 Repeat Example 5.4 if MP/MC = 1, OVLY = 1, and DROM = 1.
Solution a. Since MP/MC = 1, TMS320C5416 is in microprocessor mode, the 16K ROM
is off-chip in the program memory space.

b. Since OVLY = 1, DARAM is mapped on to the program memory space
at address 0080h-7fffh. Memory at addresses 0000h-007th is reserved for
memory-mapped registers and the scratch pad purpose.

c. Since DROM = 1, 16K ROM is mapped on to the on-chip data memory
at address c000h-fefth and memory from ff0Oh-fifth is left for reserved
purpose.

5.6 Program Control

The program control unit of TMS320C54xx processors contains the. program
counter (PC), the program counter-related hardware, hardware stack, repeat
counters, and status registers. The PC addresses the program memory, either
on-chip or off-chip, and is loaded in one of several ways, depending on the
“sequence of instructions being executed. These are

& Sequential: PC « PC + 1.

s Branch: The PC is loaded with the immediate value following the branch
instruction.

= Subroutine call: The PC is loaded with the mlmedlate value following the
call instruction.

® Interrupt: The PC is loaded with the address of the approprlate interrupt
vector.

® Instructions such as BACC,\CALA, etc.: The PC is loaded with the con- -
tents of .the accumulator low word.

132 Chapter 5 Programmable Digital Sighal Processors

® End of a block repeat loop: The PC is loaded with the contents. of the
block repeat program address start register.

® Return: The PC is loaded from the top of the stack.

The program counter-related hardware PAGEN provides for the above
options. The stack is used to save and restore the PC value during subroutine
calls and interrupts. It can also be used to save and restore the accumulator
low word or a data-memory value when required.)

' The TMS320C54xx processors provide hardware support for repetitive exe-
cution of either a single instruction or a block of instructions. Repeat counters
are used for this purpose.

A single instruction can be repeated N + 1 times by loading the value N
in the repeat counter register (RC). Likewise, a block of instructions can be
repeated N + 1 times by loading the value N in the block repeat counter reg-
ister (BRC). ‘

5.7 TM5320C54xx Ihstructions and 'Progr'amming

5.7.1

TMS320C54xx architecture supports an instruction set consisting of a large
number of instructions [6]. Many of these are similar to the instructions for
general-purpose microprocessors. However, the TM8320C54xx instruction set
consists of a number of instructions that are specifically de31gned to carry out
the numerically intensive signal-processing operations efficiently. In this sec-
tion, we shall summarize the instruction set of the TMS320C54xx processors.

"In particular, we shall discuss those instructions that are frequently used

to implement DSP algerlthms and illustrate their use by means of sample
programs

‘ Summafy of the Instruction Set of TMS320C54xx Processors

TMS320C54xx assembly language instructions can be classified into the fol-

lowing categories based on their functions:

Load and Store Operations

® Load instructions; Examples: LD, LDM k

® Store instructions;‘Exémples: ST, STM

» Conditional store instructions; Examples: CMPS, STRCD
® Parallel load and store instructions; Example: ST||LD

5.7 TMS320C54xx Instructions and Programming 133

Parallel load and multiply instructions; Exémple: LDHMAC
Parallel store and add/subtract instructions; Examples: ST||ADD, ST||SUB
Parallel store and multiply instructions; Examples: ST||MPY, ST|[MAC

Miscellaneous load- t)rpe and store-type mstructlons, Examples: MVDD,
MVPD '

Arithmetic Operations

Add instructions; Examples: ADD, ADDC

Subtract instructions; Examples: SUB, SUBB

Multiply instructions; Examples: MPY, MPYA
Multiply-accumulate instructions; Examples: MAC, MACD
Multiply-subtract instructions; Examples: MAS, MASA
Double (32-bit operand) instructions; Examples: DADD, DSUB
Application-specific instructions; Examples: EXP, LMS

Logical Operations

AND instructions; Examples: AND, ANDM
OR instructions; Examples: OR, ORM

XOR instructions; Examples: XOR, XORM

Shift instructions; Examples: ROL, SFTL
Test instructions; Examples: BIT, CMPM

Program-Control Operations

" Branch instructions; Examples: B, BACC

Call insnfuptidns; Examples: CALL, CALA

Interrupt instructions; Examples: INTR, TRAP

Return instructions, Examples: RET, FRET.

Repeat instructions; Examples: RPT, RPTB

Stack-manipulating instructions; Examples: PUSHD POPD
Mlscellaneous program-control instructions; Examples: IDLE, RESET

" For detaﬂed descriptions of these and other instructions, the reader is
referred to the Texas Instruments’ TMS320C54xx DSP Reference Set, Volume
2: Mnemonic Instruction Set [6]. We shall now discuss a few of these in-
structions in detail. ‘ :

134 Chapter 5 Programmable Digital Signal Processors

l“;;' Example 5.6

Solution

Multiply Instruction (MPY)

This instruction can take several forms. One such form is

MPY Xmem, Ymem, dst; where Xmem and Ymem are dual data-memory
operands and dst is accumulator A or B.

The instruction multlphes a data-memory value by another data-memory
value and stores the result in accumulator A or B. The register T i is loaded
with the Xmem value in the read-memory phase.

dst « (Xmem) x (Ymem); T « (Xmem)

In the indirect addressing mode, the instruction can also modlfy the contents

~of the almhary registers used for indirect addressmg

Descnbe the operation of the following MPY instructions:
a. MPY 13, B :

b. MPY #01234, A

¢. MPY *AR2—, *AR4 + 0 B

Instruction (a) multiplies the current contents of the T register by the contents

of the data-memory location 13 in the current data page. The result is placed
in the accumulator B.

Instruction (b) multiplies the current contents of the T register by the con-
stant 1234 and places the result in the accumulator A.

Instruction (c) multiplies the contents of memory pointed by AR2 by the

. contents of memory pointed by AR4. The result is placed in the accumulator

B. During this instruction execution, register T is loaded with the contents of
the same data-memory location pointed by AR2. AR2 is then decremented by
1 and AR4 is updated by adding to it the contents of ARO.

Muitlply and Accumulate Instruction (MAC)

This instruction is an improvement over the MPY instruction. One of the
several forms that this instruction can take is '

MAC Xmem, Ymem, src, dst; where Xmem and Ymem are dual data-
memory operands and src and dst are accumulators A and B.

The instruction multiplies a data-memory value by another data-memory
value and adds the product to the contents of the source, which may be either

. of the two accumulators A and B. The result is stored in the other accu-

mulator. The register T is loaded with the Xmem value.

&

D>

Example 5.7

Solution

5.7 TMS320C54xx Instructions and Programming 135

dst « (Xmem) x (Ymem) —{—"(src); T — (Xmem)

Similar to the MPY instruction, this instruction can modify the contents of
auxiliary registers used in indirect addressing,

Describe the operation of the following MAC instructions:
a. MAC *ARS+, #1234h, A
b. MAC *AR3—, *AR4+, B, A

Instruction (a) multiplies the contents of the data-memory location pointed
by AR5 by the constant 1234h and adds the product to the contents of the
accumulator A. During the execution, register T is loaded with-the content of
the data-memory location pointed by AR5. ARS is then incremented by 1.

_ Instruction (b) multiplies the contents of the data memory pointed by AR3 by

the contents of the data memory pointed by AR4. The contents of the accu-
mulator B are added to the product and the result is placed in the accumula-
tor A. The register T is loaded with the contents of the same data-memory
location pointed by AR3. AR3 is then decremented by 1 and AR5 is incre-

. mented by 1.

The MAC instruction is used for computmg the sum of a series of product
terms. ‘ V

Multiply and Subtract Instruction (MAS)

This instruction is similar to' the MAC instruction. One form of this instruc-
tion is

MAS Xmem, Ymem, érc, dst; where Xmem and Ymem are dual data-memory
operands and src and dst are accumulators A and B.

The instruction multlphes a data- memory value by another data-memory
value and subtracts the product from the contents of the source, which may
be either of the two accumulators A and B. The result is stored in the other
accumulator. The register T is loaded with the Xmem value in the read~
memory phase

dst « (src) — (Xmem) x (-Ymem); T — (Xmem)

In the indirect mode, in addition to the multiply operation, the instruction
can modify the contents of the auxiliary registers used for indirect addressing.

Example 5.8 Describe the operation of the following MAS instruction:

MAS *AR3-,” *AR4+, B, A

136 Chapter 5 Programmable Digital Signal Processors

Solution

> Example 5.9

Solution

This instruction multiplies the contents of the data memory pointed by AR3
by the contents of the data memory pointed by AR4. The product is sub-

* tracted from the contents of the accumulator B and the result is placed in the

accumulator A. During this instruction, register T is loaded with the contents
of the same data-memory location pointed by AR3. AR3 is then decremented
by 1 and ARS incremented by 1.

The MAS instruction is used for computing butterﬂ:es in FFT implementation.

Multiply, Accumulate, and Delay Instruction (MACD)

This instruction carries out all the functions of the MAC instruction and, in
addition, copies the contents of the current data-memory address to the next
higher data-memory address. However, the two aperands: of the multiplier are
required to be a single data-memory value and a program-memory value. This

~ feature is equivalent to implementing the z~! delay encountered in digital

signal-processing algorithms. For this reason, the MACD instruction is often
used for implementing FIR filters. The format and all other features of the
MACD instruction are same as those of the MAC instruction.

Repeat Instructi'on {(RPT)

The format of this instruction is

RPT Smem ; Smem is a single ‘data-memory operand
or "RPT #k ; k is a short or a long constant,

The instruction loads the operand in the repeat counter, RC. The instruction
following the RPT instruction is repeated k + 1 times, where k is the initial
value of the RC.

Due to the dedicated hardware support, the repeat instruction is used to
repeat an instruction a given number of times without any penalty for loop-

ing. It may be used to compute the sum of products as requlred in the 1mple-
mentation of FIR filters.

“

Explain what is accomphshed by the following instruction sequence

RPT #2
'MAC *ARI+, *AR2-, A

The first instruction loads the register RC with 2. This number is the repeat
count for the next MAC instruction. The MAC instruction executes three
times. It multiplies and accumulates in A the data locations contents pointed
to by the registers AR1 and AR?2. After each multiply and add the pointer AR1
is mcremented and pointer AR2 is decremented.

5.7.2

[> Example 5.10

Solution

> Example 5.11

5.7 TMS320C54xx Instructions and Programming 137

Block Repeat Instruction (RPTB)

RPTB instruction has the format

RPTB pmad where pmad is the program memory address denoting the end
of the block of mstructmns to be repeated

This instruction is similar to the RPT instruction, except that it repeats a
block of code a given number of times without any penalty for looping. One
more than the number of times the block of instructions is to be repeated
is initially loaded into the memory—mapped block repeat counter register,
BRC.

Programming Exaniples

We now look at a few sample programs written for the TMS320C54xx signal
processors. These programs particularly illustrate the use of some of the signal-
processing instructions and the addressing modes to access data operands.

Write a program to find the sum of a series of signed numbers stored at suc-
cessive locations in the data memory and place the result in the accumulator
A ie.,

41fh

A= dmadG) 51)

i=410h

The TMS320C54xx program for this example is shown in Figure 5.14. AR1 is

used as the pointer to the numbers and AR2 as the counter for the numbers.
The program initializes the accumulator to 0, sets AR1 to 410h to point to the
first number and AR2 to the initial count. This will be used to track the num-
ber of processed locations at each step of execution. Sign-extension mode is
selected to handle signed numbers. The program adds each number in turn to
the accumulator, increments the pointer and decrements the counter. The

~ process is repeated until the count in AR2 reaches 0. At the end of the pro-

gram, the accumulator A has the sum of the numbers in location s 410h to
41th. ‘

Write a program to compute the sum of three product terms given by the

quatmn

" y(n) = hox(n) + hx(n— 1)+ hax{n—2) (5.2)

where x(n), x(n — 1) and x(n — 2) are data samples stored at three successive

138 Chapter 5 Programmable Digital Signal Processors

Figure 5.14

Solution

**********************j**********************************%****f

*

* This program computes the si'gned sum of data memory locations
* from address 410h to 41fh. The result is placed in A.

* : .
* A = dmad(410h) + dmad(411h) + .-- dmad(41fh)
*

e e fedo ke do o deodedk ek e A e e e o e e R A R e e e B Rl ek kel ok dede etk deoke e ook de e e e de ok

.mmregs
.glohal _¢_int00
Jtext
_c_int00:
STM #10H, AR2 ; Initialize counter ARZ = 10h
STM #410H, ARl ; Initialize pointer AR1 = 410h
LD #0H, A ; Initialize sum A = 0
SSBX. SXM "3 Select sign extension mode
START: : . : i
~ ADD *ARl+, A ; Add the next data value
BANZ START, *AR2- ; Repeat if not done
NP ; No operation
.end ‘

TMS320C54xx program for Example 5.10

data-memory locations and hg, 1y, and h; are constants stored at three other
successive locations in the data memory. The result y(n) is to be stored in the
data memory. Use direct addressing mode to access the data memory.

Let hy, h;, and h; be stored starting at address h, and x(n), x(n ~ 1), and
x(n — 2) starting at address 310h in the data memory. Preduet terms hox(n),
hyx(n — 1), and hyx(n.— 2) are computed using the MPY instruction by mov-

~ ing one of the operands to register T and accessing the other operand directly

from the data memory. Note that the data-page pointer, DP, needs to be
initialized before using the direct addressing mode to access the operand.
Product terms are computed in A or B and added. When all the three multi-
plications are done, the result accumulated in B is stored in the data memory
y(n). Since y(n) is 32 bits long, it is saved at two successive locations labeled
as y, with the lower 16 bits at memory location y and the higher 16 bits at the -

next memory location. The TM$320C54xx program for this example is shown
in Figure 5.15. o

5.7 TMS320C54xx Instructions and Programming 139

#*********************

This program computes multiply and accumulate using direct addressing
mode.

y{n) ="h{0)x{n) + h(1)x{n-1) + h(2)x(n-2)

h(0}, h(1), and h(2) are stored in-data-memory locations startihg at
Tocation h and x{n), x{n-1), and x(n-2) are stored in data-memory
1ocat19ns starting at location x. y{n) is saved in data~-memory
Tocation y (Tow 16 bits) and y + 1 (high 16 bits).

* 0k % F % F % % % ¥ %

ok K- e de e e de o de o e e v 0 e de e e dedle ok e e e e ok ok ke kel e el e i e ke et e e e e e e ke R kb ek ek ek ke R ek ek ek w ok
.global ¢ int00

X .usect "Input SampTes", 3
.usect "Qutput”, 2
h .usect "Coefficients"”, 3

‘.téxt

_¢_int00: , :
SSBX - SXM ; Select sign extension mode
LD #h, DP - ; Select the data page for coefficients
LD Bh, T - ; Get the coefficient h(0)
LD #x, DP. ; Select the data page for input samples
MPY @x, A 3 A = x{n)*h(0)

LD #h, DP ; Select the data page for coefficients
LD @ntl, T ; Get the coefficient h{1)

LD #x, DP - ; Select the data page for input signals
MPY @x+1, B ; B = x(n-1)*h(1)

ADD © A, B 3 B = x(n)*h(0) + x(n-1)*h(1)

LD #h, DP 3 Select the data‘page'for coefficients

LD . eh+2, T ; Get the coefficient h(2)

LD #x, DP 3 Select the data page‘for~1nput signals
MPY @x+2, A ; A = x{n-2)*h(3)
ADD A, B s B = x(n)*h{0) + x{n-1)*h(1) + x(n-2)*h(3)
L0 #y, DP ; Select the data page for output

STL B, @y ; Save low part of output

STH B, By+l ; Save high part of output
NOP ; No operation

.end .

Figure 5.15 TMS320C54xx program for Example 5.11

140 Chapter 5 Pfogrammable Digital Signal Processors

> Example 5.12 Repeat the problem of Example 5.11 using the indirect addressing mode to
- access data. S :

-Solution In this examplé, let us use the auxiliary register AR2 to address the data using
: the indirect addressing mode. AR2 is initialized to 310h, the location where
x(n) is storegi,Aand is advanced to the next -address after each multiply opera-

FhERRRKERETIIRKR KRR ook dobddedobed ek ek ko ddek koo dokdkd ke khk ket dek dedrk ke dkdedokkk ok ki ddekdededk i

This program computes multiply and accumulate using. indirect
addressing mode.

y(n} = h(0}x(n) + h{1)x(n-1) + h{2)x(n-2)

h{0), h(1), and h(2) are stored in data-memory locations starting at
location h, x(n), x(n-1), and x(n-2) are stored in data-memory
locations 310h, 311lh, & 312h resp. y{n) is saved in data-memory

~ location 313h (Tow 16 bits) and 314h (high 16 bits)

* % % % % . F ¥ ¥ * * *

Fkk kR kIR A Kk Rk dddkdek ok ko kR Rk Rk hd ke gtk dododde g sk kA Rk A h gk gk dok ko Rk kk ok ok

.global _c int00
h .int 10, 20, 30

Jdext
_c_int00:
SSBX SXM ; Select sign extension mode
STM #310H, ARZ ; Initialize pointer ARZ for x(n) stored at
. : . 310H ,
STM #h, AR3 ; Initialize pointer AR3 for coefficients

MPY *AR2+, *AR3+, A ; A

x(n)*h(0)

MPY *AR2+, *AR3+, B ; B = x(n-1)*h(1)
ADD A, B ; B = x(n)*h(0) + x(n-1)*h(1)
MPY *ARZ+, *AR3+, A ; A = x(n-2)*h(2)
ADD A, B 3 B = x{n)*h{0} + x(n-1)*h{(1} + x{n-2)*h(2)
STL B, *ARZ+ ' ; Save Tow part of result
~STH B, *AR2+ 3_Save high part of result
NoP 3 No operation
.end '

Figure 5.16 TMS320C54xx program for Example5.12 |

5.7 TMS320C54xx Instructions and Programming 141

tion. AR3 is used as the pointer to access coefficients starting at h. At the end
of three multiply operations, AR2 points to 313h, the address at which the
lower 16 bits of y(n) are to be stored. The TMS320C54xx program for this
example is shown in Figure 5.16.

D> Example5.13 Repeat the pfoblem of Example 5.11 by using the MAC instruction.

******&***

y+1

* % K OF % % % * ¥ ¥ %

(high 16 bits).

This program computes multiply and accumulate using the MAC
instruction

y(n) = h(0)x(n) + h(1)x(n-1) + h(2)x(n-2)
where, h(0), h{1), and h(2) are in the program-memory locations

starting at h, x{n), x(n-1), and x(n-2) are in data-memory locations
starting at x. y(n) is to be saved in location y (low 16 bits) and

*************************#********w************w************************

.global _c_int00

" .data

.bss x, 3
bss y, 2

h .int 10, 20, 30

.text

_c¢_int00:
SSBX
ST™
STH
1]

RPT.
MAC
STM
STL
STH
" NOP

. end

SXM
#x, AR2
#h, AR3 -

#O0H, A
2

*AR2+, *AR3+, A
#y, AR2

A, *AR2+

A, *AR2+

; Select sign extension mode

; Initialize AR2 to point to x{n)
s Initialize AR3 to point to h(0)
; Initialize result in A =0

; Repeat the next opération 3 times
3 y(n) computed .

; Select the page for y(n)

: Save the low part of y(n)
; Save the high part of y(n)
; No operation .

Figure 5.17 The TMS320C54xx program fér Example 5.13

142 Chapter 5 Programmable Digital Signal Processors

Solution

The MAC instruction multiplies the contents of two data-memory locations
and adds the result to the previous contents of the accumulator being used.
(Note that only auxiliary registers AR2-ARS5 can be used.) This instruction is
repeated twice using RPT instruction. After each MAC instruction the auxil-
iary registers, which are being used, should be incremented by 1. Finally, the
result is stored in the memory location pointed by “y” using STL instruction

. first for the lower 16 bits and then using STH instruction for the higher 16 bits.-

The TMS$32054Cxx program for this example is shown in Figure 5.17.

5.8 On-Chip Peripherals

5.8.1

On-chip peripherals facilitate interfacing with external devices such as mo-

~ dems and analog-to-digital converters. They also provide certain features that
" are required for implementing real time systems using the processors. All the

’54xx devices have the same CPU, but different on-chip peripherals are avail-

able in different devices. These peripherals include general-purpose 1/O pins,
a software-programmable wait-state generator, hardware timer, host port in-
terface (HPI), clock generator, and serial ports. Of these, the general-purpose
I/O and the software-programmable wait-state generator are described im
Chapter 9 on parallel peripheral devices. The timer, the host port interface,
clock generator, and serial ports are briefly described below. The tables in
Appendix A give details of the information requn'ed for programming these
on-chip peripherals. i

- Hardware Timer

The timer is an on-chip down counter that can be used to generate a signal to
- initiate an interrupt or to initiate any other process. The timer consists of three

kmemory—mapped registers—TIM, PRD, and TCR. A logical block diagram of
the timer circuit is shown in Figure 5.18. The timer register (TIM) is a 16-bit
memory-mapped register that decrements at every pulse from the prescaler

- block (PSC). The timer period register (PRD) is a 16-bit memory-mapped

register whose contents are loaded onto the TIM whenever the TIM decre-
ments to zero or the device is reset (SRESET). The timer can also be inde-
pendently reset using the TRB signal. The timer control register (TCR) is a
16-bit memory-mapped register that contains status and control bits. Table 5.4
shows the functions of the various bits in the TCR. The prescaler block is
also an on-chip counter. Whenever the prescaler bits count down to 0, a clock

Figure 5.18

582

5.8 On-Chip Peripherals 143

- — SRESET
_@GE

PRD _TDDR
'; — # - /___ CPU clock
TIM < PSC <
, { : TSS |
Borrow Borrow
l - . l ‘ » TINT
[l> » TOUT

Logical block diagram of timer circuit
(Courtesy of Texas Instruments inc.)

pulse is given to the TIM register that decrements the TIM register by 1. The
TDDR bits contain the divide-down ratio, which is loaded onto the prescaler
block after each time the prescaler bits count down to 0. That is to say that the
4-bit value of TDDR determines the divide-by ratio of the timer clock with
respect to the system clock. In other words, the TIM decrements either at the
rate of the system clock or at a rate slower than that as decided by the value
of the TDDR bits. TOUT and. TINT are the output signals generated as the
TIM register decrements to 0. TOUT can trigger the start of the conversion
signal in an ADC interfaced to the DSP. The sampling frequency of the ADC
determines how frequently it receives the TOUT signal. TINT is used to gen-
erate interrupts, which are required to service a peripheral such as a DRAM
controller periodically. The timer can also be stopped restarted, reset, or dis-
abled by specific status bits. -

Host Port Interface (HPI)

The host port interface (HPI) is a unit that allows the DSP to interface to an
8-bit or a 16-bit host device or a host processor. The HPI communicates with

- the host mdependently of the DSP. The HPI features allow the host to inter-

rupt the DSP, or vice versa, when required. The interface contains minimal

144 Chapter 5 Programmable Digital Signal Processors

Table 5.4

Function of Various Bits in the TCR Registers

. Reset
Bit Name Value Function
15-12 Reserved — Reserved; always read as 0.
11 Soft 0 Used in conjunction with the Free bit to determine the

state of the timer when a breakpoint is encountered in .
the HLL debugger. When the Free bit is cleared, the
Soft bit selects the timer mode. ’
Soft =0 The timer stops immediately.
Soft =1 The timer stops when the counter

' decrements to 0.

16 . Free 0 Used in conjunction with the Soft bit to determine the

state of the timer when a breakpoint is encountered in
_the HLL debugger. When the Free bit is cleared, the
Soft bit selects the timer mode.

Free =0 The Soft bit selects the timer mode.
"Free =1 The timer runs free regardless of the Soft bit.
9-6 PSC — Timer prescaler counter. Specifies the count for the on-
chip timer. When PSC is decremented past 0 or the

timer is reset; PSC is loaded with the contents of TDDR
and the TIM is decremented. :

5 TRB — Timer reload. Resets the on-chip timer. When TRB is
set, the TIM is loaded with the value in the PRD and
the PSC is loaded with the value in TDDR. TRB is
always read asa 0. ‘

4 8§ .0 - Timer stop status. Stops or starts the on-chip timer. At
reset, TSS is cleared and the timer immediately starts
timing. ‘ \ -

"TSS =0 The timer is started.
4 TSS =1 The timer is stopped.

3-0 TDDR 0000 Timer divide-down ratio. Specifies the timer divide-

". down ratio (period) for the on-chip timer. When PSCis

decremented past 0, PSC is loaded with the contents of
TDDR.

(Courtesy of Texas Instruments Inc.)

external logic, so that a system with a host and a DSP can be designed without

increasing the hardware on the board. The HPI interfaces to-the PC parallel
ports directly. A generic block diagram of the HPI is shown in Figure 5.19.

5.8 On-Chip Peripherals 145

HOST PPDI15:0 ‘HPI16 P
DATA[15:0] [4 L15: }>< N
o - HPIDJ[15:0] »ler {3 B

ANT pMa| |EEle
Address[17:0] > i »= E
" Vg —P{HCNTLO ‘ , ~
—»{HCNTLI N
—»{HBIL - :
HAS
T RW— > HR/W ' Sdxx
Data strobes |——————p- IDS1, HDsz HCS
" READY |4 HRDY ‘ CPU

Figure 519 A generic diagram of the host port interface {HPI)

{Courtesy of Texas Instruments Inc.)

583

Important signals in the HPI are as follows:

The 16-bit data bus and the 18-bit address bus.

The host interrupt, HINT, for the DSP to signal the host when its atten-
tion is required.

HRDY, a DSP output indicating that the DSP is ready for transfer.
HCNTLO and HCNTLI, control signals that indicate the type of transfer
to carry out. The transfer types are data, address, etc.

_HBIL If this is low it indicates that the current byte is the ﬁrst byte; if it
is high, it indicates that it is the second byte.

"HR/W, indicates if the host is carrymg out a read operation or a write
operation.

By appropriately using these sighals, the DSP device can be interfaced on a

host

The clock generator on TMS320C54xx devices has two options—an external

such as a PC.

Clock Generator

clock and the internal clock. In the case of the external clock option, a clock
source is directly connected to the device. The internal clock source option, on
the other hand, uses an internal clock generator and a phase locked loop
(PLL) circuit. The PLL, in turn, can be hardware configured or software pro-
grammed. Not all devices of the TMS320C54xx family have all these clock
options; they vary from device to device. |

146 Chaptér's Programmable Digitaf Signal Processors

5.8.4 Serial /0 Ports

Three types of serial ports are available on the *54xx devices, depending on the
type of the device. These are synchronous, buffered, and nme—dmsmn multi-
plexed ports.
The synchronous serial ports are high-speed, full-duplex ports that provide
- direct communication with serial devices, such as codec, and analog-to-digital .
" (A/D) converters. A buffered serial port (BSP) is a synchronous serial port that
is provided with an autobuffering unit and is clocked at the full clock rate. The
: autobuifermg unit supports high-speed data transfers and reduces the over-
head of servicing interrupts. A time-division multiplexed (TDM) serial port is
a synchronous serial port that is prowded to allow time-division multiplexing
of the data. We will cover serial /O in Chapter 10.
The functioning of each of these on-chip peripherals is controlled by -
memory-mapped registers assigned to the respective peripheral. Figure 5.8(b)
. gives the list of peripheral memoty-mapped reglsters along with their ad-
dresses for the TMS320C54xx devices.

5.9 Interrupts of TMS320C54xx Processors

Many times, when the CPU is in the midst of executing a program, a periph-
eral device may require a service from the CPU. In such a situation, the main
program may be interrupted by a signal generated by the peripheral device. .
This results in the processor suspending the main program in order to execute
another program, called interrupt service routine, to service the peripheral
device. On completion of the interrupt service routine, the processor returns
to the main program to continue from where it left.

Interrupt may be generated either by an internal or an external device. It -
may also be generated by software. Not all interrupts are serviced when they
occur. Only those interrupts that are called nonmaskable are serviced when-
ever they occur. Other interrupts, which are called maskable interrupts, are
serviced only if they are enabled. There is also a priority to determine which
interrupt gets serviced first if more than one interrupts occur simultaneously.

Almost all the devices of the TM$320C54xx family have 32 interrupts, How-
ever, the types and the number under each type vary from device to device.
Some of these interrupts are reserved for use by the CPU. Figure 5.20 gives the
types of interrupts, their locations, and priorities for TMS320C54xx pro-
Cessors.

A more detailed descnptmn of mterrupts and how an interrupt is handled
when it occurs is given in Chapter 9.

- LOCATION)
- 'NAME DECIMAL - HEX PRIORITY FUNCTION
RS SINTR - . 0 - 00 1 Reset (hardware and
oo : . : software reset)
NMI, SINT16 4 04 2 Nonmaskable interrupt’
SINT17 . 8. 08 . — ‘Software interrupt #17
SINT18 12 0C — Software interrupt #18
SINT19 . 16 10 — Software interrupt #19
'SINT20 200 14 — Software interrupt #20
SINT21 o 24 18 — Software interrupt #21 ~
SINT22 . 28 . 1C — Software interrupt #22
SINT23 - . . 32 . 20 — Software interrupt #23
SINT24 36 24 — Software interrupt #24
SINT25) 40 28 — Software interrupt #25
SINT26 . 44 2C — Software interrupt #26
SINT27 48 30 — Software interrupt #27
SINT28 52 3¢ e Software interrupt #28
SINT29 56 38 — Software interrupt #29
. SINT30 60 3C — Software interrupt #30
INTO, SINTO 64 40 3 External user interrupt #0
INT1, SINT1 T 68 44 4 External user interrupt #1,
INT2, SINT2 72 48 5 External user interrupt #2
TINT, SINT3 - 76 4Cc 6 Timer interrupt
- RINTO, SINT4 , - - 80 50 7 McBSP #0 receive
o , N :) interrupt (default)
~ XINTO, SINTS 8 54 '8 MCcBSP #0 transmit
S o o : interrupt (default)
CRINT2, SINT6. 88 58 9 MCBSP #2 receive
S * . interrupt (default)
" XINT2, SINT7 920 ~5C. 10 MCcBSP #2 transmit
S o - interrupt (default)
INT3, SINT8 96 60 1" External user interrupt #3
“HINT, SINTS 100 64 12 HPI interrupt. '
'RINT1, SINT10 - - 104 68 - 13 McBSP #1 receive
: interrupt (default)
XINT1, SINT11 106 - 6C 14 McBSP #1 transmit
, interrupt (default)
DMAC4, SINT12 112 70 15 DMA channel 4 (default)
DMACS, SINT13 116 .. 74 .16 DMA channel 5 (default)
Reserved 120-127 78-7F - Reserved

V Figure 5.20

5.9 Interrupts of TMS320C54xx Processors 147

Table for interfupt locations and priorities for TM5320C54xX Processors

{Courtesy of Texas Instruments inc.)

148 Chapter 5 Programmable Digital Signal Processors

5.10 Pipeline Operation of TM5320C54xx Processors

The CPU of *54xx devices has a six-level-deep - instruction pipeline. The six
stages of the pipeline are independent of each other. This allows overlapping
-execution -of instructions. During any given cycle, up to six different instruc-
tions can be active, each at a different stage of processing. The six levels of the
- pipeline structure are program prefetch, program fetch decade, access, read,

and execute

1. During prdgram préfetth, the program address bus, PAB, is loaded with

the address of the next instruction to be fetched. -

. In the fetch phase, an instruction word is fetched from the program bus,
PB, and loaded into the instruction register, IR. These two phases form
the instruction fetch sequence.

3. During the decode stage, the contents of the mstructmn regxster, IR,
are decoded to determine the type of memory access operation and the

control signals required for the data address generatlon unit and the

CPU

LoadsPABwith ~ Loads IR with the contents . Loads DB with the datal

the PC’s contents of PB: " read operand =
Decodes the IR’s contents ...Loads CB with the data?
* " read operand
. Loads EAB with the data3

write address, if requifed

|

Prefgtﬁ:h Fetch | Decode Access

Read l Execute/write

T 1

LoadsPBwiththe Loads DAB with the datal

fetched instruction read address, if réquired .

word Loads CAB with the data2
» - read address, if required

and stack pointer

Time

Updates auxiliary registers- .

!

Executes the instruction
_and loads EB with write .
data

\ 4

* . Figure 5.21 Six-stage pipeline of TMS320C54xx execution
{Courtesy of Texas Instruments Inc.)

5.10 Pipeline Operation of TMS320C54xx Processors 149

4. The access phase outputs the read operand’s address on the data address
bus, DAB. If a second operand is required, the other data address bus,
CAB, is also loaded with an apptopriate address. Auxiliary registers in
indirect addressing mode and the stack pointer (SP) are also updated.

5. In the read phase the data operand(s), if any, are read from the data
buses, DB and CB. This phase completes the two-phase read process and
starts the two-phase write process. The data address of the write oper-

and, if any, is loaded into the data write address bus, EAB.

6. The execute phase writes the data using the data write bus, EB, and com-
- pletes the operand write sequence. The instruction is also executed in

‘this phase.

Figure 5.21 shows the six stages of the pipeline.and the events that occur in.
each stage. The following examples demonstrate how the TMS320C54xx pipe-

line works while executing instructions. -

> Example 5.14 Show the pipeline operation of the following sequence of instructions if the
o initial value of AR3 is 80 and the values stored in memory location 80, 81, 82

~arel;2,and3. . A

o : LD *AR3+, A.
ADD- #1000h, A
STL A, *AR3+ ..

.
.

v.Sblﬁtion Figui'e 522 1s the',ksolutiion to this example problem.

‘ : Exec &
Cycle Prefetch Fetch Decode Access Read MWrite AR3 A
1 W ‘ ‘ 80 X
2 ADD) 80 X
3 STL ADD LD 80 X
4 ‘ - OSTL ADD LD 81 X
5 STL ADD 81 1
6 STL LD 82 0001h
7 STL ADD 82 1001h
8. STL 82 1001h

'Figure 5.22 Pipeline operation of the instruction sequence of Example 5.14

150 Chapter 5 Programmable Digital Signal Processors

o Exec &

Cycle . Prefetch Fetch Decode Access Read Write AR3 ARl A T

1 D . 8l 84 1 X
2 LD ADD 81 8 1 X
3 MPY LD ADD 81 8 1 X
4 ADD MPY LD ADD 82 84 1 X
5 © ADD MPY 0 ADD 8 8 1 X
6 ADD -~ MPY LD ADD 83. 85 03 06
7. ADD MPY LD 83 85 03 06
8 ADD MPY 83 85 03 06
9 ADD 83 85 15h 06

Figure 5.23 Pipeline operation of the instruction sequence of Exam{JIe 515

[> Example 5.15 Show the pipeline operation of the following sequence of instructions if the
initial values of AR1, AR3, A are 84, 81, 1 and the values stored in memory
location 81, 82, 83, 84 are 2, 3, 4, 6. Also provide the values of reglsters AR3,

AR, T and accumulator, A, after completion of each cycle.

ADD *AR3+, A
LD *AR1+, T
MPY *AR3+, B

_ ADD B, A.

[
»

Solution Figure 5.23 is the solution to this example problem. '

5.11 Summary

In this chapter, we have looked at the architectural features of the commercxally
available programmable digital signal processors. In partlcular, we have studied
in detail the following features of the Texas Instruments TMS320C54xx DSPs:

= Architecture of the processors, consisting of the bus structure, central

processing unit (CPU), and internal memory organization-

- Assignments 151

Addressing modes, consisting of immediate addressing, absolute ad-

dressing, accumulator addressing, direct addressing, indirect addressing,
memory-mapped addressing, and stack addressing

Address-generation unit, including single-operand address modifica-
tions, circular address modifications, bit-reversed address modifications,
and dual-operand address modifications

Asserhbly language instructions, including signal processing-specific in-

structions and programming examples
L] 'Memory organization
8 On-chip peripherals
_.l Interrupts

m Pipeline operation

References
1. "TMS320C2x User’s Guide, Texas Instruments, 1993.
‘2. DSP 56000/56001 Digital Signél Processor User’s Maﬁual,AMotorola, 1993.
3. ADSP2101/2102 User’s Manual, Analog Pevices, 1993. .
4. TMS_320C54xx DSP Reference Set, Vols. 1 and 2, Texas Instruments, 1997.
5. TMS320VC5416 DSP Data Manual, Texas Instruments, 2002..
6.

TMS320C54x DSP Refévrence' Set, Vol. 2, Texas Instruments, 1997.

| Assi'gnments

- 5.1 How will ydu configure a. TMS320C5416 processor to have the following on-

5.2

5.3

chip memories? Specify the address range in each case.
On-chip DARAM: for program
On-chip ROM: for program -

How much RAM for data will be available in the specified coﬁﬁguration?

Explain the difference between the internal and external modes of clocking
TMS320C54xx processors. How do you vary the clock frequency. in each case?

Identify the addressing mode. of the source operand in each of the following

instructions: ,
a. ADD *AR2, A
b. ADD *AR2+, A

152 Chapter 5- Programmable Digital Signal Processors

5.4

5.5

5.6

5.7

5.8

5.9

. 5-10 .

5.11

c. ADD *AR2+% A
~d. ADD #0ffh, A .
e. ADD 1234h, A
f. ADD *ARZ+0B,A
‘g ADD *+ARL A , : |
What will be the contents of accumu.lator A after the execuuon of the in-
struction , o
'LD *AR4, 4 A-
if the current AR4 points to a memory location whose contents are ¢ 8boeh and .
the SXM bit of the status register ST1 is set?

Write a sequence of TMS320C54xx instructions to conﬁgure a circular buﬁ’er S
with a start address at 0200h and an end address at 021fh with current buffer
pointer (AR6) pointing to address 0205h. : :

Write a TM8320C54xx program to compute the equa’uon v
) y mxtc '

Assume' that x and ¢ ‘are stored in the data memaory and m in the progr&m'
memory: The result should be stored in the data memory.

Write a TM$320C54xx program to implement second-order IIR filter equatlons
d(n) = x(n) + d(n - 1)a1 + d(n — Z)az
(n) d(ﬂ)bo -+ d(n - 1)b1 + d(n - Z)bz

where a;, a,, by, by, by are filter coefficients (integers), x(n) is the latest input
sample, y(n) is the filtered output sample, and d(n) is an intermediate result.
You may assume that, during ealculatlons, all signals remam w1thm values
represented by 16 bits.

Write a TMS320C54xx program to read the cosine value of a varlable from
a table stored in the program memory and store it in the data memory. The
variable is located at address VALUE in the data ‘memory, and the cosine
value should be stored at the same location. The cosine table is stored at
address TABLE in the program memory.

Write a TMS8320C54xx program to read 100h words from the input port at_
address INPORT and store them m the data memory startmg at address
BUFFER.

Write a TMS320C54xx program to mask the lower 6 blts of a-word stored in
the data memory and write the modified word back at the same location.

What is the role of the interrupt pins in‘o DSP device? Are these the only
means of interrupting a DSP program? How do you prevent a signal on an

interrupt pin from mterruptmg a time-critical program being executed by the
Dsp:

Assignments 153

5.12 By means of a figure, explain the pipeline operation of the following sequence
of TMS320C54xx instructions if the initial value of AR3 is 80 and the values
stored in memory location 80, 81, 82 are 1, 2, and 3.

LD *AR3+, A
ADD *AR3+, A
STL A, *AR3+

Chapter 6

Development Tools for Dlgltal
- Signal-Processing Implementations

6.1 Introduction

In the last chapter, we studied TMS320C54xx DSP’s architecture and instruc-

tions, and we wrote a few simple programs to illustrate the use of its instruc- .

* tions. In this chapter, we introduce a development tool that can be used to

implement and test DSP algorithms. This tool is the DSP System Design Kit, or
DSK, for TMS320C54xx processors. It comes with the development software
called the Code Composer Studio (CCS). We will brieﬂy describe this tool and
show how it can be used to develop DSP apphcanons Speaﬁcally, we discuss
the following topics: : ,

The DSP development tools

The DSP System Design Kit (DSK)
Software for development

The assembler and the assembly source file
The linker and memory allocation

The C/C** compiler

The Code Composer Studio (CCS)

DSP software development exémple

6.2 The DSP Development Tools |

154

A development tool provides a hardware/software platform to 1mplement and

_ test a design. For 1mplementmg TMS$320C54xx DSP designs, a range of sys-

tems exist with varying developmental capability and price tags. The least
expensive developmental system is the DSP System Design Kit, or DSK, and
the most expensive and also the most capable system is the Emulator. The

6.3 The DSP System Design Kit (DSK) 155

medium-capability system is the Evaluation Module, or the EVM. Here, we
limit our discussions to the use of the DSK for implementing and testing DSP
algorithms. The DSK provides all the capabilities that a beginner needs to start

- implementing DSP schemes using TMS320C54xx DSP devices. -

6.3 The DSP System Design Kit (DSK)

Analog In
——3

Analog Out
«——

TMS320VC5416 DSK, or simply DSK, is a low-cost development tool that
allows a student to explore TMS320C54xx DSP architecture and implement
signal-processing algorithms. The DSK is specifically suitable for a beginner
learning DSP implementations. It comes with a TMS320VC5416-based board,
and DSK-specific development software. The DSK board can be connected to a

* PC using the universal serial bus (USB) cable, as shown in Figure 6.1. An em-

bedded JTAG emulation logic on the DSK allows for code development and
debug without the use of an external emulator. Four jacks for analog inputs

(such as a microphone) and outputs (such as a speaker) provide interface to

the outside world.

The board is shown in the block diagram of Figure 6.2. The DSK board 1s
designed around a-16-160 MHz VC5416 DSP processor. The DSP device pro-
vides a 64K-word dual-access program/data RAM, a 64K-word single-access
program RAM, and a 16K-word program ROM. In addition to the memories,
it also provides three multichannel buffered serial ports (McBSPs), a DMA
controller, 8/16-bit host port interface, and a timer. Additional external mem-
ory is provided with a 64K-word SRAM and a 256K-word flash memory on the
DSK beard. o

The DSK uses the PCM3002 stereo codec consxstmg of a 16-bit analog-to-

digital converter (ADC) and a 16-bit digital-to-analog converter (DAC). The '

codec. provides the capability to convert an analog signal to a serial digital

signal for the DSP’s multichannel buffered serial port McBSP2 and to convert

DSK C PC

Microphone

Port - - ‘ USB Cable
Speaker’

USB f—— USB Port

Figure 6.1 'Signalaprocéssing~configura‘tio'n‘using the 5416 DSK’

156 Chapter 6 Developmént Tools for Digital Signal-Processing Implementations

USB
IF

+5Vmu

[Memory External IF__|

Special I/F

Peripheral External 'F |

=3 D B3
User LEDs User Switches

Figure 6‘.‘2 Block diagrarh of the,;D;SKboard

(Cdurtésy of Texas lnstruments Inc.}

- the d1g1ta1 31gna1 to analog for the analog output port We consider the details

of this intetface in Chapter 10.

The other provisions on the board include three expansion connectors for
memory, peripherals, and host intérfaces. Four jumpers are provided to con-
figure. the board for various clock frequencies and running the DSP in micro-
processor or microcomputer mode. A reset push button switch is provided to
reset the board. The board uses 3V dc power supply. For more details on the
DSK board hardware, the reader should consult reference [1] given at the end

" of this chapter.

6.4 Software for Development

The software development flow chart of Figure 6.3 describes: the various lan-
guages, tools, and libraries that'may be employed to develop an application.
The flow chart also shows the ﬁles that are used and created in the develop-
ment process

The tools depicted in the flow chart consist of the compiler, the assembler,
the linker; and the debugger The utilities that may be needed consist.of the
archlver, the hbrary ‘builder, and the hex converter. The files encountered in

- M N -) —
+ . Macro . E

e source |

. R .
o files off)

6.4 Software for Development 157

compiler

{

- . T T Assembly |
Archiver | sAssembler § | translation’
;T—J + source § assistant
E Macro 3| .. _ g E o :AJ‘ b .
o library 3 . g——] £ Assembler s
————~ [corr :F Library-build
Archiver | S object o AN utility J
‘ v - — = ‘ ¢ Runtime- s |
: lerary Of: : support .
« object -e + library o
¢ files

Hex conversion|
utility

£ Exccutable §)
1o COFF o -
¢ file

EPROM . Cross-reference]
programmer [Absolute ll's“ter] [lister) (C54x

Figure 6.3 Software dévelopment flow chart

(Courtesy of Texas instruments inc.)

" the development process consist of source files, COFF object files, and a COFF

. executable file; - . :

The C compiler translates a C+* source file into a Ch4xx assembly language
source file. To create a source file, a tool called the editor is needed. An editor

-may-be any ASCIL editor. available on. the PC, such as EDIT in DOS. The

assembler translates assembler source files into COFF object files. Source files -

158 Chapter 6 Development Tools for Digital Signal-Processing Implementations

can contain instructions, assembler directives, and macros. The assembler
directives are employed to control the assembly process, such as the source
listing format, data alignment, and section contents. The linker combines the
relocatable COFF object files and hbrary modules into a single executable
COFF object file. It creates the executable module by assigning symbols to
memory locations and resolving symbol references.

The archiver utility collects a group of files into a single archlve‘ﬁle. Macros
can be combined to form a macro library. During assembly, the assembler
searches the library and uses the needed macros. Archiver can also be used to
combine a group of object files into an object library. The linker uses the
object library to resolve external references during the linking process. The
compiler package may include the library-build utility, which can be used
to build runtime-support libraries. The assembly translation assistant utility
can be used to convert an assembly language source file containing mne-

* monic instructions to an assembly language source ﬁle containing algebraic

instructions.
TMS$320C54xx DSP accepts executable COFF ﬁles as input. A hex conver-
sion utility is used to convert a COFF object file into TI-tagged, Intel, Moto-

~ rola, or Tektronix object formats. The converted file can be downloaded to an

EPROM programmer. The absolute lister accepts linked object files as input
and creates an absolute file as output. The created file has absolute rather than
relative addresses. The cross-reference lister uses object files to produce a
cross-reference. L

The debugging tool provides a mechamsm to download an executable pro--
gram to the board and run it to verify its operation. More important, it is
used to debug the program by using controlled execution and the monitoring
support provided in the debugging environment. The DSK debugging tool is
described in the next section.

In order to support application development using DSK, the DSK software
provides host utilities and board drivers and libraries. The host -utilities run
on the host PC and prov1de functions to control the DSK board, whereas the
target libraries are for the DSK board and provide functions to control the
peripherals on the board. C54xx DSK host utilities provide the user with a way
to use the board without having to write‘an application from scratch,’ These
utilities support C54xx DSK board control, such as DSP reset; DSP application
loading and execution, device configuration, status display, board confidence
testing, and flash memory programming. The host utilities can be used to load
and run any application or to configure and monitor the C54xx DSK device
without writing the application to do it. Stand-alone embedded’ executable
functions can be programmed into flash memory. For more information on

- these utilities, the reader should consult reference [2] given at the end of this

chapter.

The board drivers for the C54xx DSK provide the low-level software inter-
face. These drivers are not intended to be directly accessible for the user-mode
applications. A Win32 DLL that provides a consistent API across all supported

6.5 The Assembier and thé Assembly Source File 159

Window platforms hides the details of accessing these drivers. The purpose of
the board driver functions is to allow the user-mode DLL to access and con-
trol C54xx DSK. These functions provide a basic interface that gives access to
the board in all supported Windows environments. The Win32 DLL provides
intelligent processing and control functions that call kernel-mode board
driver functions to access board resources and the PCI configuration data. The
board libraries provide functions for board initialization as well as initializa-
tion and control of on-board peripherals.

6.5 The Assembler and the Assembly Source File

Figure 6.4

A program written in an assembly language is called an assembly source pro-
gram. An example aof such a program is shown in Figure 6.4. This program
is essentially the same as the one in the last chapter, except that a few new

********#***
*

* This program computes the signed sum of 16 data memory
* locations starting at Number. The_resu]t is to be placed in A.

TRk AIERRRRERI KR I RTER R AR AR RTRR R RT AR HRERRAR AR R R hhR kR dkddhdd*dkdkkkk®

C o

.mmregs :
.global _¢_int00
.data

Number: ; o
.int 5, 14, -7, 22, -25, 4, 2, 0, 6, 33, 4, 11, 12, -12, 8, 16
.text k V '

_c_int00: -
stm #10h, ARZ ; Init councer ARZ = 16
stm ~ #Number, ARl ~; Init pointer ARl to first number

1d = #0h, A ; Initialize sum A =0
“~ssbx - SXM 3 Select sign extension ’mod_,e
- START: ' : ‘
© o add *AR1+ A ; Add the next data valye
_banz START *ARZ- -3 ‘Repéat if not-done- ¢
‘nop © % 3 No operation, just for debugging
.end

An assembly source program for TMS320C54xx-

160 Chapter 6 Development Tools for Digital Signal-Processing Implementations

directives statements have been added. The directive statements are for the'host
program that will be used to convert the source program to the machine program _
for execution on the processor. The program that does this conversion is called.
an assembler. The statements added in the program in Figure 6.4 are for the
" assembler that comes with DSK. Here, we will briefly discuss these statemients.
However, the reader is advised to consult reference [3} for complete details.
The instructions in the program are the processor instructions that we dis-
cussed in the last chapter. The labels such as START in Figure 6.4 refer to the
memory addresses for the instructions. The statements starting with a star (*)
are the comments to facilitate program understanding and do not produce
any converted code. The statements that start with a dot (.) are called direc-
tives. A directive is not a processor instruction; it is an instruction to the
assembler program to control the assembly process. For instance, the .int
directive in the program of Figure 6.4 specifies to the assembler to allacate-
word-size memory locations and initialize them with the data specified after
- the directive. The- memory allocation starts at the address to which the label
- “Number” refers. '
The .mmregs directive defines- memory—mapped reglsters of the processor.
For instance, ARO register refers to a specific memory location after as:
“ sembling and this reference or definition is provided by the .mmregs direc-
tive. The .global directive declares the specified label visible to other program
“modules. The .data and .text are called section directives. These are provided
“to define data and code sections of a program. For instance, starting at .data
- till .text, the allocation is to the data section. Starting at .text, the allocation
- is to the code section. Fmally, the end d1rect1ve speaﬁes the end of the source
file. S \
- There are many other directives that fac111tate the assembly process of
converting instructions and allocation of code and data. The reader is adv;sed
o look these up | in reference 31

| 6».6 The Linkef and Membry Allocation

The linker is another program that is also a part of the development system.
It is needed to allocate the user program and its sections to actual physical
memory on the target, such as the DSK board. It provides.a way by which we
can use the resources of the hardware in view of the program that we intend
to test. Another important use of the linker is to allow a-programmer to write
-.an application in modules. The linker combines these modules into a single
machine program for the hardware execution on the DSP device. '
Typically, a comimand file'is used to define the connection between the
hardware resources and the program sections. An example of a command file
for the program in Figure 6.4 is shown in Figure 6.5. Memory is defined as
consisting of two pages, PAGE 0 and PAGE 1. PAGE 0 refers to the program.

6.8 The Code Composer Studio (CCS) 161

/*

* mozossmzs examp]eﬁpl ey s===mens

* .

*/

MEMORY

{

~ PAGE 0: IPROG: origin = 0x1000, ‘len = 0x3000
’ ?AGE 1: IDATA: origin = (x400, len = 0x100

~ SECTIONS.
{

.text: {} > IPROG PAGE 0
.data: { } > IDATA PAGE 1

Figure 6,5 - A command file for the'pmgram of Figure 6.4

memory; it starts at OxlOOO and has a length of 0x3000. PAGE 1 refers to the
data memory starting "at 0x400; it has a length of 0x100. These are ‘valid
" memory locations in:the DSK board. The sections of the program are assigned
to exist in these two types of pages. For instance, .text is the code section and
it is assigned to PAGE 0 or the program memory. Similarly, .data section is
_defined to be in the data memory or PAGE 1. For more on linker and memory
allocation, the reader is advised-to consult reference [3].

6.7 The CIC** Compiler

The DSK comes with a C/C* compller that can be used to develop DSP ap-
plications using the hlgh -level languages C and C**. The ‘compiler generates
~ an assembly file that can be further converted with the assembler program to
generate an object file for the linker. For. information on developing C or C**
programs, the reader is advised to consult an appropriate reference [4].

6 8 The Code Composer Studlo (CCS)

" The DSK comes complete with the DSK- speaﬁc Code Composer Studio (CCS) :
CCS provides an integrated development environment (IDE) for project man-
agement, editing, compiling, debugging, and visualization. Both C/C** and
assembly language codes can be developed and debugged.

162 Chapter 6 Development Tools for Digital Signal-Processing Implementations

6.8.1

6.8.2 The Debug Optlons

To use CCS, we need to know how to build applications and how to debug
or test them using a target such as the DSK board. These two aspects are
considered in the following subsections.

Building a Project

A new pro;ect is built by choosing “New” in the Project menu. The Project
Creation window appears, allowing one to specify the project name, location,
and type. The project type executable generates an .out extension executable
file. Ending thé project creation takes you to the Project View window, where
files to be used in the project ¢an be added. These files are the source files

- (both assembly and C**), library files, and the command file. Select “Add

Files” under the Project menu and specify the file type and its location to add
it to the project. The include files are not added; these are automatically added
by the CCS after scanning the source files.

A project configuration is selected from the Project toolbar. Two config-
urations, Debug or Release, are available for different phases of program de-
velopment. The output generated after the project is built is placed in the
configuration-specific subdirectory in the directory for the project. '

‘Figure 6.6 shows a sample project file generated by the CCS in response

' to selections and the- files used. This file contains all the information about

the project, such as project settings, source files, compiler settings, and linker
settings. The details of the settings for the compller and linker are given in

. reference [2].

~ The project is built by choosmg “Rebuild All” in'the Project toolbar. The

" executable file is placed in the appropriate directory, such as the Debug
. directory. The executable program can be loaded to the board using “Load

Program” under the File menu. The program can be executed or debugged
using the Debug option in the File menu. The debugging can be done using
various controls and options to run the program and view its results. Some of

these options are discussed in the next section.

- The CCS debugger prov1des a powerful debuggmg capablhty by permitting

the execution of a program in many different ways and viewing the results in
many different formats. The basic debug capabilities of CCS consist of provi-

. sions to download-a program to the DSK board, run the program, single-step

through instructions, modify registers and memory locations, view registers

- and locations, and apply reset to' the processor. In addition to basic capa-
“bilities, there are a number of advanced debugging features provided in CCS.
- Some of these features are as follows:

http:fo.llo.ws
http:lo.catio.ns
http:lo.catio.ns
http:instructio.ns
http:do.wnlo.ad
http:o.ptio.ns
http:o.ptio.ns
http:contro.ls
http:vario.us
http:directo.ry
http:directo.ry
http:selectio.ns
http:directo.ry
http:co.nfiguratio.n-specificsubdirecto.ry
http:uratio.ns
http:subsectio.ns
http:applicatio.ns
http:Implementatio.ns

6.8 The Code Composer Studio (CCS) 163

;3 Code Composer Project File, Version 2.0 (do not modify or remove this ‘
Tine)

[Project Settings]
ProjectDir="C:\ti\myprojects\example6p1*
ProjectType=Executable .
CPUFami 1y=TMS320C54XX

Tool="Compiler"

Tool="DspBiosBuilder"”

Tool="Linker"

Config="Debug"

Config="Release"

[Source Files]
~Source="..\..\, \NINDOWS\Desktop\DSPBookPgm\chGpgms\examp]erl asm"
Source="..\..\. \NINDONS\Desktop\DSPBookPgm\chGpgms\example6p1.cmd“ :

[*Compiler" Sethngs "Debug”] :
Options=-g -q -fr"C: \t1\mypro,]ects\example6p1\Debug" -d"_DEBUG"

[“Compiler" Settings: "Release"]
Options=-qg -02 ~fr'C:\ti\myprojects\example6pl\Release"

{"DspBiosBuilder® Sett{ngs: "Debug"]
Options=-v54

[“DspBiosBuilder" Seitings: "Release"]
Options=-v54

[*Linker" Settings: "Debug"]

Options=-q -c ~0".\Debug\exampleépi.out" -x

_["Linker® Settings: "Reiease"]
~ Options=-q -c -0".\Release\example6pl.out* -x

‘

Figure 6.6 A sample:project file created by the CCS

Breakpoints: A breakpoint can be set on an instruction. Execution of the
program stops at the breakpoint, giving-an opportunity to view the results
produced by the part of the program that has been executed.

Watch Window: This feature allows one to menitor program vanables as
the execution takes place.

Probe Points: By adding a Probe Point on a line of the program, data can
be transferred either from a file on the host to the DSK memory or from
the DSK memory to a file on the host. The program execution resumes
after transferring the data.

164 Chapter 6 Development Tools for Digital Signal-Processing Impléinentations :

Graphing: CCS provides a number of ways to graph the data processed by
the program. This capability is particularly useful in viewing a signal in the
frequency and time domains.

Profiling: A profiler can be used to determine the number of cycies a par-
ticular function or a program takes to execute or how many times the
function is called. This capability can be used to optimize the program’
performance

Real-Time Analys1s: The CCS provides the capability to monitor and ana-
lyze a real-time program without interfering with its execution. This capa-
bility is provided by way of a DSP/BIOS kernel and RTDX (real-time data
exchange) technology. The kernel, which is loaded to the board, uses API
functions to implement run-time services. These functions can be linked
into an application and allow a user to implement performance monitoring
and program tracing. The RTDX provides a link to obtain and monitor
target data in real time. This capability allows the user to transfer data
between the host and the target without interfering with the target ap-
plication. RTDX has two components, one of which runs on the target to
provide a link to the target data. On the host platform, RTDX runs in con-
junction with CCS to provide data visualization and analysis. For more in-
formation on this capabﬂity, the reader is advised to run the DSP/BIOS and
RTDX tutorials available in the CCS enwronment by invoking the Help
-function.

6.9 DSP Software Dévélopment Example

In this section, we will go through the various steps of buﬂdmg and debugging-
an application for the DSK using the CCS. These steps will be illustrated using
the source program of Figure 6.4 and the command file of Figure 6.5. The
process illustrated here does not demonstrate the complete power of the tools;
it is a simplified version of the tools and illustrates the basic process of avpli-
cation development

1. We start by creating a new project, as shown in Figure 6.7, by selecting

- “New” under the Project toolbar. The project name, example6pl, can be
entered along with its location. The project type chosen will be Execut- -
able (.out). The target is TMS320C54xx.

2. The project window after creating and selecting the project is shown in
Figure 6.8. ~

3. The project files are added to the project by selectmg “Add Files to
Project” under the Project toolbar. As shown in Figure 6.9, we add the
source file example6pl.asm. The process is repeated for the command

-

6.9 DSP Software Development'Example 165

Figure 6.7 Creating a new projéct in CCS IDE

file example6pl.cmd. While selecting a file, the file location and its type

must be selected to see the file in the window before it can be added.
Figure 6.10 shows the Project window after addmg and selecting the

. source and the command files.

Figure 6.11(a) shows how project build options can be selected for the
assembling, compiling, and linking. The build options are selected from
the Project toolbar. Here we can specify options for the assembler, com-
pﬂer, and the linker. Figure 6.11(b) shows where the place for the object
files is specified.

The project is built By selecting the “Build” option under the Project ‘
toolbar. Figure 6.12 shows the building of the project. The lower window.,
shows any error if it occurs during the build process.

The built vprogram can be downloaded to the DSK board by selecting
“Load Program” in the File menu. This is shown in Figure 6.13.

166 Chapter 6 Development Tools for Digital Signal-Processing Implementations

31" C54K - Coidg Composer

Studio "C5416 DSK Yools

DEPADS: Wedow . Hop

588 Proscts

ERY ol i
.3 DSP/BIOS Config
{—@ Gensrated Filer

29 include

Figure 6.8

8.

o

The project window for the project being created

After downloading the program, it can be debugged, or simply run, by
choosing the debug featurés. Restarting the program makes it hegin
from the first instruction, as shown in Figure 6.14. The right arrow
shows the start point. In order to execute it to the end, we may set a
breakpoint at the last “nop” instruction. The breakpoint is selected from
the Debug toolbar. The filled circle on the #10p instruction shows the
breakpoint location. Since the program uses registers, we may view these
as shown in Figure 6.14. The register window is selectéd from the View
menu. Notice that A = 0, AR1 = 0, and AR2 = 0. These are the registers
used in the program. The program adds the numbers starting at the
location Number. Note that the location Number is at address 400h, as
the data section is defined in the command file to start at this address.

Executing the program with a run command generates the sum of 16
numbers in register A. The result is shown in Figure 6.15. It ‘is easy

6.10 Summary 167

P =l

Blw|opsEEEE]|

Filas

-3 Generaled Fies |
iv@ Include:
£ Libiaies
=

i

ouree Files [.6:% coc)
++ Soures Files con:* cc* cuy
ot P g
Tbject and Libeaty Files (a* 1%
Configuration Fie { cdb)

Lirke: Esmmand Fie [cond)
Visual Linker Recipe ficp}

All Files 7]

Lot

Figure 6.9 Adding files to the project

to verify that the ARl and AR2 registers also contain the appropriate
numbers after completing the program execution. To: debug the pro-
gram we also can run the program using single-step execution, in which
-case one instruction at a time is executed. Simultaneousty we can view
the contents of registers as the instructions are executed.

6.10 Summary

In this chapter, we introduced an important and inexpensive -tool called the
DSP System Design Kit (DSK) for the C54xx DSP devices and its associated
development software called Code Composer Studio Integrated Development
Environment (CCS IDE). The package can be used to develop DSP applica-
tions. These tools were illustrated using a simple example.

168 Chapter 6 Development Tools for Digital Signal-Processing Implementations

& 'sdqosnﬁdsk { Spectmm thtlai }iLPU 1 (.SQX Loae Lomposel S!udso !'.54!9 DSK Tools

é exampiabpl.pit
(33 DSP/BIOS Config
. examplabpl.emd
£ Generaled Files

{3 Include

-0 Livties

El~-

% examplefp] .as

Figure 6.10 Project window after adding source and command files

£3 Proects
£ $ exampleGpl.pit
{5 DSP/BIOS Canfi

Figure 6.11(a) Selecting project build ciptiorts

170 Chapter 6 Development Tqéls for Digital Signal-Processing Implementations

53 GEL e
B} Puojects
g examplebplpit [
£33 DSP/BIDS Config

+

Figure 6.11(b) Selecting project build obticms

6.10 Summary 171

(T2 2T 2)

B Projects

Gy mplebpl, !
lg;aDSPBK}Spé:dg f* This program computes the signed sum of 16 deta memery

ier‘icm ¢ locations startlng at Number. The result is to be placed in A.

L T P L T T T Tt R Oy e T T Y e

mregs
.global _¢_int00

"data
fumber !

.int S, 14, -7, 22, -25, 4. 2. 8, b, 33, 4, 11, 42, -16

-1z, 8.

Bt e e -
-------------------------- examploépl.pit - Debug ----—-crmom-memee o - .
b 4 \TI\C54DB\CGTOOLS\BIN\clSDG“,-g -g =fri*l; /tl/mypmgscts/examplerl/Deaug" —d" DEBUG" -@%../. ./ /ti/myproje
<oxamplebpl.asm> .

*CINTINC5400NCGTOOLSNBINNC1500" -@"Debug.1kE"
<Linking?>

fBuild Complete, -
0 Errors. 0 Wernings, 0 Remarks.. :

5

Figure 6.12 Building the project -

172 Chapter 6 Development Tools for Digital Signal-Processing Implementations

cctoum Digital CPU_T- L84 - Code T

2odgoBA16dsk.{ G,

S EE AR

-0 GEL fies
B3 Proiects

e L R R I Y e s s Sy]
. .

s
= i =)
Ségaggg;:g:c’;m’ - fdd= This program computes the signed sum af 16 data memary
B sxarmpl i1cmdg 5 * locetions starting et Nugber. The result is to he placed in A.

Generaled Files

e T e T r e

1. 12, -12. 8, 16

i

<examplebpl.asm>

PCNTINCS400\CCTOOLS\BIN N1 500"
<Linking>

iBuild Complete,
0 Exrurs, 0 Warnings. 0 Remarks.

Figure 6.13 Dowriloading the project to the DSK

6.10 Summary 173

-} £3dyo5416dsk [Spectrum Digital YCPU_t - C54X - Code ’Gma
® Fe ER Viow Poieot ‘Qebug Pofle REL Qpton Tock v
RBE] L RB[00 o T TR Rk
[svarsereami ok <o EELEEEELEY

Pleo AEHEHBEA
™ T M
. G- GEL Hes
gl Cispe W e iman
i L—'}Q gamplaﬁptpil ‘ -3 e
e 03 DEP/BIOS Conlig |
. {8 examplespt.cvd : -data :
umber:
& B .int 5. 14, -7, 22, ~25, 4, 2, 0, &, 33, 4, 11, 12, ~12, 8, 16
ﬁ i LY Liraies -
;aj BL:-S“W” text
& o _int00:
B stm #10h. AR2 ; Init counter ARZ =~ 16
& stm #Mumber, ARL 3 Init pointer ARL te First nunber
ld #Ch, & ; Initialize sum A = 0
& bsbx SXM ; Belect sign extension mode
START :
add *ARI+, A ; Add the next data valua
banz START, »AR2- > Repeat if not done
nop ; Ho operatien, just for debugging
TR I] -#nd
"y A -
Iz .

——————————————————————————— axanplatp A = 00001000 TR = 0000
"CoNTINCS400N\CGTOOLE\BIN1500" -~y -q PC o« O SI0 = 1800
<examplefpl.asm> A.= 0000000000 ST1 = 2900 ARL
. P4 B - 0000000000 PMST = 7FAC ARZ
"CeNTINCS400\COTOOLS\BIN\e1 500" ~®*Deb { T - 0000 DP = D000 AR3
<Linking> - '|{BRAF = O ASM - 00 AR4
BRC - 0000 . JINIM = 1 ARS
Build Complete, 1 RSA = 00CO IMR = 0000 ARG
G Errors. 0 Wernings. 0 Remarks: REA = 0000 IFR = 0000 AR7
. IPTR = 7F80 BK

Figure 6.14 Debugging the project using a breakpoint

+

174 Chapter 6 Development Tools tor Digital Signal-Processing Implementations

. mmress .
.global _c_int00

.data
umber: - -
.int, 5, 14, -7, 22, -25, 4. 2. 0, b, 33, 4. i, 12, -12, 8, 16-

Ltext

#10h. AR2 ; Init counter ARZ = 16

#Nunmber, AR1 Init pointer AR1 to first numbar
#0h, A B Inltlul:ze sum A = 0

SXM ; Select sign extension mode

*AR1+, A ‘ : Add-the next data value
STARY, ®ARZ- ; Repeat if not done
: No operation, just for debugging

aps01009 TRN = 0000 BRAF
0 8T0 = 1000
0000000050 ST1 = 2900
0000000000 PMST = 7FAC

0000 ‘DP =

« 0000

0000 ARL
0000 aR2
AR3
AR4

Figure 6.15 Result of executing the project using a breakpoint

TMS320VC5416 DSP Starter Kit (DSK)- Technical Reference, Spectrum Digital

.Code Composer Studio Gettmg Started Guzde, Texas Instruments Literature

TMS320C54xx Assembly Language Tools User’s Guide, Texas Instruments’ Lit-

References

1.
Inc., 50 6005-0001 Rev.A, 2002. (http://www.spectrumdigital.com).

2.
Number SPRU509.

3.
erature Number SPRU102.

4,

TMS320C54xx Optimizing C/C*+ Cowapiler User’s Guide, Texas Instruments

Literature Number SPRU103.

http:http://www.spectrumdigital.com

Laboratory Assignments 175

Laboratory Assignments

L6 1 Build a project to verify Example 5.11 using the following data:

h(0) = 5, k(1) = 31, h(2) = 13,x(n) = 1, x(n — =5 x(n ~2)=
L6.2 Build a project to verify Example 5.12 using the followmg data:

h(0) = 5,h(1) = 3L, h(2) = 13,%(n) = L, x(n — 1) = 5,x(n — 2) = —
L6.3 Build a project to verify Example 5.13 using the following data:

h(0) = 5,h(1) = 31, h(2) = 13, x(n) = 1, x(n — 1) = 5,x(n — 2) = —

L6.4 Write a program that computes the square of ‘the distance between the two
points with the coordinates (x;, y1) and {x;, y;) Build a project and verify the
program using a set of points.

L6.5 Use the program in L6.4 to write another program that computes the distance
between the points. Build a project and verify the program operation using
a set of points. You may use the following algorithm to compute the square
root: .

Square root of N= Number of sequentlal odd 1ntegers starting at 1 that add
to (or whose total approaches) N. For instance, 25 =1+3+5+7+9, orit.
is the sum of five odd integers and 5 is the squareroot of 25.

Chapter /

Implementationé of Basic DSP Algorithms

7.1 Introduction

In this chapter, we deal with implementations of DSP algorithms. Here we
write programs to implement the core algorithms only. However, these pro-
grams can be combined with input/output routines to create applications that
work with a specific hardware. Specifically, in this chapter, the following
C54xx implementations using assembly language [5, 6, 7] are covered:

Q-notation

FIR filters

IIR fiters
Interpolation filters
Decimation filters
PID controller
Adaptive filters

2-D signal processing

7.2 The Q-notation

176

DSP algorithm implementations deal with signals and coefficients. To use a
fixed-point DSP device efficiently, one must consider representing filter co-
efficients and signal samples using fixed-point 2’s complement representation.
Typically, filter coefficients are fractional numbers. To represent such num-

‘bers, the Q-notation has been developed. The Q-notation specifies the number

of fractional bits. For instance, Q7 for a 16-bit number means that the most -

B

Example 7.1

Solui‘ion

7.2 The Q-notation 177

significant 9 bits represent the whole part and the sign of the number and the
least gignificant 7 bits are the fractional part of the number. In other words,
the assumed decimal point lies between bit 6 and bit 7.

A commonly used notation for DSP implementations is Q15. In the Q15
representation, the least significant 15 bits represent the fractional part of a
number. In a processor where 16 bits are used to represent numbers, the Q15

- notation uses the MSB to represent the sign of the number and the rest of

the bits represent the value of the number. In general, the value of a 16-bit
Q15 number N, represented as bysbybyi .. . by by, can be determined from the
equation ‘

N =-bs+ b1a2 4 b2 4 b2 27 EERVAY

Thus, the numbers that can be represented by the Q15 notation, using 16 bits,

range from —1 to 1 — 275, This range is generally adequate to represent filter
coefﬁaents in DSP algorithms.

What values are represented by the 16-bit fixed point number N = 4000h in
the Q15 and the Q7 notations?

4000h = 0100 0000 0000 0000b. In the Q15 notation, it represents 0.100 0000
0000 0000b with the assumed decimal point. Use of Eq. 7.1, to- compute its

" value, ylelds

N-=+0.5

Similarly, the same number in the Q7 notation represents 0100 0000 0.000
0000b, which, usmg Eq. 7.1, computes to

N = +128.0°

Multiplication of numbers represented using the Q-notation is important
for DSP implementations. Figure 7.1(a) shows typical cases encountered in
such implementations. For instance, if two 16-bit Q15 numbers are multiplied

- as integers, the 32-bit result is a number in Q30 representation. In other

words, the two MSBs are the sign bits. If this result is to be used as it is, it is
important to know where the position of the decimal point is. If the 32-bit
result is left shifted one bit position and the 16 MSBs are extracted, we have

‘the final result in Q15 representation. This procedure of dealing with the

Q15 numbers can be employed in DSP implementations. Figure 7.1(b) is a
TMS320C54xx program that illustrates how to multiply two Q15 numbers and
produce a Q15 result. This program also illustrates how to minimize the error
due to truncation of the 16 LSBs to obtain a Q15 result. This can be done by
rounding off the result before truncation.

178 Chapter 7 Implementations of Basic DSP Algorithms

N,
" , Signed
N © Binay ———» N,
2 Multiplier
N, N, : N,
(16 bit) (16 bit) (32 bit)
2 0 oy
Qo Qs " Qs
Qs O

Figure 7.1(a) Multiplication of numbers represented using Q-notation ' »

7.3 FIR Filters

A finite impulse response (FIR) filter of order N can be described by the dif-
ference equation

m=N-1

sy =" hm)x(n—m). «)

m=0
or in expanded foz;m we have -
y(n) = h(O)x(n) + h(D)x(n = 1) + - + h(N - Dx(n— (N —1)) - (73) |

For FIR filter implementation, we use Eq. 7.3 to illustrate how the DSP code
can be written. Figure 7.2 shows a block diagram-for the implementation. To
compute y(n), we start with the computation and accumulation of the last
product, followed by the one before the last, and so on. The implementation
requires signal delay for each sample to compute the next output. The next
output, y(n + 1), is given as :

y(n+ 1) = h(0)x(n + 1) + h(1)x(n) + - - - + h(N _ Dx(n— (N —-2)) (7.4) |
Figure 7.3 shows the memory organization for the implementation of the

filter. The filter coefficients and the signals samples are stored in two circular
- buffers each of a size equal to the filter. AR2 is used to point to the samples .

http:described.by

; Program Name:

5 Definitions

N1:
N2:
NixN2:

RESET:

_c_intOO:

HE e i D

Description:‘

“ 7.3 FIR Pilters 179

L e N L T LTy T a—p—

ex7plQxx.asm

This is an example to shew'how io multiply numbehs

represented using Q-notation. It implements the ’
following: '

NIXNZ = N1 * N2

where E

N1, and N2 -are 16-bit numbers in Q15 notation
NIxN2 is the 16-bit result in Q15 notation

Avtar Singh, SJSU

" " "]] 7"]] 1 o 40 o 0 1l A T o e

.mmregs

-

‘memory-mapped registers

.data
.word 4000h
word - 2000h

sequential locations
N1 = 0.5 (Q15 number)
N2 = 0.25 (Q15 number)

v we we

.space 10h ; space for N1 x N2
.text :
.ref _c_int00
.sect ".vectors"
b _c_int00 ; Reset vector
" nop
nop
stm #N1, AR2 ; AR2 points to NI
1d *AR2+, T . ; T reg = N1
mpy *AR2+, A s A= Nl * N2 in Q30 notation

add #1, 14, A
sth A, 1, *AR2
nop :

nop

round the result »
save N1 * N2 as Q15 number

s

ws

{end

Figure 7.1(b) TMS320C54xx program to multiply two Q15 numbers-

180 Chapter 7 Implementations of Basic DSP Algorithms

x(n)

x(n-(V-1)

A

Delay ~-c-----------=5pl Delay

h(1)

Figure 7.2 A FIR filter implementation block diagram

';;(n+1)
CARZ] x(i-N-1) AR3 h(N—1)
i x(n—(N-2) i rN-2)
:\ : x(n) ' . | h(0)
MAC
yn)

Figure 7.3 Organizaﬁdn of sign‘al samples and filter coefficients in circular buffers for a FIR
filter implementation

74 1IR Filters 1871

and AR3 to the coefficients. In order to start with the last product, the pointer
register AR2 must be initialized to access the signal sample x(n — (N — 1)),
and the pointer register AR3 to access the filter coefficient H{N — 1). As each
product is computed and added to the previous result, the pointers advance
circularly. At the end of the computation, the signal sample pointer is at the
oldest sample, which is replaced with the newest- -sample to proceed with the
next output computation.

Figure 7.4 shows the TM8320C54xx program to implement the FIR filter. In-
this implementation, it is assumed that the most recent incoming signal sam-
ple is available from a buffer addressed by the pointer AR5. The computed
outputs are placed in another buffer using the pointer AR6. In a real-time DSP
system, the incoming samples can be from an A/D converter and the outgoing

-samples can be applied to a D/A converter. Such mterfaces are covered in
Chapters 9 and 10.

7.4 1R Filters

An infinite impulse response (IIR) filter is represented by a.transfer func-
tion, which is a ratio of two polynomialg in z. To implement such a filter, the
difference equation representing the transfer function can be derived and
implemented using multiply and add operations. To show such an imple-
mentation, we consider a second-order transfer function given by

Y(@) by + bzt + bz

H(z) = X(z) 1—ayz! — apz2

(7.5)

A higher-order IIR filter can-be constructed by cascading second-order sec-
tions [1, 2}, To develop the difference equation for the IIR filter in Eq. 7.5, we
rewrite it as

Y(z) _ Y(z) .W(z)
X(z) W(2) X(2)

(7.6)

where W(z), an intermediate variable, has been introduced to facilitate im-
plementation. Next, we assign the numerator of the transfer function as

" Y(z)

. m = bo + blznl + sz“Z o (7.7)

which can be represented by a difference equation as

yi(n) = bow(n) +bywin— 1)+ bﬁ(n —-2) . (7.8)

182 Chapter. 7 Implementations of Basic DSP Algorithms -

InSamples
QutSamples
SampleCnt

. FirCoeff

Nm1

_c

Program: ex?pZFiR.asm

Description: This is an'example to show how to implement an FIR filter.
It implements the following equation

¥ (0)=h(R-1)x(n- (N-1)) +h(N-2)x(n-(N-2))+ ...h(D)x(n-1)#h(0)x(n)

where N = Number of filter coefficients = 16.
- h(N-1), h(N-2),...h(0} etc are filter coeffs (q15 numbers)

The coefficients are available in file: coeff fir.dat.

% "] 0 01 D 0 O T T O Y O R T W O e O

x(n-(N-1)),x(n-(N-2)),...x(n) are signal samples(integers). -
. The input x(n) is received from the data file: data_in.dat.
. -+ The computed output y(n) is placed in a data buffer.

Author: Avtar Singh, SJSU

Definitions

.sect "samples"

.bss ¥,200,1
.set 200

.bss CoefBuf, 16, 1
.bss SampleBuf, 16, 1

.sect "FirCoeff"

.set 15

.text

_int00: .
STM #0utSamples, ARG
RPT #SampleCnt
ST #0, *AR6+ -

/

STM #InSamples,. AR5
STM #0utSamples, ARG
STM #SampleCnt, AR4
CALL fir_init
SSBX SXM

cinclude “data:_in.dat"

.include “coff_fir.dat":

e

ws

Allocate space for x(n)s
Allocate space for y(n)s

Number of samples to filter

Memory for coeff circular buffer

‘Memory for sample circular buffer

Filter coeff (seq locations)

N-1
Clear output sample buffer H

AR5 points to InSamples buffer
AR6 points to OutSample buffer
AR4 = Number of samples to filter

-Init for filter calculations

Select sign extension mode

1 o’ W7 T] - W o o o A o I O D o o

Figure 7.4

TMS320C54xx imptementation of a FIR filter

{continued}

7.4 TIR Filters

loop: .
LD *AR5+,A : ; A = next input sample (integer)
CALL fir_filter ; Call Filter Routine ;
STH A,1,*ARG+ ; ; Store filtered.sample {integer)
BANZ loop,*AR4- 3 Repeat till all samples filtered
nop : '
nop -
nop

My T T D e e LT L e — - 2 1 1 210 0t " -

s FIR Filter Initialization Routine ,

+ This routine sets ARZ as the pointer for the sample circular buffer, and
; AR3 as the pointer for coefficient circular buffer.

3 BK = Number of filter taps - 1.

"3 ARO = 1 = circular buffer pointer increment

.

’------..-‘------uu--—--—-ow—-—----..--a--—--.‘-—-—--—-—----‘nm—--_-v-——-—-_—-,—.&_——-_--ﬁn—

fir_init:

ST #CoefBuf,AR3 ; AR3 is the CB Coeff Pointer
ST #SampleBuf,AR2 (s ARZ is the CB sample pointer
STM #Nm1,BK ! * 3 BK = number of filter taps
RPT #Nml
MVPD #FirCoeff, *AR3+% ; Place coeff. in circular buffer
RPT #Nml - 1 ; Clear circular sample buffer
ST #0h,*AR2+% '
STM #1,AR0 ; ARO = 1 = CB pointer increment
RET
nop

. nop
nop

.

; FIR Filter Routine S

; Enter with A = the current sample x{n) - an integer,

H ' AR2 pointing to the location for the current sample x(n},
P and AR3 pointing to the ql5 coefficient h(N-1).

; Exit with A = y(n) as q15 number.-

B " 2 . " 1 1 B - S 1], T 02 0T 70 1 e 1 o T < 0 1 1 o 1 1 T o o

fir filter:

STL A, *AR2+0% ; Place x(n)in the sample buffer
RPTZ A, #Nml s A=20
 MAC *AR3+0%,*AR2+0%,A ; A = filtered sum (gl5)
RET - - -
nop
nop
nop
.end

183

Figure 7.4 Cohtinued

184 Chapter 7 Implementations of Basic DSP Algorithms

by

Figure 7.5 A second-order IR filter

Similarly, assigning the denominator as

W(z) 1 o .
= 7.
X(z) l—aiz7l—az7? . ; 79
gives the difference equation
win) = x(n) + ayw(n — 1) + gyw(n — 2) (7.10)

Figure 7.5 shows a block diagram of this IIR filter. To compute y(n), we first
compute w(n) from w(n — 1), w(n — 2), and x(n). Next, w(n), w(n — 1), and
w(n — 2) -are used to compute y(n). The program in Figure 7.6 shows the
TMS320C54xx implementation of the second-order IIR filter. The filter co-
efficients are stored in memory in the order by, by, by, 45, and a;. The inter-
mediate signals are stored in the order w(n), w(n — 1), and w(n — 2). Like the

.

s Program Name:

H
; Description:

; Definitions

InSamples
OutSamples
SampleCnt

e ——————

7.4 TIR Filters 185

o S M 7 o S S S L T e v o

ex?pBIIR.asm

This is an examp]e to show how to 1mp1ement an . IIR filter. It
implements the transfer function o :

H(z) = [bO-+ BLz#*(-1) + b2.2%¥(- 2)}/[1 al.z**(1)-32 z**(2)]

,wh1ch is equwa]ent to the equatmns'

win) = x{n) + al.w{n-1) + a2.w{n-2)
y(n} = b0.w(n) «+ bl.w(n-1) + b2.w(n-2)
kwhefe | : |

w(n), w(n-1), and w(n-2) are the intermediate variables used in
computations (integers). ,

al, a2, b0, bl, and b2 are the filter coefficients {gl5 numbers),
x(n) is the input sample (integer). Input samples are placed in .
the buffer, InSamples, from a data file, data_in.dat

y(n} is the computed output (integer). The output samples are
placed in a buffer, OutSamples.

Avtar Singh, SJSU.

.mmregs

-~ .def _¢_int00

.sect "samples"” . S
.include “data_in.dat" ; Allocate space for x(n)s .
.bss y,200,1 . ; Allocate buffer for y{(n)s-
.set 200 .3 Number of samples to filter -

; Intermediate variables (sequential locations)

wn
wnmi
wnme

.word 0 sinitial w(n)
word 0 . , sinitial w(n-1) =

.word 0 cyinitial w(n-2) =

.sect "coeff"

; Filter coefficients (sequential locations)

b0
bl
b2
al
a2

.word 3431 +b0 = 0.104
word -3356 ;b1 = -0.102
~.word 3431 .+ ;b2 =0.104

.word -32767 . .. jal = -1
= 0.612

.word 20072 ;a2

Figufe 7.6 TMS320C54xx implementation of the second-order IR filter : {continued)

186 Chapter 7 Implementations of Basic DSP Algoh‘thms

_c_int00:

- Toop:

dext

STM #0utSamples, ARG
RPT #SampleCnt .

" ST #0, *AR6+

STM #InSamples, ARS

STM #0utSamples, ARG

STM #SampleCnt, AR4

LD *AR5+,15,A
CALL iir_filter

'STH A,1,*AR6+

BANZ loop,*AR4- -
nop :

 Enter with A = x{n) as ql5 number
; Exit with A = y(n} as gl5 numper
; Uses AR2 and AR3

iir_filter:

SSBX SXM

ST™ #a2,AR2
‘STM #wnm2, AR3
MAC *AR2-,*AR3-,A

. MAC *ARZ-,*AR3-,A

.STH A,1,*AR3

LD #0,A
STM #wnm2,AR3

MAC *AR2-,*AR3-,A

DELAY *AR3

N
3

?
’
.
»
L]
’

3

.
»

s

.
*

Clear output sample buffer

AR5 points to InSamples buffer
AR6 points to OutSample buffer
AR4 = Number of samples to filter

A = next input -sample (q15)
Call Filter Routine :
Store filtered sample (integer)

Repeat till all sampies filtered

Se]eét sign extension mode

’ :W(n)=x(n)+a1.w(n-1)+a2.w(n-2)

; ARZ points to a2

; AR3 points to w(n-2)

‘A = x(n)+a2.w(n-2) :
i AR2 points to al & AR3 to w{n-1)

; A = x(n)+al.w(n-1)+a2.w(n-2)

; AR2 points to b2 & AR3 to w(n)

Save - w(n)

Ciy(n)=b0.w(n)+bl.w(n-1)+ b2.w(n=2) -

s A=0
; AR3 points to w{n-2) -

; A = b2.w(n-2)

AR2 points to bl & AR3 to w{n-1)
w(n-1) = w(n-2)

B o (1 " > o o -]] -y > -

; IIR Filter Subroutine

Figure 7.6 . Continued:

http:extensi.on

.75 Inierpolaﬁon Filters 187

-3 A = bl.w(n-1)+b2.w{n-2)

; ARZ2 points to b0 & AR3 to w(n)
DELAY *AR3 -5 win) - w{n-1)

MAC *AR2,*AR3,A % A = b0.w(n)+bl.w(n-1)+b2.w(n-2)

MAC *AR2-,*AR3-,A

RET 4 Return
nop ' :

nop
hop -

.end

Figure 7.6 Continued

FIR filter implementation, the incoming sample x(n) is obtained from the

buffer InSamples. This buffer is set up using samples in the data file data_in.

The filtered signal sample is placed in another buffer called OutSamples. The

program uses linearly addressed buffers and the delay instruction in imple-
_ mentation. ‘ ;

7.5 Interpolation Filters

An intérpolaticn filter is used to increase the sampling rate, The interpolation
process involves inserting samples between the incoming samples to create -
additional samples to increase the sampling rate for the output.

One way to implement an interpolation filter is to first insert zeros between
samples of the original sample sequence. The zero-inserted sequence is then
passed through an appropriate lowpass digital FIR filter to generate the inter-
polated sequence [4]. The interpolation process is depicted in Figure 7.7.

x(n) Insert xz{m) Low pass o y(m)
— -1 ™ Filter - ™
Zeros] .
Sampling . '
Frequency f; . Lf,] Lfs

Figure 7.7 Digital interpolation with interpolaﬁon factor =L

g

188 Chapter 7 Implementations of Basic DSP Algorithms

>

Example 7. 2 Consider the sample sequence x(n} given by -

x(n)—-[02468 10]

Let us insert a zero between' each two samples to generate‘ the zero-inserted
sequence xz{n) as

%#2(n)=[0020406080 10 0]
Now, if thw sequence is convolved with the sequence h(n), given as
h(n) =[0.5 1 0.5]
the result is a Hne#rly interpolated sequence y(n), givén by

Yn)=[00123456789105 0]

_ The kind of interpolation carried out in the example is called linear inter-

- polation because the convolving sequence h(n) is derived based on linear

interpolation of samples: Further, in this case, the h(n) selected is just a
second-order filter and therefore uses just two .adjacent samples to interpolate
a sample. A higher-order filter can be used to base interpolation on more

. input samples, To implement an ideal interpolation, it is shown in the lit-

erature that a filter based on samples of an appropnate sinc functlon can
be used.
If we assume that the unit sample response of such a ﬁlter is avaxlable, we

‘need to consider only the implementation technique. Figure 7.8 shows how an
‘interpolating filter using a 15-tap FIR filter and an interpolation factor of 5

can be implemented. In this example, each incoming sample is followed by
four zeros to increase the number of samples by a factor of 5. The interpolated
samples are computed using a program sumlar to the one used for a FIR filter

- implementation.

One drawback of using the implementation strategy depicted in Flgure 7.8.
is that there are many miiltiplies in which one of the multiplying elements is
zero. Such multiplies need not be included in computation if the computation
is rearranged to take advantage of this fact. One such scheme, based on gen-
erating what are called polyphase subfilters, is available for reducing the com-
putation. For a case where the number of filter coefficients N is a multiple of
the interpolating factor L the scheme mplements the interpolation filter using

‘the equation

NIL-li
yim+i) =3 h(kL+)x(n— k) (.11)

k=0

where i = 0,1,2, (L — 1) and m = nL.

x(n+1)
0
0
0
(I
A x(n) - =xz(m) A h(0)
0 =xz(m-1) ’ k(1)
0 =xz(m-2) 4 “h(2)
0 = xz (m~3) o . h(3)
0 = xz(m~4) ; h{4)
x(n-1D=xz2(m~-5) - : < h(8)
0 =xz(m-6) | . J h(6)
-0 = xz (m=T7) (D
0 = xz2(m-8) : : h(8)
0 = xz(m-9) . h(9)
x(n-2) = xz(m-10) h(10)
0 = xz(m-11) h(11)
g = Xz Em—gg , ' h(12)
' [= xz (m- h(13
[ARI|>| 0 =xz(m-14) [ARZ |-» h(14§ :

MAC

l

yim)

'Figure 7.8 Digital ihferpoiation using a FIR ﬁl_ter with in{erpolatiOn factor = 5

Figure 7.9 shows a scheme that uses polyphase subfilters to implement the
. interpolating filter using the 15-tap FIR filter and an interpolation factor of 5.
In this implementation, the 15 filter taps are arranged as shown and divided
into five 3-tap subfilters. The input samples x(n), x(n - 1), and x(n — 2) are
used five times to generate the five output samples. This implementation re-
quires 15 multiplies as opposed to 75 in the direct implementation of Figure
7.8. The TMS$320C54xx implementation for the interpolating scheme of Figure
7.9 is shown in Figure 7.10.

190 Chapter 7 Implementations of Basic DSP Algorithms

h(4)
T h(9) 1 yim+4)
h(14)

. h(8) y(m+3)

x(n+1) V . » h(3)
T | R3

Delay

HHE bl

o ym+2)
ARI1 xm-2)| §

h(6) y(m+1)

BGS)
fre S

Figure 7.9 Digital interpolation nmplementatlon usmg five polyphase subfilters; interpolation
factor =5, ie, m= Sn

7.6 Decimation Filters

A decimation filter is used to decrease the sampling rate. The decrease in

‘sampling rate can be achieved by simply dropping samples. For instance, if
every other sample of a sampled sequence is dropped, the sampling rate of the

resulting sequence will be half that of the original sequence. The problem with

dropping samples is that the new sequence may violate the sampling theorem,

which requires that the samphng frequency must be greater than two times
the highest frequency contents of the signal.

To circumvent the problem of violating the sampling theorem, the signal to
be decimated is first filtered using a lowpass filter. The cutoff frequency of the
filter is chosen so that it is less than half the final samipling frequency. The
filtered signal can be decimated by dropping samples. In fact, the samples that .
are to be dropped need not be computed at all. Thus, the implementation of a
decimator is just a FIR filter implementation in which some of the outputs are

»notkcalculated. This pro}cess can be described by the ‘following -equation - [4]:

N-1
(m)- y(nL) =Y h(kx(nL — k), n=0,12, (.12)

k=0

where L is the decimation factqr and N is the filter size.

7.6 DecimatibnnFilters 191

e 0 O O AR O o o .

; Author:

; Definitions
~InSamples

InSampCnt

OutSamples
SampleCnt

3 Description:

; Program Name: ex7p4INT.asm.

is 5. It implements the equations

y(m) = h(10}x(n-2) + h{5)x(n-1) + h(0)x(n)
y(m+1) = h(11)x(n-2) + h(6)x(n-1) + h(1)x(n)
y(m2) = h(12)x(n-2) + h(7)x(n-1) + h(2)x(n)
y(m+3) = h(13)x{n-2} + h(8)x(n-1) + h(3)x(n)
y(m+4) = h{14)x(n<2} + h(9)x(n-1) + h(4)x{n)
where, -
m = 5n.

h(0}, h(1),...etc. are the filter coefficients (qiS numbers)

This is an example to show how to implement an interpolating FIR
filter. The filter length is 15 and the interpolating factor

stored in data memory in the .order: h(4), h(9), h(14), h(3), h(8),

h(13), h(2) h(7), h(12), h(1), h(6), h(11), h(0}, R(5), h(10).
x(n), x(n-1), and x(n~2) are signal samples (integers) used in

computing the next five output samples.

The input samples are obtained from a file and placed in memory

starting at address InSamples.

The computed output samples are p]aced starting at data memory

Tocation OutSamples.

Avtar Singh, SJsU .

Jmmregs
.def ¢ _int00

.sect "samples”

.include "data“in,dat":,;

.set 50 ‘
.bss sample,3,1

.bss y,250,1
.set 250

*
¥

*

s

Incoming data (from a file}
Input sample count

H Input samples: x{n},x{(n- 1) x(n-z)

: A1]ocate space for y(n)s

Number. of samples

£ e A B S]’ " - - o R S N 0 e e e -]

Figure 7.10

TMS320C54xx program for an interp,olafion filter implementation

(cbnﬁnued)

192 Chapter 7 Implementations of Basic DSP Algorithms

Coeff T .sect "Coeff"
' ' .word 2560, 3072, 512 ; Filter coeffs h(4), h(9), h(14)
“.word 2048, 3584, 1024 ; Filter coeffs h(3), h(8), h(13)
.word 1536, 4096, 1536 ; Filter coeffs h(2), h(7), h(12)
.word 1024, 3584, 2048 ; Filter coeffs h{(1}, h(6), h{1l1)
.word 512, 3072, 2560 ; Filter coeffs h(0), h(5), h(10)

CoeffEnd
Nm1 set 2 ; # of coeff/interp factor-1
IFml .set 4 ; Interpolating factor-1

.text
_c_int00:)

sshx SXM s Select sign extension mode:

rsbx FRCT , _

stm #InSamples,ar6 - ; aré points to the input samples

- stm #InSampCnt-1,ar?7 '3 ar7 = input sample count - 1

“stm #Outsamp1es,ar5 ; ar5 -points to the output samples

rpt #Samb1e£nt-1 ; Reset output samples memory

st #0,*ar5+ : o

stm #0utSamples,ars ; ar5 points to the output samples -

stm #sample,ar3 ; ar3 points to current input samples

rpt #Nml C ; Reset the input samples

st #0, *ar3+
INTloopl: v 3 »

stm #CoeffEnd-1,ar2 ; ar2 points to the last coeff.

© stm #1Fml,ard ; ard = Interpolation factor -1

INT1oop2:

stm #sample+Nml,ar3 3 ar3 points to last sample in use

stm #Nml,arl ; arl = samples for use

: 1d #0,A ~ s A=10

NXTcoeff:) , .

mac *ar2-,*ar3-,A ; Compute intérpolated sample

banz NXTcoeff,*arl-
banz INTloop2,*ard- ;
sth A,1,*ar5+ ; Store the interpolated sample

stm #sample+Nm1—l, ar3 ; Delay the sample array -
rpt #Nmi-1 :
delay *ar3-

Figure 7.10 Continued

7.7 PID Controller 193

1d *ar6+,A ; Get the next sample
stm #sample,ar2)
st1 A,*ar2 ; Place it in the sample buffer

banz INTloopl,*ar7- ; Repeat for all input samples
nop
nop

nop

.end

'Figure 7.10 Continued

x(n) Lowpass |) y(m)
Filter o
Sampling .
Frequency s . fs S/l

Figure 7.11 Digital decimation with decimation factor = L

Figure 7.11 shows a block diagram of a decimation filter. Digital decimation
can be implemented as depicted in Figure 7.12 for an example of a decimation.
filter with decimation factor of 3. It uses a lowpass FIR filter with 5 taps. The
computation is similar to that of a FIR filter. However, after computing each
output‘ sample, the signal array is delayed by three sample intervals by bring-
ing in the next three samples into the circular buffer to replace the three oldest
samples. The TMS320C54xx unplernentatmn of the decimation filter is shown
in Figure 7. 13 ‘

7.7 PID Controller

A basic feedback control system is shown in Figure 7.14. The signal x(n) is the
desired plant output and y(n) is the actual response. The error, e(n), is the,
difference between x(n) and y(n). The PID controller uses the error to gener-
ate input to the plant. In a continuous-time system the PID control output is

194 Chapter 7 Implement‘ations‘ of Basic DSP Algorithms

N

x(Bn+3)
x(3n+2)
x(B3n+1)
ARz J+ xGn—4) [aR3 1+ 2@
A x(3n-3) 2)
| | xen-2) E h(2)
H | x6e-1) L e
1 [
" x(3n) " h(0)

'MAC

l

yim)

Flgure 7.12 Digital decimation filter implementation or a deci matton factor =3 and a lowpass
felter of length 5 »

generated fi'om the equation
' M de
u(t) = Kpe(t) + K; f e(t) dt + KdEtj - (7.13)

where K, K;, and K, are constants that depend upon how the plant is to be
controlled. The control is based on the error, error integral, and error deriva-
tive, giving it the name PID.

The continuous-time equation can be digitized using approximations for
the derivative and the integral. The digital equivalent of Eq, 7.13 can be shown
to be

u(n) = u(n -1 + Koe(n) + K é(n ~ 1) + Kze(n —2) | (’1 14) '

where Ko, Kj, and Kz are new constants that are reEated to the constants Ky,
"Ki, K4, and the sampling mterval

LR T TP PP i pa—
3

3 Program Name:

; Description:

; Definitions

InSamples
QutSamples
Samplelnt

FirCoeff .
Nml-

7.7 PID Controller 195

1 2 D S O S O D S 0 T S o W o o S e o

ex/p5DEC.asm

This is an examp]e to show how to implement a dec1mat1on filter.
It 1mp1ements the f0110w1ng equation

Ym = h(4)x(3n-4) + h(3)x(3n-3) + h(2)x(3n-2) + h(1)x(3n- b +
h{0)}x{(3n)

followed by the equat{dn

y{m+1) = h{4)x(3n-1) + h(3)x(3n) + h{Z)x(3n+1) + h(l)x(3n+2) +

h(0)x(3n+3):
and so on for a decimatiqn factor of 3 and a filter length of 5.

Where

h(0), h(1}, h(2) h(3), and h(4) are the f11ter coeff1c1ents
x(3n), x(3n-1), x(3n-2), x(3n 3}, and x(3n-4) are signal samples.
x(3n+1), x(3n+2), x(3n+3) are incoming signal samples.

y{m), y(m+1) ... etc. are the output signal samples.

Signal samples are integers and the filter coefficients are

q15 numbers. .

Avtar Singh, SJSU

O W 7 0 T i T O 0 S 1 O W M e

.mmregs
.def c_int00

.sect "samples”

.include "data_in.dat® ; Allocate space for X(n}s

.bss y,80,1 » ; Allocate spacé for y(n)s

.set 240_ 3 Number of~sampleslTo decimate

.sect "FirCoeff" ; Filter coeff (sequential locations)
.include "coeff dec.dat" : ; '

.sel 4 ; Number of filter taps - 1

.bss CoefBuf, 5, 1 . ; Memory for coeff circular buffer

.bss SampleBuf, 5, 1 3 Memory for sample. circular buffer

Figure 7.13 The TMS320C54xx irﬁplementation of the decimation filter : (continued)

196 Chapter 7 Implementations of Basic DSP Algorithms

.text

_c_int00: - _ , :
STM #QutSamples, ARG ; Clear output sample buffer
RPT #SampleCnt o ‘ -
ST #0, *AR6+

STM #InSamples, ARS ; AR5 points to InSamples buffer
STM #QutSamples, ARG s ARG points to OutSample buffer
STM #SampleCnt, AR4 ; AR4 = Number of samples to filter
CALL dec_init ' ; Init for filter calculations
Toop: ' :

' CALL dec_filter ; Call Filter Routine
STH A, 1,*AR6+ ; Store filtered sampie (integer)

. BANZ Toop,*AR4- ; Repeat til11 all samples filtered
nop , , =
nop
nop

__

; Decimation F11ter Initialization Routine

3 This routine sets ARZ as the pointer for the sampie circular buffer, and.
; AR3 as the pointer for coefficient c1rcu]ar buffer.
s BK = Number of filter taps.

"ARO = circular buffer pointer increment.
dec_init: . » ‘
' ST #CoefBuf,AR3 ; AR3 is the CB Coeff Pointer

ST #SampleBuf,AR2 3 AR2 is the CB sample pointer
STM #Nml1,BK ; BK = number of filter taps
RPT #Nml ' :
MVPD #FirCoeff, *AR3+% ; Place coeff in circular buffer
RPT. #Nml ; Clear circular sample buffer
ST #0h,*AR2+% s ‘
STM #1,AR0; ; ARO = 1 = CB pointer increment
RET . ' s Return - :
nop
nop
nop

; FIR Filter Routine ;

; Enter with A = x(n), ARZ pointing to the
- circular sample buffer, and AR3 to the

; circular coeff buffer. ARO = 1.

;.Exit with A = (n) as q15 number

Figure 7.13 Continued -

dec_filter:

LD *AR5+,A

STL A, *AR2+0%
LD *ARS+,A

STL A, *AR2+0%
LD *ARS+,A
STL A, .*AR2+0%

RPTZ A, #Nml

MAC *AR3+0%,*AR2+0%,A
RET ‘
nop

nop

nep

.end

*

7.7 PID Controller

Place next 3 input samples

; into the signal buffer

A=0

= filtered signal

Return

197

Figure 7.13 Continued

PID

u(n)

.Controlier

» Plant

o)

Figure 7.14 A PID controller for a plant

The implementation of the PID. controller requires programming the dif-

fe;ence equation 7.14. Figure 7.15 shows the block diagram that can be used to
write the code to realize the controller. The program for the TMS320C54xx is
shown in Figure 7.16. Note that to actually use the program, we need to gen-
- erate the error signal outside the signal processor. Alternatively, we need to
have desired input and actual output samples that can be subtracted to gen- -
. erate .the error signal.. For the real-time implementation, these signals are
received from A/D converters and the computed control is applied to a D/A

converter.

e(n) - uln)
: Delay
Delay
K,
e(n—1) ¢ : —«}—)
A
4
~ Delay |- K,
e(n-2)

Figure 7.15 PiD controller implementation ‘

7.8 Adaptive Filters

An adaptive filter is a filter whose coefficients can be updated on-line to
counter varying signal distortions. Figure 7.17 is a block diagram of an adap-

tive filter. The filter in the diagram is typically a FIR filter whose coefficients
can be adjusted to minimize some measure of the error signal. The error sig-
nal e(n) is generated by subtracting the actual filter output y(n) from the de-
_sired output d(n). The desired output is application dependent. A technique
used extensively to design an adaptive filter is based on minimizing the mean
square error {MSE) {3]. The following equations can be derived using the MSE
technique: ' ' \ :

N-1 ’
y(n) =" blmx(n — k) ‘ (7.15)

e(n) =d(n) — y(n) . (7.16)

7.8 Adaptive Filters 199

.

O G S o e A 0 s O S o .

Program Name: ex7p6PID.asm

e

; Description: This is an example to show how to implement a PID controller.

; ~It implements the following equation

H

; u(n) = u{n-1) + K0.e(n) + Ki.e{n-1) + K2.e(n-2)

; "~ where

H . KO, K1, and K2 are controller coefficients (ql5 numbers).

: : e(n), e(n-1), and e(n-2) are error signal samples (integers).

o : -

; - The error samples are the stored values and the computed control

3 values.are also stored in a buffer.

;. ‘ The program can be modified for a realtime control system using an

H interrupt invoked at the sampling interval, reading the next incoming

H error sample from an input port, and applying ‘the.computed control

3 ' through an output port. . ’

; Author: " Aviar Singh, SJSU

. :

;_—--------—--------"‘-‘-_“-"--""-""""'_““-—--"”-----"“"_-"-‘-\ ---------------------------
.mmregs " ; memory-mapped registers

.def _c_int00

ErrSamples .bss e, 200; 1 ; Allocate space for e(n)s

ContSamples Jbss u, 200, 1 .3 Allocate space for u(n)s
‘SampleCnt .set 200 ‘ ; Sample count

.data
; Control and error signals (sequential locations)
un: .word 0 : ~; computed control u(n) as- integer
en: . .word 1 , ; error sampies e{n) as integer
enml: .word 2 ; error samples e(n-1) as integer .
éan: .word 1 3 error‘sgmples e{n-2) as integer

; .sect "coeff" S
3 PID Controller coefficients (sequential locations)

KO: ~word 2000h ; 1/49n ql5
K1: ' .word 0400h ;-1/32 in q15
K2: .word 0040h ; 1/512 in ql5 .

Figure 7.16 TMBKKanm%mmEMndaHB@MmMﬁ {continued)

:200 Chapter 7 Implémentations of Basic DSP Algorithms

Jtext
_c_1nt00:

STM #ContSamples,AR6 ; Clear control sample buffer

RPT #SampleCnt .

ST #0, *AR6+

$TM #ErrSamples, AR5 ; AR5 points to InSamples buffer start

.STM #ContSamples,AR6 ; AR6 points to OutSample buffer start

STM #SampleCnt, AR4 ; AR4 = Number of samples to filter
loop:: :

LD *AR5+,B " 3 B = next error sample

CALL PID = ; Call PID Control Routine

STH B,*ARG+ 3 Store computed control

BANZ Toop,*AR4- 3 Repeat till all samples. done

nop ' ' :

nop

nop

; PID Controller Subroutine

: Enter with B = e(n) as integer .
; Exit with B = u(n) as integer

; Uses A, ARZ, and AR3

PID:
SSBX SXM C "3 Select sigh extension mode
STM #enmZ, AR2 ; ARZ points to current e(n-2)
STM #K2, AR3 3 AR3 points to current K2
LD #0, A s A=0 s
MAC *AR2-, *AR3-, A ; A = K2.e(n-2)
DELAY *AR2 ; e{n-1} ~> e(n-2)
MAC *AR2-, *AR3-, A 3 A = Kl.e{n-1) + K2.e(n-2)
DELAY *AR? 5 e(n) —> e{n-1)
STL B, *AR2 ; new e(n) ‘
MAC *ARZ-, *AR3, A s A = Kb.e(n) + Kl.e(n-1} + KZ2.e(n-2)
ADD *AR2, 15, A "3 A= u(n-1) + K0.e{n) + Kl.e(n-1} + K2.e(n-2)
ADD #1, 14, A ; Round the result ’
STH A, 1, *AR2 -3 new u(n)
LB *ARZ, B 3 B = new control
RET 3 Return
nop :
nop
nop
.end

Figure 7.16 Continued

7.9- 2-D Signal Processing 201

/4 d(n)

x(n) Filter with adjustable y(n)
’ coefficients o

—

Figure 7.17 An adaptive filter

by(n + 1) == by(n) + 2pe(n)x(n — k) ‘ ‘
= be(n) + erf(n)x(n — k) RVAY)!

where
.

erf(n) = 2ue(n) : - (718) '

Equation 7.15 is that of a FIR filter. Here, bi(n) is the kth filter coefficient at
instant n. N represents the number of filter coefficients. The y in Eq. 7:17 is
called the coefficient of adaptation. The adaptation speed and accuracy depend
upon M. o

The updating scheme for the coefficients is shown in Figure 7.18. Each co- -
efficient is updated using the erf(n) which can be computed in advance using
Eq. 7.18. The program in Figure 7.19 shows the implementation of a 9-tap -
adaptive filter for the TMS320C54xx.

;77.9' 2-D Signal Processing

Consider the example of the N-tap FIR filter discussed. earlier. If the values
of the samples {x(n), x(n — 1),x(n — 2),...,x(n — N + 1)} are considered as a
- vector X,, and the values of the coefficients {h(0), h(1), h(2),...,h{(N — 1)} are
- considered as another vector H, the value of the output sample given by ‘

_ y(n)v= x(m)h(0) + x(n — 1)h(1) + x(n — 2)h(2) + -+ - +x(n — N + }hA(N — 1)
B o o : (7.19)

can be considered as the dot product of the two vectors X,, and H. In other
words, :

202 Chapter 7 Implementations of Basic DSP Algorithms

Figure 7.18

) x(n+l)
[AR? | by . | AR3 | ~—»| x(n-N+1)
e = T v |
! by_an) ! : x(n—N+3)
i e s .
5 botn))
i I3
erf(n)

byn+1); k=(N=1),(N-L,..,2,1,0

‘Uoda‘ting filter coefficients in the adaptive filter implementation

Y,=X,-H : (7.20)

where - denotes the dot product. Many times in digital signal processing, one
or both the operands X and H may be two-dimensional, i.e., matrices instead
of vectors. A typical application is in image processing. In such a case, X may
represent intensity values of pixels (picture elements) in the horizontal and
vertical directions of a two-dimensional image and H may represent coeffi-
cients in the horizontal and vertical directions of a two-dimensional filter. One
of the most frequently used operations in image processing involves sliding
the two-dimensional window of filter coeﬁ"lcnents (usually much smaller in size
compared to the size of the image) on the image to perform an operation such
as filtering out an unwanted feature or enhancing a desirable feature. All these
operations can be basically reduced to multiplication of two matrices. There-
fore, it becomes essential to know how to write a program to. mulnply two
matrices in order to be able to use the device in- two- dimensional signal-
processing applications.

79 2-D Signal Processing 203

; Program Name: ex7p7ADP.asm

H Descriptioﬁ: This is an example to show how to inplement an adapiiveffi1ter. It

5 ‘ implements a 9-tap adaptive filter using ;t_he foﬂeﬂngfiéquatio‘ns V
; ~y(n) = bo(n)x(n) + b1(n)x(n-1) + b2(n)x(n-2) +
3 ‘ b3(n)x(n-3) + ba(n)x{n-4) + b5({n)x(n-4)+
: } b7(n}x{n-7} + b7{n)x{n-7) + b8(n)x(n-8)
: b0O(n+1) = bO(n) + erf(n).x(n)

; bl(n+1) = bl{n) + erf(n).x(n-1)

; ' © b8(n+1) = b8{n) + erf(n).x(n-8)

s . where' '

H b0(n), bl(n), ... etc. are filter coeff at n, and bO(n+1),

: bl{n+1), ... etc. are same filter coeff at n+l.)

H These coefficients are ql15 numbers and are stored in a c1rcu1ar buffer
: (CoefBuf).

; x(n), x{(n-1}, ... etc. are 1nput samples (integers) stored in.a signal
; circular buffer (SampleBuf).

: y(n) is the filtered dutput (integer).’

; o . dfn) is the desired output- (1nteger)

; ; e(n) = d(n) - y(n) (integer)

H ' erfn = e(n) - my (integer) .

H mu is the adaptat1on coefficient {gl5 number)

s Author: Avtar S1ngh SIsu

3 Definitions
Jmregs
.def c_int00

.sect "samples" : ,
InSamples .include "data_in.dat" ; Input samples to be filtered

OutSampies .bss y,400,1 " ; Output samples ’
Samplelnt .set 400 3 Input sample buffer size
_.bss CoefBuf,9,1 - ; Coeff circular buffer
.bss ‘SampleBuf,9,1 ; Sample circular buffer
FilterSize = .set 9 , ; Filter size

Figure 7.19 The TMS320C54xx implementation of an adaptive filter . ' . {(continued)

204 Chapter 7 Implementations of Basic DSP Algorithms

mu ' .set 328
dn ~.word.-0
en .word O
yn ' .word 0
erfn . .word O

text
_c_int00:

SSBX SXM -

STM #0utSamples, ARG

RPT #SampleCnt-1
ST #0, *AR6+

STM #0utSamples, ARG

STM #InSamples, ARS
STM #SampleCnt-1, AR4
STM #FilterSize-1, BK
STM #SampleBuf, AR3

STM #CoefBuf, ARZ2"

RPT #FilterSize-1-

ST #0h,*AR2+%

RPT #FilterSize~1
ST #0h,*AR3+%

Toop:
BANZ loop, *AR4-
nop
nop

nop

adaptive_filter:

; Reset coeff buffer (CoefBuf)

CALL adaptive filter

s mu = 0.01 (as ql5 number)

; Desired Signal d(n)
3 Error Signal e(n)

; Filtered Signal y(n)
; erfn = e(n).mu

; select sign extension mode
; AR6 points to out sample buffer

; Reset the output sample buffer
; Reset output sample buffer pointer

; AR5 points to ihput sample buffer
; AR4 = the sample count
; BK = filter size

; AR3 points to the sample CB
;3 AR2 points to the coeff CB

s Reset sample buffer (SampleBuf)

; Do adaptive filtering
; Repeat for all samples

; Compute y(n) using current filter coefficients

STM #1, ARD

RPTZ A, #FilterSize-1
MAC *AR3+0%, *AR2+0%, A

STM #yn, ARl
STH A, 1, *AR1
STH A, 1, *AR6+

; ARO = 1 for increment
: y(n) =»b0(n)x(n) oo b8(n)x(n-8)

; Save y(n) as an integer
; Save filtered signal

Figure 7.19 Continued

; Generates d{n) from the computed y(n)

7.9 2D Signal Processing

; d{n) can be generated {or obta1ned) in many d1fferent ways,
; Generation of d{n) depends on the problem at hand.

LD *AR1, B
STM #dn, ARL.
BC high, bgt.
ST #0c000h, *AR1
B end_dn
ST #4000,

Tow:

high:
end_dn:

*AR1

; Compute the error e{n)
STM #dn, AR1
LD *AR1, A
STM #yn, ARl
SUB *AR1, A
" STM #en, ARl
STL A, *AR1

5 Update coefficients
‘ CSTM #mu, T
MPY *AR1, A
STM #erfn, ARL
) STH A, 1, *AR1

STM #FilterSize-1, BRC

LD *AR1, T

RPTB end_update

MPY *AR3+0%, A

ADD *ARZ,15, A
end update:

4 STH A,1, *AR2+0%

; Obtain new input sample

LD *AR5+, B

STL B, *AR3+0%

RET
nop

nop

.end

-

-

e

= y(n)
AR1 points to the d{n)
Branch to high if y{n) > 0

d{n) = c000h if y(n) <0
fd(n) = 4000h if y{n) > 0
e(n) = d(n) - y(n)

erfn = mu.e(n)

BRC = No of Taps - 1

T = erfn

Update coefficients

A = erfn*x{n}

Update coefficient

Save the updated coefficient
Get the new Input sample

Put new sample in sample buffer

Return

205

Figure 7.19 Contiriued

206 Chapter 7 Implementations of Basic DSP Algorithms

Figure 7.20

7.9.1

Qyy Gy » >« Gy, by by ..by, Cn

by by .-

Ciz o o0 Oy

ay azz...an osz

€1 a2 < Oon

. . .
. ° a
- . - .

L <cM1 CMZ . CMN

» 8y

an ap v

by brov by

where J=K, I=M, and L=N

QOrganization of matrices A, B, and C

Matrix Multiplication

Let A(i, j) be an I x] matrix and B(k, I}, a K x L matm@ In order to be able
to multiply the matrix A by the matrix B,] should be equal to K. We call the
product matrix C(m,n), with M rows and N columns. Since we have multi-

- plied an I x J matrix by a K x L matrix (J being equal to K), the resulting

matrix will have I rows and L columns, ie, M =1, and N = L. Figure 7.20
shows the organization of the matrices A, B, and C.

Each element of the matrix C is the dot product. of a vector representing
a row of the matrix A with a vector representmg a column of matrix B. For
example, :

¢ = anby + apby + 41_3531 e

-+ aubm
12 = anbiy + apbn + asbn + -+ aybga
an = anby + apby + aizby + o aybg -
oy = anby + axba + aybsy + - + agyb
2 = aybyy + anby + apbsy + - + aybyy
6N = @ubu + anba + apby 4ot aybx
a1 = anby + apban + abs + - - + aybgy
o = anbyy + apby + apby + - + aybka
cun = anbn + apby + apby + -+ + agby

- In other words, in order to obtain the element c;;, row 1 of A is multiplied

with column 1 of B; to get cj5, row 1 of A is multiplied by column 2 of B, etc.,
until all the elements of row 1 of C are computed. Then the operation is

repeated with.row 2 of A to get the elements of row.2 of C and so on until all
the elements of C are computed.

- Figure 7,21

7.9°2-D 'Sig'nal Processing 207

a;rlv } B ay -]ar2] - by l ar3] — n
a2 by ' ‘12
a3 by, 13
| Cu by €21
an by, Car
an by €3
ay by Cy
an by ¥ C3p
ay by €3
Q3 by
v 933 v by
a3 by

Memory orgamzataon for matrix multspllcatlon of a 3 x 4 matrix witha 4 x 3
matrix

In order to implement -the matrix multiplication algorithm on the

TMS$320C54xx, the data correspondmg to matrices A and B and the resulting -
matrix C should be organized in the DSP memory as shown in Figure 7.21.
The elements of matrix A are ordered row by row, those of matrix B are -

ordered. column by column, and the elements of the product matrix C are.
stored row by row. Note that Figure 7.21 is an example in which A is a 3 x 4
matrix, B is 2 4 x 3 matrix, and therefore, C is 2 3 x 3 matrix.

Three pointers are required to keep track of the eleménts in the matrices A,
B, and C. Let these pointers be arl, ar2, and ar3, respectively. All the pointers
are initialized to the starting addresses of the respective matrices. To compute
¢11» arl has to advance from a;; to a;4 and ar2 from by, to by. To compute ¢z,
arl has to be reset to 4;; and has to go again from aj; to ay4. On the other

‘hand, ar2 continues from by, 10 by. This is repeated for all the elements of the

first row of C, ie., arl goes from a;; to ay4 three times while ar2 goes all the
way from by; to-bs;. After computing all the elements of the first row of C, arl
is set to 'ay while ar2 is reset to by, to'compute the elements of row2 of Cin
the same way as was done for row 1. This process is repeated for all the rows
of C. ar3 starts at ¢;; and moves to cs; with the computatlon of each elernent
of C. The memory orgamzatlon for the matrix elements is shown in Figure
7.21. The TMS320C54xx program for matrix multiplication is shown in Figure
7.22: Note that the program uses the repeat-block instruction to-compute the

-dot product used in the matrix multiplication.

208 Chapter 7 Tmplementations of Basic DSP Algorithms

; Program Name: _ex7p8MAT.asm

s Description: This is an example to show how to implement matrix mutiplication.

ref ¢ int00

.sect ",vectors®

RESET: B _c_int00

NOP

NOP -

.data
matArowl: .yord 1000h,2000h, 3000h, 40000
matArowZ: . word 1000h,2000h,3000h,4000h
matArow3: word 1000h,2000h,3000h,4000h
matBcoll: ‘ .word 1000h,2000h,3000h,4000h
matBcolZ: .word 1000h,2000h,3000h, 4000h

matBcol3: .word 1000h,2000h, 3000h, 4000h

H It implements the following equation
;o C = A.B
H where .
H A is a 3 x 4 matrix,
H B is 4 4 x 3 matrix, and
H € is a3 x 3 matrix
1
3 ' Matrix A elements are stored in data memory row after row.
- Matrix B elements are stored in data memory column after column.
3 Matrix C elements are stored in data memory row after row.
H) - A1l elements are ql5 numbers.
3 Author:’ Avtar Singh, SJSU
.mmregs H mémory~mapped,registers

; Reset vector

; row 1 of matrix A
; row 2 of matrix A
; row 3 of matrix A

3 column 1 of matrix B

; column 2 of matrix B
; column 3 of matrix B

Figure 7.22 The TMS320C54xx implementation of the matrix multiplication - (continued)

‘matC:

Nml

_C_int00:

" .word 0,0,0

word 0,0,0
.word?0,0,0

.set 3

.text

ssbx sxm ;
stm #matC, ar3

stm #matArowl,
stm #matBcoll,

‘stm #Nml, BRC -

call DOTPROD
sth a,l,%ar3+

stm #matArowl,
stm #matBcol2,
stm #Nml, BRC
call DOTPROD

sth a,l,*ar3+

stm #matArowl,
stm #matBcol3,
stm #Nml, BRC
call DOTPROD

sth a,l,*ar3+ "~

stm #matArow2,
stm #matBcoll,
stm #Nml, BRC
call DOTPROD

sth a,1,*ar3+

stm #matArow2,
stm #matBcol2,
stm #Nml, BRC
call DOTPROD

sth a,1,*ar3+

stm #matArow2,
stm #matBcol3,
stm #Nml, BRC
call DOTPROD

sth a,1,*ar3+

arl
ar2

arl’
ar2

arl
ar2

arl
ar2

arl
ar2

arl
ar2

row 1 of matrix C
row 2 of matrix €
row 3 of matrix C

columns of matrix A - 1

se]ect sign'extension mode
ard = matrix C start address

arl = matrix A-row 1 start address
ar2 = matrix B col 1 start address
BRC = row/col elements - 1

find dot product
save the result as matrix C element

arl matrix A row 1 start address

;-ar2 = matrix B col 2 start address
; BRC = row/col elements - 1

-

e

find dot product ,
save the result as matrix € e]ement

arl = matrix A row 1 start address
ar2 = matrix B col 3 start address
BRC = row/col elements - 1

find dot product
save the result as matrix C element

matrix A row 2 start address

arl =
ar2 = matrix B col 1 start address
; BRC = row/col elements - 1

find dot product
save the result as matrix C element

arl = matrix A row 2 start address
ar2 = matrix B col 2 start address
BRC = row/col elements - 1

find dot product
save the result as matrix € element

matrix A row 2 start address

arl =
arZz = matrix B col 3 start address
BRC = row/col elements - 1

find dot product
save the result as matrix € element

Figure 7.22 Continued

#matArow3,. arl ; arl

stm = matrix A row 3 start address
stm #matBcoll, ar2 ; ar2 = matrix B col ‘1 start address
. stm #Nml, BRC 3 BRC = row/col elements - 1
call DOTPROD) ~ 5 find dot product
sth a,1,*ar3+ s save the result as matrix € e\ement
stm #matArowB,kafl ‘ s arl = matrix A row 3 start address
stm #matBcolZ, ar2 ; ar2 = matrix B col 2 start address
stm #Nml, BRC ; BRC = row/col elements - 1
call DOTPROD ; find dot product
sth a,l,*ar3+ ’ 3 save the result as matrix C element
stm #matArow3, arl . s arl = matrix A row 3.start address
stm #matBcol3, ar2 ; ar2 =-matrix B col 3 start address
stm #Nml, BRC - ; BRC = row/col elements - 1
call DOTPROD ; find dot product
sth a,1,*ar3+ ; save the result as matr1x C e]ement
nop ; .
nop
nop
5 Dot Produéf Rodfiné
H This routine détermines the dot product of two vectors
H Input: arl = pointer to the first element of vector 1
3 ar2 = pointer to the first element of vector 2
: BRC = size - 1 for either vector
Y -
H A1l elements are gl5 numbers
H Output: A = dot product as gq30 number
BOTPROD o ?
1d #0, a sA=0
NXTeleofA: . ‘ : ‘
oo rptb end_dotp-1 "3 A= sum of arl(i)*ar2(i) for all i
1d *ar2+, t : . o
mac *arl+, a o
end_dotp: o ret ; return
nop
nop
.end
Figure 7.22 Continued

_Ass'ignments 211

7.10 Summéry

In this chapter, we have covered some basic DSP implementations with
the view of using a fixed-point programmable DSP device such as the
TMS320C54xx. All these implementations require some sort of multiply and
accumulate operation on two arrays, typically an array of samples and an
array of coefficients. In all these implementations, memory organization is
.important, as it leads to the specific programming strategy to do the compu-
tations. Another important aspect of these implementations is how signal
samples and coefficients are represented. The Q-notation is handy when rep-
resentmg fractional filter coefficients. However, care must be exercised in
using the multiply operation on numbers represented in the Q-notation. -
The implementations covered in this chapter include FIR filters, IIR filters,
interpolation filters, decimation filters, PID controller, adaptive filters, and
2-D signal processing, In these implementations, it is assumed that the input
signal samples are available in a memory buffer or in a data file. The com-
puted output samples are also placed in a memory buffer. However, to design
a real-time application requires inclusion of A/D and D/A interfacing along
with the appropnate software to control them for data acquisition, Real—tlme
sngnal processmg is con51dered in Chapters 9 and 10.

References -

1. Strum, R. D., and Kll‘k D. E. First Principles of Dzscrete Systems and ngttal
‘ Signal Processing, Addison-Wesley, 1988.

Peled, A., and Liu, B. Digital Signal Processing, John Wiley, 1976.

Stearns, S. D., and Ruth, D. A. Signal Processing Algorithms, Prentice-Hall,
1988.

Orfanidis, S. J. Introduction to Signal Processing, Prentice-Hall, 1996.
TMS5320C54x -DSP ReferenceASet, Volume 1, Texas Instruments, 2001.
TMS320C54x DSP Reference Set, Volume 2, Texas Instruments, 1999.

TMS320054x Assembly Language Tools, User’s Guide, SPRU102D, ‘Texas In-
struments, December 1999.

w N

N o wn A

Assignments

7.1. Determine the value of each of the following 16-bit numbers represented using . -
the given Q-notation:

212 Chapter 7 Implementations of Basic DSP Algorithms

7.2

7.3.

7.4,

75

~ 7.6.

a. 4400h as a Q0 number
b. 4400h as a Q15 number
¢. 4400h as a Q7 number

Represent each of the following as 16-b1t numbers in the desired Q-notation:
a. 0.3125 as a Q15 number
b. —0.3125 as a Q15 number.
c. 3125 as a Q7 number
-d. —352 as a Q0 number

Modify the TMS8320C54xx program in Figure 7. l(b) so that it can be used to
muluply aQl5 number mth a QO number to obtain the result in Q0 notation.

- Modify- the TMS320C54xx program in Figure 7.1(b) so that the rounding is

done as follows: Use ordinary rounding as in the program except when the
part to be truncated is exactly equal to half the largest value represented by
the dropped bits, in which case the part to be kept is incremented only if, as a
binary number, it represents an odd. integer.

Analyze the followmg program to answer the questions at the end. Assume
that all spec1ﬁed data locations are on the same page starting at a0.

.data

a0 word 6000h
bl word 2000h
xn word 4000h
yn word 0h
ynml .word 3000h

Jtext

Id #a0,dp

id a0, 't

mpy xn,a

Id bLt
"mac ynml a

sth 1, yn

Assuming that all memory contents for constants and s1gnals are in Q15
notation, determine the

a. decimal values represented by ao, bl, xn, and ynm1,

b. decimal value of the computed yn and that of the error due to trunca-
tion. :

¢. equation for yn implemented by the above program.

For the foliowmg program determine (a) the difference equation, and (b) the
transfer function for the implemented filter.

7.7.

7.8.

7.9.

" Assignments 213

. AGAIN: , ,
Ld. #yn,dp ; Set the data page
portr inport, xn ; Get the new input x(n) sample

1d #0,a.

Id xnm2,t

mpy a2, a

id xnml, t

delay xnml

mac al,a

1d xn, t

delay xn -

mac a0, a

d ynm2, T

delay ynm2 ,

mac b2, a :

d-- ynml, t

delay ynml

mac bl,a

Id yn,t

delay ‘yn -

mac blya :

sth a,yn . ; Replace y(n) with the computed y(n)
b AGAIN - '

Assume that all signals are intégers and stored in the order ¥n), y{n—~1),
y(n —2), x(n), x(n — 1), x(n — 2) starting at the lowest address and proceed-
ing to the higher addresses on the same page. Note that ynm1 in the code
stands for y(n — 1) and-similarly other signals are denoted. All coefficients
such as a0, al,..., etc. are also stored as integers on the same data page.

'An N-tap FIR ﬁlter has

h(z)—h(N—l-— i)

where i = 0,1,...,(N/2) — 1, for an even value of N. Use the coefficient sym-
metry to rewrite Eq. 7.2 so that the number of multiplies is minimized. Show
an implementation scheme similar to Figure 7.3 for the filter. ~

An N-tap FIR filter has L
' @) =hN-1-1)
where i = 0,1,...,(N — 1)/2, for an odd value of N. Use the coefficient sym-

metry to rewnte Eq. 7.2 so that number of multiplies is minimized. Show an
implementation scheme similar to Figure 7.3 for the filter.

Modify the TMS320C54xx program for the FIR filter implementation shown in
Figure 7.4 to implement the symmetrical tap filter in Problem 4 with N = 30.
Test the filter implementation using an appropriate set of tap values.

'214‘ Chapter 7 Implementations of Basic DSP Algorithms

7.10.

7.11.

7.12.

7.13.

7.14.

Modify the TMS320C54xx program for the FIR filter implementation shown in
Figure 7.4 to implement the symmeétrical tap filter in Problem 5 with N = 31.
Test the filter implementation using an appropﬁate set of tap values.
Implement the IIR filter represented by the foliomng difference equation on
the TMS320C54xx. Assunie that 315 notation is used to represent the values
of coefficients and QO to represent the signal samples.

. y(n) b(0)x(n) + b(1)x(n — 1) + a(0) y(n — 1) + a(1) y(n—2) + a(2) y(n — 3)

Usmg the program of Figure 7.6, develop a TMS320C54xx program to. imple-
ment the following FIR filter:

(0.140.2z7" +0.1272)(0.5— 0.2272)

Q + 0.25z71)(1 - 0.152~1 — 0.5272)

H(z) =

Determine the hnearly interpolated sequence from the given sequence
x(n)=1{0 4812 16 12 8 4 0]

for an interpolation factor of 3. What mterpolatmg sequence h(n) can achleve
the specified interpolation?

Modlfy the interpolation filter implementation scheme of Figure 7.9 so-as to
avoid going over the sample sequence five times. This can be done using more

- memory locations.

© 7.15.

‘ ‘:7.‘16.

1.17.

7.18.
7.19,
7!2“08
7.21.

7.22.
7.23.

‘Use the scheme of Problem 11 to write a TMS$320C54xx program for the in-

terpolation filter. Use appropnate data to test the program.

If decimation by a factor of 8 is achieved. by decunatmg by a factor of 2 fol-
lowed by another factor of 4, determine the cutoff frequencies of the two low-

pass filters that should be used in the decimation scheme.

Develop a decimation filter program that can be used to decimate by a factor
of 2° using a subroutine to decimate by a factor of 2 in conjunction with

- appropriate filters.

In the PID controller of Fxgure 7.14, K3 = K, /64, K; =.K,/8. Modify Eq. 7.14 so
that 2 minimum number of multiplies are used for its implementation. What
processor operation ‘can.be used to achieve this?

Develop a TMS320C54xx program for the PID controller of Problem 5.

~ Modify. the adaptive filter implementation scheme of Figure 7.18 so that the

adaptive filter is also an interpolation filter with an interpolation factor of 2.
Develop a TMS320C54xx program for the scheme of the adaptive and inter-

_polation filter in Problem 17.

DeveloP a TMS320C54xx subroutine to multiply two 3-x 3 matrices.

Use the subroutine developed in Problem 19 to develop a TMS320C54xx pro-
gram to implement 2-D convolution. Assume appropriate values for the 2:D

signal samples and the convolution coefficients.

‘Chapter 3

lmpler‘nentationof FFT.AIgorithms

8.1 Introduction

In this chapter, we cover the implementation of FFT algorithms for DFT
computation and related issues. As an example, an 8-point DIT FFT algorithm
is implemented with considerations for computational structure and scaling to
avoid overflow. The following topics are covered in this chapter:

- An FFT algorithm for DFT cofnputation
A butterfly computation
Overflow and scaling
Bit-reversed index generation
An S-ﬁoint FFT implementation on the TMS320C54xx
Computation of the signal spectrum o

8.2 An FFT Algorithm for DFT Cbmputation

Here we consider the DFT computation using FFT algorithms. We discuss
these algorithms from the implementation point of view. For a detailed treat-
ment ‘of the FFT, we refer the reader to the many available excellent books on
the subject [1]. ‘

The discrete Fourier transform (DFT) pair is given as

n=N-1 k .
X(k) =Y x(me PNk =0,1,2,...,(N—1) (8.1)
n=>0 .

and

215

216 Chapter 8 Implementation of FFT Algorithms

8.2.1

k=N-1 » " ; :
x(m)=1UN > X(R)eH™; n=0,1,2,...,(N-1) (8.2)
k=0

‘where x(n) is the time-domain sequence, X(k) is the corresponding frequency-

domain sequence, and N is the number of elements of each sequence.
Equation (8.1) is known as the forward transform, or DFT, and (8.2) as the
inverse transform, or IDFT. Replacing e 727N by Wy, we get

n=N-1
Xy =Y x(mWy™; k=0,1,2..,(N-1) (@3
n=0
and
: k=N-1 ‘ ‘
x(n) = (UNY Y X(OWy™; n=0,1,2,...,(N—1) 84)
, - k=0 -

where Wy ™ is known as the tw1dd1e factor.

Note that the direct DFT computation of (8.1) or (8.2) requues N? complex
multiplies and N(N — 1) complex additions. That is, it requires approximately
N? complex operations. Let us now consider a few specific cases starting with
the 2-point DFT. The objective is to derive an algorithm for efficient compu-
tation of the DFT and IDFT. :

2-Point DFT Computation
For N = 2, Equation 8.3 writtenekplicitly for k=0and lA gives |

X(0) = xOW,° + x)W,® (85)
X(1) = () W;° + x(1) W, ™! z (8.6)

Note that the twiddle factor W,° = &° = 1 and Wy™! = ¢ = —1,
* Substituting for twiddle factors in Equations 8.5 and 8.6 gives

X(0) = x(0) + x(1) (8.7)
X(1) = x(0) — x(1) <s.s)

The computation represented by these equanons is shown in the signal flow

- graph of Figure 8.1. This computation is called an in-place computation if

the computed values X(0), X(1) replace x(0) and x(1), respectively. Note that
the 2-point DFT computation requires only add and subtract operations to -
implement. The structure in Figure 8.1 is called a butterﬂy '

"Figure 8.1

Figure 8.2

8.2.2

8.2 An FFT Algorithm for DFT Compﬁtation 217

' X(0)

x(1)o<= X1

>
_1‘

Signal flow graph for aZ—point DFT computation

X(0)

XN

Signal flow graph for a 4-point DFT coMputation-

4-Point DFT Corﬁputation

Computation of a 4-point DFT can be shown to yield the structure shown in
Figure 8.2. Note that now we require a total of four butterflies in two stages of
computation. The first stage has two butterflies, one operating on x(0) and
x(2) and the second operating on x(1) and x(3). In the second stage, the first
butterfly operates on upper outputs of the first-stage butterflies and the sec-
ond one operates on the lower outputs of the first-stage butterflies. Also, note
that the lower output of the second butterﬂy of the first stage needs to be
multiplied with the twiddle factor W,'.

Further, note that the input samples x(0) through x(3) are reqmred to be

rearranged in the order x(0), x(2), x(1), x(3) to implement the computation -

depicted in Figure 8.2, Now, if the naturally occurring input sample indices 0,
1, 2, 3 are represented by their binary equivalents 00, 01, 10, 11 and these
binary numbers are reversed, we get 00, 10, 01, 11, which are 0, 2, 1, 3, the

‘218 Chapter 8 Implementation of FFT Algorithms

Figure 8.3

8.2.3

8.24

x(0) A : \ /X(O)
x(4)j i N o X(1)

x(6)>< /\ "

' X(S

x@ ><>< AN

N >< A / o

*(7) > X(7)
N . p— A ‘*————«‘/———————/

stage 1 ‘stage 2 stage 3

Signal flow graph for an 8-point DFT computation

indices for the sequence in whlch the s1gnals must be processed by the com-
putational structure of Figure 8.2. This process of rearrangement of indices for
DFT computation is called bit reversing and is further considered in a sub-
sequent section.

8-Point DFT Computation

When 8 points are used to compute DET, the result is the computational
structure of Figure 8.3. Now we have tliree computational stages, each stage
requiring 4 butterflies for a total of 12 butterflies. Note that. the input is re-
arranged following bit-reversed indices of eight input samples. The relation-
ship between the input indices and the bit-reversed indices required for DFT -
computation will be explored further in a subsequent section. Further; note
that now more twiddle factors are needed to compute the DFT.

N = 2™ Point FFT Computation

' The above approach to DFT computation extended to a case of N points,

where N is a power of 2, yields log, N stages of computation, with each stage

8.3 A Butterfly Computation 219

requiring N/2 butterflies. This computational structure is the fast Fourier
transform, or FFT.

Ancther FFT Algorithm.

- Two- types of commonly -used FFT algorithms are available, decimation-in-
time (DIT) and decimation-in- -frequency (DIF). If the naturally occurring
input time-sequence sample indices are bit reversed and processed by the
above algorithm, the frequency domain output is in the natural order. Such
a computation is called a DIT FFT algorithm. Another algorithm results if a
time-domain sample sequence is used without bit-reversing the indices. The

~ latter algorithm is similar to the former, with small changes in the butterfly
computational structure. The output generated by the latter algorithm has bit-
reversed indices. This second approach is called the DIF FFT algorithm. The
details of the DIF FFT algorithm can be found in most books on DSP funda-
mentals [1] and are left for the reader to explore.

Zero-Padding

At times, the sequence to be transformed is appended with zeros before com-
puting the DFT. This can be done to satisfy the condition that the FFT algo-
rithm requires that the number of points be a power of 2. Another objective of
zero-padding is to increase the transformed points to decrease the frequency
interval between adjacent points represented by the X(k) sequence. This leads
to improvement in frequency resolution for representing sxgnals in the fre-
quency domain.

8.3 A Butterfly Computation

A general DIT FFT butferﬁy in-place computation structure is shown in Figure
8.4, Its implementation requires the following computation:

Ag +JA; An+iA]

Bg + /B BR/-ijI/

e

W +jWr

Figure 8.4 A general butterfly computation structure

220 Chapter 8 Implementation of FFT Algorithms

Ag! + jAY' = (Ar + jAD) + (Br + jBDJWr" + jWi")

= Ag -+ BaWx" — BiWi" + j(A; + ByWg' + BaWi")
Br/ + jBr’ = (An + jAD) — (Br + jB)(Wx" + jWi")

= Ap — BRWR + BiWi™ + j(A; — BIWR ~ BpWr’)

Equatmg real and i unagmary parts ylelds
AR = Ag + Bg W' — BiW;*
A = A+ BWR + Be Wy
" B’ = Ap — BrWR" + B{Wi"
B/ =A - BWa - BaWi

or
AR’ = Ag + TMP1
Ay = A; + TMP2
Bx' = Ap — TMP1
B/ = A; — TMP2
where
TMP1 = By Wr" — B W;*

and A

TMP2 = BiWr" + BaWi™

(8.9)

(8.10)

(8.11)

(8.12)

(8.13)

(8.14)

Thus; to compute the butterfly one can use Equations 8.13 and 8.14 to first

compute TMP1 and TMP2 and then use these in Equation 8.12.

8.4 Overflow and Scaiing

The data must be properly scaled down before or during a butterfly compu-
tation to avoid overflow at any stage of calculations. Overflow leads to a use-
less transformed result. However, excessive scaling leads to precision prob-
. lems due to dropping of the least significant bits. Thus, one needs to have an
idea about the magnitudes of signal values so that scaling is applied only when
needed. Ini essence, the purpose of scaling should be to avoid overﬂow without

sacrificing precision.

8.4 Overflow and Scaling 221

s

Consnder the following equation in the butterfly computatlon
AI A+ ByWr" + BR Wit (8.15)

where Wr" =cos 0, Wi" =sin 6, 8 = 2nnk/N. Subst1tutmg for the twiddle
factor gives

Ay = Ay + B; cos 0 + By sin 6 (8.16)
The maximum value of A;’ occurs when OA;’106 = 0. This yields

8A; 100 = -—le sin @+ Bg cos 8 = 0

That is,
tan § = Bp/B; ' (8.17)
which yields ‘
sin'f = ___ml?.“_.,.__.'
v/Bg* + B;?
cos O = B -(8.18)

v/ an + B{z

Substituting sin & and cos § in Equation 8.16 ylelds

Al = A + +/Bg? + B;? -(8.19)

If we assume that the maximum value of each variable in Equation 8. 19 is 1,
then the maximum possible value that Al can attain is given as

Al =1+V2=2414

Similarly it can be shown that the maxima for other computed variables in
Equation 8.12 in the butterfly computations are also equal to 2.414. Therefore,
to avoid overflow each input variable can be multiplied by 172.414 = 0.414
before computing the butterfly. The butterfly computation is medified, by in-
cluding this scale factor, as shown in Figure 8.5(a). If a shift operation, which.
is simpler to implement, is used to scale the variables, the scale factor to avoid
overflow should be 0.25. Figure 8.5(b) shows the butterfly computation that
uses 0.25 as the scale factor. Use of the shift operation is preferred in pro-
grammable signal processors where it is implemented as part of data transfer
and requires no additional execution time. However, in such a case we may be
scaling more than what is absolutely needed and thus compromising the
computational accuracy. For simplicity we will use shift in the FFT imple-
mentation example considered in a subsequent section. Figure 8.5(c) is the

222 Chapter 8 Implementation of FFT Algorithms

% 1+ +/2) A p ;
Ag +jAy > , ——— Ap +jA
Butterfly Computation
% 1++72) VY
Bg +jB; By +/By
Wy + W,

Figure 8.5(a) Butterfly computation; where the magnitude of all numbers is limited to less than
1, using a scale factor = 141 + v2)

. 1 ,

) A N

Ag +JjA; > : : Ag +jh

Butterfly Computation
1
, /ﬁ : ' o
By +jBy —> = , By +jBy
We +W)

Figure 8.5(b) Butterfly computation where all magnitudes must be less than 1 and the scale
T factoris a power of 2° ‘ »

A +jA, —> BF > A+ jA,

x
-

Bg +/B, —> (W + W) > By +/B;

Figure 8.5(c) A representation for the butterﬁycdmputation using a scale factor of 1/4

8.5 Bit-Reversed Index Generation 223

representation for the butterfly structure that will be used in the DIT FFT im-
plementation. This representation includes-the scale factor as well as the

" twiddle factor.

© 8.5 Bit-Reversed Index Generat,idn"

Figure 8.6(a)

The table in Figure 8.6(a) shows the relationship between the naturally occur-
ring original input indices and the indices with reference to which DIT DFT is
computed. The bit-reversed indices, needed for the DIT FFT implementation,
can be generated using a reverse carry add operation, as shown in the example
of Figure 8.6(b). For instance, if the current bit-reversed index 'is 0100, in an
8-point DFT, then, the next bit-reversed index is obtained by adding 0100,
(half the DFT size) using reverse carry propagation (carry moving to the
right). '

As discussed in Chapter 5 TMS320C54xx has an addressing mode that al-
lows one to implement bit reversing in a very convenient manner. As the
naturally sequenced input data is obtained, it is bit reversed before placing in
memory for FFT computation.

Original Index A Bit-Reversed Index
000 000
001) 100
010 010
011 ' 110
100 001
101 ' 101
110 011
1 ' 111

Bit-reversed indices in an 8-point DFT computation

- 0010 (Carry in)
0100 (Current bit-reversed index)
+ 0100 (Half the number of DFT points)

0010 (Next bit-réyersed index)
0100 (Carry out)

'Figu.re 8.6(b) Bit-reversed index generation example

. 224 Chapter 8 Impleméntation of FFT Algorithms

8 6 An 8-Point FFT Implementatlon on the
TMS320C54xx

An 8-point DIT FFT implementatién structure based on the butterfly of Figure
8.5(c) is shown in Fzgure 8.7. The TM5320C54xx program that implements
the algorithm is shown in Flgure 8.8. The program uses subroutines for bit

x(0) —— ‘) - S— — - o ————————— X(0)
XY
sy — we o | m
N s , —— X(1)
x@—1 - —e W - o x@
: » -~ x% |
x4
x(6) - we 1l w i R L X(3)
x(1) _ we oL X
x4
x(S) wo - ‘
xY ‘ wi : X(5)
) — — we . —1 W ¥ X(6)
x4 ‘
N — W w2 —— W 4——x(7)

Figure 8.7 An 8-point FFT implementation structure; scale factor for all butterflies = 1/4

Figure 8.8

8.6 An 8-Point FFT 'Ixnplementation on TMS320C54xx 225

3 Program Name: FFT8.asm

3 Author: - Avtar Singh, SJsU

; Description: This program implements an 8-point DIT FFT algorithm.

.nmregé
.def _¢_int00

XOR .word O ; Real part’

3 FFT is to be computed
x0 .word 0

x1 word 23170

x2 .word 32767

x3 word 23170

x4 .word 0

x5 .word ~23170
x6 .word -32767
x7 word -23170

X0I . .word O . s Imag part
XIR . .word 0 ; Real part
X1 .word O s Imag part
X2R . .word 0 . ; Real part’
X2 .word 0 ; Imag part
3R .word D ; Real part
X3I .word 0 o : Imag part.
X4R . word 0 .] ; Real part
X4l .word O ; Imag part
X58 .word O : ; Real part
X5 .word O ; Imag part
X6R .word 0 ; Real part
X6I .word O : .3 Imag part
X7R .word 0 3 Real part
X7 .word 0) ; Imag part

__

; Input data. It should be replaced with the actual data for which the

.2 "] " Mo O O A o 1 0 "

FFT implementation program for the TM3320C54xx

(continued)

226 Chapter 8 implementa’tibn of FFT Algorithms

M L T T T T L e]

; Twiddle Factors {(gl5 numbers)

WOBR .word 32767 ; cos(0)

W081 .word O : i 3 ~sin(0)

W18R .word 23170 ; cos(pi/4)
Wi81 .word -23170 3 -sin{pi/4)
WZ28R .word O o ~; cos{pi/2)
W28 .word -32767 - © o -sin(pi/2)
W38R .word -23170 ; cos{3pi/4)
W38I .word -23170 ; ~sin{3pi/4) -

.

.

S0 word 0 ; SO = Freq 0.fs/8 contents
s1 word O ; S1 = Freq 1.fs/8 contents
S2 word 0 - 3 $2 = Freq 2.fs/8 contents
S3 worrd -0 ; S3 = Freq 3.fs/8 contents
S4 .word 0 ; S4 = Freq 4.fs/8 contents
S5 word 0 ; S5 = Freq 5.fs/8 contents
S6 word 0 ; S6 = Freq 6.fs/8 contents
s7 word 0 ; 7 = Freq 7.fs/8 contents

.

TMPL .word 0
TMPZ2 .word O -

3 Main Program
3 This program computes 8-point DFT using DIT FFT algorithm.
"3 It also computes signal spectfum using the’transformed,data.

..
¥ B

_c_int00: . :
SSBX SXM ; Select sign extension mode
CALL _clear 3 Clear FFT data locations
CALL _bitrey -3 Get bit-reversed input data

; STAGE 1 Butterflies:

Figure 8.8 Continued

8.6 An 8-Point FFT Implementation on TMS320C54xx 227

Call BUTTERFLY with AR = XOR, Al = XOI, BR = XIR, BI = X11
Replace XOR, X0I, XIR, XiI

we

STM #XOR, ARl
©STM #X1R, "AR2
STM #WOBR, AR3
CALL _butterfly

; Call BUTTERFLY with AR = X2R, AI

X2I, BR
; Replace X2R, X2I, X3R+ X31 :

X3R, BI = X31

STH #X2R, ARL |

STM #X3R, ARZ |

STM #WO8R, AR3 | _

CALL _butterfly
Call BUTTERFLY with AR = X4R, Al
; Replace X4R, X4I, X5R, X5I -

X41, BR = X5R, BI = X5I

H

s

STM #X4R, AR
" STM #X5R, ARZ |
STM #WOBR, AR3
CALL _butterfly |

1]
B

; Call BUTTERFLY with AR = X6R, Al

X6I, BR = X7R, BI .
; Replace X6R, X6I, X7R, X7I

X71

STM #X6R, ARL |
STM #X7R, ARZ |
STM #WOBR, AR3 |
CALL _butterfly

3 STAGE 2 Butterflies:
Call BUTTERFLY with AR = XOR, Al = XOI, BR = X2IR, BI = X21
Replace XOR, XOI, X2R; X2I -

wr

we

STM #XOR, ARL
STM #X2R, AR2 |
STM #WOBR, AR3
CALL _butterfly

Figure 8.8 Continued

=l

. 228 Chapter 8 Implementation of FFT Algorithms

Figure 8.8

wse

ws

Apply Twiddle Factor W28 to X3R, X3I
Call BUTTERFLY with AR = XIR; -AI = X1I, BR
Replace XIR, X1I, X3R, X3I

“X3R, BI

X31

it

STM #X1R, ARl

STM #X3R, ARZ

STM #W28R, AR3

CALL _butterfly
Call BUTTERFLY with AR = X4R, AI = X4I, BR = X6R,.BIl
Replace X4R, X4I, X6R, X6l

X61

1
#

STM #X4R, AR1
‘§TM #X6R, ARZ
STM™ #WOBR, AR3
CALL _butterfly

Apply Twiddle Factor W28 to X7R, X7I
Call BUTTERFLY with AR = X5R, AI = X5I, BR = X7R, BI = X7I
Replace X5R, X5I, X7R, X7I g :

STM #X5R, ARl
STM #X7R, AR2
STM #W28R;, AR3
CALL _butterfly

STAGE 3 Butterflies:

Call BUTTERFLY with AR = XOR, AI = XO0I, BR = X4R, BI = X4I
Replace XOR, XOI, X4R, X4I : :

STM #X0R, ARL
STM #X4R, AR2
STM #WO8R, AR3
CALL _butterfly

Apply Twiddle Factor W18 to X5R, X5I
Call BUTTERFLY with AR = XIR, AI = X1I, BR = X5R, BI = X5I

i Replace XIR, X1I, X5R, X5I

. STM #XIR, ARLl’
STM #X5R, AR2
“STM #WI1BR, AR3
CALL _butterfly

Continued

Figure 8,8

we

.
>
E

.

8.6 An 8-Point FFT Implémentation on TMS$320C54xx

Apply Twiddle Factor W28 to X6R, X6I _ :
Call BUTTERFLY with AR = X2R, AI'= X2I, BR = X6R, BI = X6I
Replace X2R, X2I, X6R, %61 ‘ ‘ T

" STM - #X2R; “AR1
STM #X6R, ARZ
STM #W28R, AR3
CALL _butterfly

Apply Twiddle Factor W38 to X7/R, X71 .
Call BUTTERFLY with AR = X3R, Al = X3I, BR = X7R, BI = X7I
Replace X3R, X3I; X7R, X71- o o

STM #X3R, AR1
STM ~ #X7R, ARZ
STM #W38R, AR3
CALL _butterfly

Spectrum computation

STM #XOR, ARl 3 ARL points to transformed XOR
STM #S0, AR2 ; AR2 points to spectrum SO

STM #7, AR3 ; AR3 = # of spectrum points-1
CALL _spectrum ; Compute signal spectrum

nop . ‘ ‘ V :

nop

This subroutine moves the data to the FFTvmemory.ﬂ
The data is written in bit-reversed order.

229

B o " 0 - < 1 "~ " < 11 7] 7"] 1 0ot]] Tk o T] " " " " " V]

_bitrev: ,
STM #x0, ARl ; AR1 points to input sample x0
STM #XO0R, AR2 ;3 ARZ points to FFT data memory start
STM #8, ARO ; ARO = FFT order = 8
STM #7, AR3 ; AR3 = FFT order-1 = 7

loop: ; : ;

L LD *ARI+, A . ; Get next input data sample
STL A, *ARZ+0B ; Store bit-reversed in FFT memory
BANZ loop, *AR3- ; Repeat for all input samples
‘RET ‘ . o)
nop -

“inop
Cohtinued

230 Chapter 8 Implementation of FFT Algorithms

S o 2 > 2 . 7 O o 6 o i o R N o o

2 o e o Y o e e S S O b o A e o L o "

STM #XOR, ARZ 3 ARZ points to FFT data memory
RPT #15 3 Clear FFT memory
ST #0, *ARZ+
RET
.nop
. nop

; This subroutine implements the butterfly computation

H Use ARl as pointer to first complex number.

H Use AR2 as pointer to second complex number.
H Use AR3 as pointer to twiddle factor.
3 AR <= AR + BR*WR - BI*WI
H Al <= Al + BR*WI + BI*WR
C BR <= AR - BR*WR + BI*WI
L Bl <= Al - BR*WR - BI*WI
3 ‘Scale Factor = 1/4
_butterfly: .
‘ MYMM AR1, AR5 ; ARS = ARl
STM #TMP1, AR4 3 AR4 points to TMP1

LD *ARS, -2, A

" STL A, *ARS+ : Replace AR with AR/4
LD *ARS, -2, A
STL A, *ARS- ; Replace Al with Al/4
LD *ARZ, -2, A :
STL A, *AR2+ 5 Replace BR with BR/4
LD *ARZ, -2, A - .
STL A, *AR2- ; Replace BI with BI/4
LD *AR5+, A ,
STL A, 1, *AR4+ ; Store AR in TMP1
LD *ARS-, A '
STL A, 1, *AR4- ; Store Al in TMP2

Figure 8.8 Continued

8.6 An 8-Point FFT Implementation on TMS320C54xx 231

;AR <= AR + BR*WR - BI*WI

LD #0, A s A=0

MPY *AR2+, *AR3+, A s+ A = BR*WR

MAS *AR2-, *AR3, A s A = (BR*WR) - BI*WI)
ADD *AR5, 15, A : A = (BR*WR - BI*WI)V+ AR
ADD #1,14,A 3 Round the result

STH A, 1, *AR5+ ; Save computed AR

;AL <= Al + BR*WI + BI*W

L#H,A - ;A=0

MPY *AR2+, *AR3-, A s A = BR*WI

MAC *AR2-, *AR3, A ; A = (BR*WI) + BI*WR

ADD *AR5, 15, A s A = (BR*WI + BI*WR) + AI
ADD #1,14,A i ; Round the result

STH A, .1, *AR5- ; Save computed Al

;BR <= AR - (BRfWR - BI*WI) :
LD *AR4+, A s A=AR :

SUB *AR5+, A . 3 A = AR-(BR*WR - BI*WI)
STL A, *AR2+ ; Save computed BR

;BI <= Al - (BRfWI»+ BI*WR)

LD *AR4-, A . 3-A=AI
SUB *ARS5-, A -3 A = AI-(BR*WI + BI*WR)
STL A, *AR2- : ; Save computed BI
RET : '
- nop .
nop

............. gy gy gy g S

; This subroutine computes the spectrum of the transformed data.

H Use.AR1 as pointer to the transformed data.

H " Use ARZ as pointer to the spectrum data.

30 - S(k) = (1/N)*|X(Kk) | *|Conj (X(k)) |

_spectrum:

' LD #0,A _ 3 A=0

LD #0,B 3y B=10
SQUR *AR1+,A ; Square X(k) real
SQUR *AR1+,B ; Square X(k) .imaginary
ADD B,A : “3 A= | X(K)].|Conj (X (K))|

Figure 8.8 Continued

:232 Chapter 8 Implementation of FFT Algorithms

Figure 8.8

STH A,1,*AR2 - o
LD *AR2,13,A : ; divide by 8
STH A, *ARZ+ ; Store the spectrum result
BANZ _spectrum, *AR3- ‘
- RET
nop
nop

.end

Continued

reversing and butterfly computation, as described earlier. For programming

~ details see references [2, 3]. The program is written to carry out computation

stage by stage, starting from the left and proceeding to the right. For simplic-
ity, the implementation uses the butterfly routine including the scaling within
the butterfly. More accurate implementations are possible that exploit scaling
only when needed. For instance, the scale factor of 0.25 in an 8-point FFT
computation results in overall scaling of 0.25° = .015625. However, the re-
quired scaling is = 0.414% = 0.071. If we apply a scaling of 0.25 to the first two
stages and none to the third, the overall scaling will be 0.0625, which is ade-

quate to avoid an overflow. Similarly, other scaling strategies can be devel-

oped, and these are left as exercises to explore. The implemented scale factor
can be accounted for in the interpretation of the transformed data or it can be
used to scale the result back to obtain the true transformed result.

The program in Figure 8.8 can be extended to transform any x(n) sequence

- with numbérs that are powers of 2. A sequence that does not satisfy this con-
‘dition can be extended to the next power-of-2 number by appending it with

zeros. The zero-appended sequence can then be processed to compute the
transform, These extensions are left as exercises. In order to extend the pro-

* gram to a higher number of points, such as 16 or 32, we need to include more

calls to additional butterflies. A simple extension of the program based on
adding more calls makes it unmanageable. In such a case, the program should
be restructured to incorporate nested loops. In such an implementation the
computation will proceed similarly for each stage, computing the butterfly in
the innermost loop. This, however, requires storing all the twiddle factors,
including Wy®, in sequential memory locatlons Such an 1mplementat1on is
left as an exercise for the reader.

8.7 CompUtatioh of the Signal Spectrum

The spectrum of a signal descnbes the power associated with each frequency
content of the signal. The spectrum estimate for an N-point | transform is glven

~ Assignments 233

by [1] ,
S(k) = (1/N)x2(k) = (UN)X(R)X*(k) (520)

’\A;here k=0, 172 ..,(N - 1. If (1/N) is absorbed in ‘a scale factor, then
- Equation 8.20 can be computed from

S0 = (Real(X(0)* + (I:ﬁag<ka>))2 ' w2

Figure 8.8 includes a subroutine to compute the mgnal spectrum. using the .
result of the 8-p01nt FFT.

8.8 Summary

This chapter is about the implementation -of an FFT algorithm on the fixed-
point signal processor TMS$320C54xx. The FFT computation structure is de-
scribed. The butterfly and bit-reversing aspects are covered from an imple-
mentation point of view. The implementation issues, such as overflow and
scaling, are discussed. The chapter includes an implementation example for an

. 8-point DIT FFT algorithm. The example also includes spectrum computation
using the FFT result.

References

1. Strum, R. D, and Kirk, D. E. First Principles of Discrete Systems and Digital
Signal Processzng, Addison Wesley, 1988.

2. TMS320C54x DSP Programmer’s Guide (spru538.pdf, 231 KB), 2001.

3. MS$320C54x DSP Mnemonic Instruction Set, Reference Set, Volume 2 (Rev. C), ‘
_ (sprul72c.pdf, 1096 KB), 2001.

Assignments

1. Determine the following for a 128-point FFT computation:
a. number of stages
b. number of butterflies in each stage .
¢ number of butterflies needed for the entire computation
d. number of butterflies that need no twiddle factors

10.

11.

12.

13.

- 234 Chapter 8 Implementation of FFT Algorithms

e. number of butterflies that require realvtwiddle factors
f. number of butterflies that require complex twiddle factors.:
What minimum size FFT must be used to compute a DFT of 40 points? What

must be done to the samples before the chosen FFT is applied?

How many add/subtract (A) and multiply (M)'operations are needed to im- -
plement a general butterfly similar to the one described in Section 8.3?

Show that the butterfly computation of Section 8.3 can also be implemented
using the following equations:

AR = Ag + B Wy '—BIWI

A1 = A+ BgWR + BrWi'

Bp' = 24Ag - AR !
B =24~

Compare the butterfly implementation in Problem 3, with that in Problem 4in
terms of multiply, add, and shift operations.

Compare the following specific cases of butterﬂy implementation using the
equations in Section 8.3:

a. Ay = By = 0, Wi’ +ijr———= 1

b. Wr" + jWi" = 1-

c. W'+ jWwi' =j
Derive equations, similar to the ones in}Sect»ion 8.3, to implement a butterfly
encountered in a DIF FFT implementation. Such a butterfly is represented by
the following equations: ‘
Ar’ + jAr = (Ag + jA1) + (B + jB1)

Be + jBi' = (A + jA1) — (Br + jB))(Wr" + jWi")

Derive the optimum scaling factor for the DIF FFT butterfly.

How can the program of Figure 8.8 be mod1ﬁed so that scalmg is-done only
when needed?

Rewrite the program in Figure 8.8 using nested loops so that there is just one
CALL statement to call a butterfly routine.

Modify the program in Problem 10 so that it can be used to compute a FFT for
any number of points that are powers of 2.

Modify the program in Problem 11 so that it can be used to compute a FFT for
points that are not powers of 2.

A time-domain sequence of 73 elements is to be convolved with another time-
domain sequence of 50 elements using DFT to transform the two sequences,
multiplying them, and then doing IDFT to obtain the resulting time-domain
sequence. To implement DFT or IDFT, the DIT-FFT algorithm is to be used.

14.

Assignments 235

Determine. the total number of complex multiplies needed to implement the
convolution. Assume that each butterfly computation requires one complex

“multiplication.

The computation in Problem 13 is to be implemented on a fixed-point signal
processor that takes 10 ns to do a real integer multiplication. Determine the
convolution computation time, If the convolution is to be implemented for a
real-time signal and each time a new sample is received the transform is to be
calculated; determine the highest frequency signal that can be handled by the
signal processor.

-Chapter9 |

Interfacing Memory and Parallel 1/0
Peripherals to Programmable DSP Devices

9.1 Introduction

In previous chapters, we studied the architectures of digital signal processors
and learned about -their instruction set and programming techniques. In a
complex DSP system, in addition to the processor, there are also external
peripherals, such as memory and input/output devices. In order to interface
such peripherals, we need to understand various interfacing DSP signals and
the techniques for using them. Peripherals can be interfaced to a processor
either in serial or in parallel mode. In the serial mode, data transfér takes
place bit by bit; in the parallel mode transfer takes place word by word. The
choice is based on the nature of the peripheral and the desired data transfer
rate.

In this chapter, we consider the interfacing signals of the TMS320C54xx
processors and use of these signals for parallel interfacing of memory and
peripherals. These topics are covered under the following headings:

Memory space organization .
External bus interfacing signals
Memory interface

Parallel I/O interface
Programmed I/0

Interrupts and 1/0

Direct memory access

9.2 Memory Space Organization

236

The TMS320C54xx devices each support a basic memory space (internal and
external) of 192K 16-bit words. This consists of 64K words of program mem-

9.2 Memory Space Organization 237
Hex Page 0 Program Hex Page 0 Program Hex Data -
0000 Reserved 0000 Reserved 0000
(OVLY =1) (OVLY =1) Memory-Mapped
. 1+ Extemal ’ External 00SF | Registers
007F] (OVLY =0} 007F | (OVLY =0) 0060 | Scratch-Pad
- 0080 On-Chip 0080 On-Chip 007F RAM
DARAMO-3 | DARAMG-3 0080
(OVLY =1) (OVLY =1) - On-Chip
External External . DARAM(G-3
7FFF (OVLY =0 7FFF (OVLY =0 (32K X 16-bit)
8000 8000 [" TEFE
External BFI(;F - 8000 On-Chip
— , C000 | Op-Chip ROM DARAMA-7
v . FEFF }- (16K X 16-bit) " (DROM =1)
FF00 3 or
FF80 Tnterrupts FE7F Reserved Extemal
(External) . FF80 Interrupts (DROM=0)
FFFF FFFF |__(Oun-Chip) FFFF
. MPMC=1 MP/MC =0
(M:croprocessor Mode) (Mncrocomputer Mode)

Address ranges for on-chxp DARAM in data memory are:

DARAM1: 2000h-3FFFh
DARAMS: 6000k—7FFFh
DARAMS: A00Oh-BFFFh
DARAMT7: EOO0h~FFFFh

DARAMO: 0080h—1FFFh;
DARAM2: 4000h~SFFFh;
DARAM4: 8000h-9FFFh; -
DARAMG: C0O00h~DFFFh;

Figure 9.1 Memory map of TMS320C5416
(Courfesy of Texas Instruments Inc.) ’

ory, 64K words of data memory, and 64K words of 1/0 spacé. Program and

. data memories can comprise of both internal (on-chip) and external (off-chip)
- memories. The actual amount of memory depends upon the particular DSP

device of the family. .

Depending on a specific C54xx: dev1ce, the on»ch1p program memory can
be ROM, DARAM, SARAM, or combinations of these types. The on-chip
memory of a device is mapped to the space by three CPU status register bits—
MP/MC, OVLY, and DROM. As shown in Figures 9.1 and 9.2, the on-chip
memory of the TMS320VC5416 processor consists of 16K ROM, 64K DARAM,

‘and 64K SARAM [1].

Devices with boot loader ROM, lookup tables such as a sine table, and an
interrupt vector table are also available for applications that need these capa-
bilities. In some of the C54xx devices, the program memory can be extended
up to 8192K words by providing external memory-addressing capability. For

the implementation of external memory systems thesedevices may be pro-

vided with up to 23 address lines to access the memory. For example, the
C5416 provides 23 address lines that provide the capability of addressing up to
8192K of memory space in 128 64K word pages, as shown in Figure 9.2."

Data memory can also be both on-chip and off-chip. As shown in Figure
9.1, the on-chip DARAM of the C5416 can be mapped as on-chip program

and/or data memory. The on-chip'ROM can be mapped as on-chip program:

238 Chapter 9 Interfacing Memory and Parallel /O Peripherals to Programmable DSP Devices

Hex Program

010000
On-Chip
DARAMO-3
(OVLY =1)
External
017FFF|(OVLY =0)

018000 On-Chip
IDARAM4-7
MP/RIC = 0)
External
MP/MC = 1)

O1FFFF

Page |
XPC=1

Hex. Prog'ram‘ Hex Program Hex Program . Hex Program

020000 030000 040000 . N 7FQ000
On-Chip On-Chip On-Chip On—Chxp
DARAMO-3 [DARAMO-3 DARAMO-3) IDARAMO-3
(OVLY =1) (OVLY =1) (OVLY =1) K } (OVLY =1)
External External .| External Extemnal
027FFE|(OVLY =0)| 037FFF|(OVLY =0)| 047pFF|(OVLY =0) 7F7FFE [{OVLY =0)
028000 On-Chip 038000 On-Chip ’048000 7F8000 ,
' SARAMO-3 SARAM4-7
(MPMC =) (MPMC =0) External | “External
Extme%pal E)i{temmal .
=1 =1
02FFFF (M) O03FFFF (M) O04FFFF 7FFFFF
Page 2 . Page 3 Page 4 Page 127
KXPC=2 XpPC=3 XpPC=4 XPC=T7Fh

Address ranges for on-chip DARAM in program memory are: DARAM4: 018000h-019FFFh; DARAMS: 01A000h-01BFFFh

DARAMS: 01C0000h-01DFFFh; DARAMT: 01EC00h—01FFFFh

Address ranges for on-chip SARAM in program memory are: SARAMO: 028000h-029FFFh; SARAMI: 02A000h-02BFFFh

SARAM2: 02C000h—02DFFFh SARAMS3: 02E000h-02FFFFh
SARAM4: 038000h-039FFFh; SARAMS: 03A000L—03BFFFh
SARAMS: 03C000h-03DFFFR; SARAMT: 03E000h-O03FFFFh

’F'i‘gure 9.2 Extended memory map of TM$320C5416

(Courtesy. of Texas Instruments Inc.)

memory, or this space can be in the external memory. These flexibilities are
provided to support applications with different types of needs.

On-chip memory is-faster than external memory and has no interfacing
requirements because it is within the chip. It consumes less power compared
to external memory and enables higher performance of the DSP because of
better flow within the pipeline of the central arithmetic logic unit. However,
external memory provides a Jarge memory space and hence is used when large
memory size is required.

9.3 External Bus Interfacing Signals

A DSP device can be interfaced to a wide variety of peripherals by means of its
address bus, data bus, and a set of control signals. Important external inter-
facing signals of TMS320C5416 devices are given in Table 9.1. The use of many
of these signals should become evident when we discuss memory and 1/0
interfacing later in this chapter.

9.4 Memory Ihterface

In the processor architecture, separate on-chip data ahd'program memories
are provided to enhance the speed of program execution by using parallelism.

Table 9.1:

941

9.4 Memory Interface 239 -

Memory and /O Interfacing Signals of the :FMS32OC5416 Device

Signal Description

A0-A19 20-bit Address Bus
D0-D15 16-bit Data Bus

Ds Data Space Select

S Program Space Select
Is 1/0 Space Select
RIW Read/Write Signal
MSTRE Memory Strobe
IOSTB /O Strobe

READY Data Ready Signal
HOLD Hold Request
AOIDA Hold Acknowledyge'
MSE Micro State Complete

RQ Interrupt Request
TACK Interrupt Acknowledge
XF Ekternal_ Flag Output
BIO Branch Control Input

-Due to this parallel configuration and their dual-access capability, up to four

concurrent memory operations can be performed in one cycle. These include
three reads and one write operation. In spite of the advantages of on-chip
memory, size constraints may require the designer to use external memory.

The external memory interface of the C54xx processors consists of a 16- to
23-bit address bus (depending on the device), a 16-bit data bus, and interfac-
ing control signals. The interfacing signals are used to generate chip select
(CS), output enable (OE), and write enable (WE) signals required for accessing
the memory for data transfer [3]. Figure 9.3 shows a block diagram for the
memory interface of the C5416 processor. Notice that the job of the interface
is to use the processor signals and generate the appropriate signals for setting
up communication with the memory.

Timing Sequence for External Memory Access

The timing reference for the external memory access is provided by the
CLKOUT signal of the C54xx devices. Depending on the operation performed,
the external memory requires a number of clock cycles. During the entire
memory read and write operations, MSTRB remains low and the PS and
DS are active while program memory and data memory, respectively, are

240 Chaptér 9 Interfacing Memory and Parallel I/O Peripherals to Programmable DSP Devices

TMS320C5416 - + Merory’

Veco——

MP/MC

23, ey g
A0-A22 ——4—p | | Ao

: 16 16
DO-DI15 +74——> Memory ¢74—-> D0-DI15

Interface
o 2// » WE
PS,DS Ve » ’_
— » OE
MSTRB . » —
_ m—]

RW ¥

Figure 9.3 Memory interface block diagram for the TMS320C5416 processoru

9.4.2

accessed. The R/W signal is used to specify the direction of data transfer.
Figure 9.4 shows the TMS320C54xx signals during two memory reads and a
memory write operation, The strobe signal, MSTRB remains low for both read
and write operations. R/W is high for the read operations and becomes low
for the write operation. Note that the write operamon requires two cycles. This
is because, in the example, the write operation is, for an external memory
location. Also note that during the read operation, PS is low since the read

locations are in the program space. Likewise, during the write operation, DS is

low, indicating a write operation with the data memory.

Wait States

~ The TMS$320C54xx DSP can be interfaced to slower off-chip memories and
I/O devices by introducing wait states. Software programmable wait states
are easily incorporated without any external hardware. The user-accessible

memory-mapped software wait state register (SWWSR) controls the internal -

software wait state generator. Program and data memory spaces have two
pages each of 32K, and for the 1/0, a single page of 64K that can be pro-
grammed to have software-generated wait states. This is done by means of a
three-bit field, for the corresponding space and address range, in the SWWSR:
- 000 corresponds to no wait state and 111 to seven wait states. Memory devices
that require more than seven wait states have to be interfaced using the hard-
ware READY signal. An external device uses the READY signal to indicate its

CLKOUT

I
Address - X
\ Data——-l-———< Read >——< Read >-——+———<

94 Memory Interface 241

M~ M~ M~~~
: - |

Write data

T I
I I
I I
! !
| |
I I
b
I I
I |
I I
I I

W

[i
1 |
I I
I |
I I
I I
I I
I +
I I
I |
I I
| I
[I

L
i I I o |

Flgure 9.4 Memory interface signals for a read—reaa—wme sequence of operations

(Courtesy of Texas Instruments inic.)

readiness for the bus transaction. The processor checks the READY signal
during each bus cycle and completes the bus cycle only when the sngnal be-
comes logic 1.

The primary goal of a DSP is to make external memory access as fast as
‘possible. The interface hardware introduces. signal delay and thus slows the
memory accessing. One solution is to design the interface without any device.
Such an example is shown in Figure 9.5. There is no address decoding to
generate chip-select signals. This means that the entire addressing space is
used by just one 8K x 16 SRAM device. For instance, the memory not only
responds to the address range 0000-1FFFh, it also responds to all the ranges
_generated by all possible combinations of the unused address bits A13-A19.
“The PS and DS mgnals are not combined with the R/W signal to generate the
‘WE signal—only RfW is connectéd to WE. This means that the SRAM is in-
distinguishable as a program or data RAM.

One subtle point to remember is that only the program memory can be
paged in TMS320C54xx processors. The DS pm will never go low above the
OFFFFh address. Paging in program memory is controlled by the XPC register.
It allows paging of seven extra address lines in program space. For example, if

242 CGhapter 9 Interfacing Memory and Parallel I/O Peripherals to Programmable DSP Devices

TMS320C5416 ° SRAM
. 13 » 3
AO-AI2 S // , » AO-A12
o 16 _
DO-DI15 1— // - p| DO-D15
~ MSTRB [—— —) CS
Vec o—— MP!.I-VI-E

<43

Figure 9.5 An example of a no-decode external memory interface

>

' A17 of the memory device with storage of 256K x 16 RAM is connected to PS,
only 192K words can be accessed. This is because 64K words of data memory
(corresponding to PS high) will be lost, since data memory cannot be paged
beyond 64K words; program memory can be paged for the full 128K words.

A disadvantage of external memory is that it may be slower than the pro-
cessor and may not be able to keep pace with the processor. However, it can
be accessed using wait states to slow the processor for transactions with the
slow memory.

A way to access the program memory with zero wait state is to run the
code from the internal memory. For this, the OVLY bit in the PMST register
has to be set. This, however, causes the. internal data memory (SRAM or
DARAM) to overlap the program memory region, thus reducmg the available
memory space.

Example 9.1 Assuming that the SRAM in Figure 9.5 is to be used to hold a program, how
. many address ranges exist for the TMS32OCS416 processor to access this
memory? S

Solution The address lines A13-A22 for the C5416 can take any binary value from
0000000000 to 1111111111 Any of these values combined .with the specific
~ value of AO-A12 generates the address for the same specific location. Since
there are 10 bits that are don’t cares, there exist 2! or 1024 valid addresses for
each location. For instance, the first lacation in the memory can be accessed
using address 00000h, or address 12000h, or address 24000h, etc. Thus, 1024
address ranges exist for the memory in ngure 9.5.

" 9.4 Memory Interface 243

943 Memory Design Examples

We now consider some &mple examples to illustrate mterfacmg external
memory devices with the TMS320CS4xx signal processors.

>, Example 9.2 Design an interface to connect a 64K x 16 flash memory to a TMS320C54xx
‘ device. The processor address bus is A0-A15.

DS -
'MSTRB [—@—

’ .VccO
- ﬁ’
WP
: U SO 7 S
DO-D15 < ‘ " D0-D15
| 28F400B
AQ-A1 , AQ-
TMS320C54xx 0-ALS T > O-A1
DSP —
~>.
> D——» Wi
RAW :

o N D

?

Figure 9.6 An example of a flash memory interface for the TM5320C54xx DSP

(Courtesy.of Texas Instruments inc.}

- Solution Figure 9.6 shows an interface between the TMS320C54xx device and the
. 64K x 16 flash memory [4]. The 16 address lines (A0-A15) are used to ad-
dress the 64K flash memory. Writing into flash memory for programming re-
quires wait states, while reading from it does not. Under program control, XF
is driven low in the read mode and high in the write mode. In this example,
.external memory -does not use the READY signal to interface with the DSP.
. Wait states may be introduced by approprlately loading the SWWSR register.
The R/W signal is used along with MSTRB to provide the write-enable signal
to the memory for programming purposes. For reading the memory, MSTRB
is used along with the XF signal to enable the output of the chip.

‘244 Chapter 9 Interfacing Memory and Parallel /O Peripherals to Programmable DSP Devices

D> Example 9.3 Design a data memory.syster‘n ‘with address range ‘000800h-000FFFh for a
‘ C5416 processor. Use 2K x 8 SRAM memory chips.

DO-DI35. < DO-D135

S SRAM e SRAM
;“‘]Do_m N D0-D7 D8—D151 Y DO-D7
A0-AlD | A0-AT0 J>1°10-~A10 AD-AID N AD-AlLQ
___DS ™ _ A
MSTRB 77 OWE - WE
RW | - OE O OE
TMS320C5416 - =7 ‘ S5

’ Vec e—— MP/MC .

All

Decode
- logic

Figure 9.7 Schematic of a 2K x 16 SRAM memory sysgem for Example 9.3

~ Solution . Figure 9.7 shows the memory interface. The width of the data bus for memory
chips is 8 bits, but the width of the data bus for the processor is 16 bits. Hence,
D0-D7 of the processor is connected to D0-D7 of the first memory chip and
D8-D15 to D0-D7 of the second memory chip to create the 16-bit data bus.
Output enable and write enable for the memory chips are generated by com-
bining the DS, MSTRB, and R/W signals of the TMS320C5416 processor.
‘Address lines A11-A22 are used in the decode logic to generate chip-select
signals for the memory devices. These must all be logic 0 to generate the chip
- select for the two devices so that the memory responds to the desired address
. range. : -

http:DO-D7.of

9.5 Parallel /O Int"erfac.e 245 .

g E'xgmple 9.4 Interface an 8K x 16 program ROM to the C5416 DSP in the address range

k 7FB000h 7FFFFPh

A0-Al2[T AgCAD T A0-Al2 -

DO-DI5

< . 16-bit data bus

D0-D15 :
_ TMS320C5416 | S ' ROM
MSTRB|
PS
R/W
Vec e—— MP/MC o
L CS
Al3
Al4
Al5
Alb
Al7
Al8
Al9
A20
A21
AR
" Decoder logic -

Figure 9.8 ‘ Schematic of an 8K x 16 ROM memory interface circuit for Example 9.4

Solution Data flow takes place in only one dlrec‘uon whxle mterfacmg a ROM to a pro-
" cessor. Hence, generating only the output enable signal is required for the
~ memory device. Address lines A13-A22 are used to generate the chip-select

control sngnal Fzgure 9 8 shows the memory mterface

‘9.5 “parallel /O Interface

- Parallel 1/O ports are used for interfacing external devices, such as A/D and
-D/A converters, to the DSP-processor.- Accessing 1/0 ports requires the use of
PORTR and PORTW instructions. The PORTR (port read) instruction is used

246 Chapter 9 Interfacing Memor)f and Parallel /O Peripherals to Programmable DSP Devices

Figure 9.9

I/0 interface signals for a read~write~read sequence of operations

(Courtesy of Texas Instruments Inc.)

to read a peripheral connected to an mput port The data so read is placed in
the specified data memory location. Similarly, the instruction PORTW (port
write) is used to send the contents of the spec1ﬁed data memorv ’locanon toan

~output port.

The timing diagram in Flgure 9.9 shows the signals that are involved in an
1/0 transaction. This timing diagram is similar to a memory timing diagram
except that a few different control signals are involved. The processor uses the
IS signal to indicate an I/O .operation. At least two clock .cycles are required
for performing the 1/0 read and write operations. During these operations, the
IOSTRB signal remains low. This signal can be used to. control the output
enables of the external devices used to implement the I/0 ports. Similar to
a memory interface circuit, wait states can be mserted to interface slow
peripherals.

We talk about three rypes of parallel 1/0 operations with a processor These
are unconditional 1/0, programmed 1/0, and interrapt 1/0. Unconditional 1/0
is the simplest of the three types. This technique is used with devices that do
not have any handshake signals. Programmed 1/0 and interrupt 1/0 are more
sophisticated approaches, as these involve special signals and capabilities. In
the next two sections, we discuss details of the programmed and interrupt 1/O..

L o . 96 Programmed 1/0O 247

9.6 Programmed /0

In this method, the CPU keeps polhng the external device until it is ready for
transmitting or receiving data. Software polling is used in programmed 1/0 to

ascertain the readiness of the extemal device for a data transfer to or from the

processor. C54xx devices have dedicated pins for this purpose. Control signals
are sent and received via. these pins by software. In addition, C54xx has two

~ registers, named GPIOCR and GPIOSCR. GPIOCR is a general-purpose 1/0

register that is used to program the signals for I/O interfacing. GPIOSCR is a
status register used to read the status of the handshake signals. Although these
dedicated pins vary from one device to another, every version of the C54xx

family has at least two dedicated pins for performing the 1/O operations: °

These signals, as shown in Table 9.1, are BIO and XF. BIO is an input to the
processor and XF is the output. ,

Using software, BIO can be used to monitor the status of an external
peripheral. The XF s:gnal is' used to control the peripheral. This mode of
communication using BIO and XF signals is asynchronous and is helpful in

making the processor communicate with devices that are slower than the

processor itself. Data length can be 8 bits or 16 bits. On detecting a low BIO,
the processor reads the peripheral data using the PORTR instruction. In turn,
it informs the peripheral via XF about the completlon of the transacuon,
allowing the processor to initiate the next transfer.

-Figure 9.10 shows an example of an interface between an A/D converter

TMS320C54xx _ AID converter
AO-AIS [—<—» o
s i p Address 10R3 » BD
— ‘Decoder o
: ; , o . '_Anélog signal
© DO-DI5 <’r — DO-D15 —_—
XF - - 5OC
BIO < EOC

SOC—Start Of Conversion
"EOC—End Of Conversion

Figure 9.10

An A/D converter interface ih the programmed /0 mode

BN
‘ .v- . -

| Set XF =1, wait, set XF =0

| (SartADC) -

" Read sample from ADC, store,
" process, and save processed sample

y

. Wait for sampling interval * |:

Figure 9.11 Flow chart of the diagram for software polling for the programmed I/0 interface
of Figure 9.10 v S ‘ o

and the TMS320C54xx processor in the programmed I/0 mode. Notice that
XF is used to start the A/D conversion and BIO is used to determine its com-
pletion before the data is read. '

" The flow chart of the algorithm to implement the software polling used by
the processor to communicate with the A/D converter is shown in Figure 9.11.

- The critical consideration in the implementation of this scheme is to control
the time between any two consecutive XF or SOC pulses. This time is the
sampling interval and must remain constant for all samples. :

9.7 Intéri‘upts and /O

An interrupt is the signal that'a DSP processor receives requesting it to exe-
cute a specific interrupt subroutine called a service routine. If certain con-
ditions are satisfied, the processor suspends its current program and branches

9.7.1

9.7 Interrupts and 1/O 249

to execute the interrupt service routine. It resumes its previous actmty after

~ completing the service routine. Interrupt signals can be external or internal to

the processor. Typically, these are requests for data exchange between the

- processor and a peripheral, such as a convertet or another processor.

An interrupt requeSt initiates a special processing by the processor. The
request may be in the form of an electrical signal applied to the processor
or may be by execution of an interrupt instruction. An interrupt instruction
initiates what is called a software interrupt. The electrical interrupt signal
initiates a hardware mterrupt

The table in Figure A:10 in Appendix A, called an- mterrupt vector table,
lists all the interrupts that TMS320C5416 is capable of handling. As can be
seen from the table, interrupt numbers- are assigned to on-chip peripherals
and to interrupt request signals. Each interrupt is assigned a priority and a
memory location in the table. Priority is used to service the interrupt with
higher priority when two requests are received simultaneously. The interrupt
locations are used to branch to the service routines.

An example of a software interrupt is the instruction SINTIS. In the
TMS320C5416, this corresponds to software interrupt #18. The program
counter branches to the software interrupt #18 at address location och. After
executing the subroutine, it gets back to the suspended program. Hardware
interrupt requests come from devices both external and internal to the pro-
cessor. For instance, timer interrupt is an internal hardware interrupt, whereas
INT2 is an external hardware interrupt. _

Interrupts are also classified as maskable and nonmaskable. Maskable in-
terrupts are the ones that can be masked by software; and as a result, the

_ C54xx DSP ignores the requests for these interrupts and continues with its

current task, However nonmaskable interrupts cannot be masked and the
processor has to service these requests: In the case of the TMS320C54xx pro-
cessors, the hardware interrupts RS and NMI are nonmaskable interrupts.

Handling of Interrupts’
A flow chart ofrthe 'intervrupvt handﬁng by the C54xx processors is shown in

Figure 9.12. Interrupt handling is done in three phases: receiving the interrupt.
request, acknowledging the interrupt request, and executing the interrupt ser-

7 vice routine.

Servicing an interrupt depends on the pendmg interrupt status indicated by
the bits of the memory-mapped register IFR (interrupt flag register), masked/
unmasked status as indicated by the corresponding bit in the memory-
mapped register IMR (interrupt mask register), and the global enable INTM
bit in the status register ST1. The memory-mapped register IFR has bits cor-
responding to various interrupts. Whenever an interrupt request is made, the
corresponding bit in IFR is set until the CPU recognizes the interrupt. IFR

shows the pending external and internal interrupts. IMR is a register that is

1250 Chapter 9 -Interfacing Memory and Parallel I/O Peripherals to Programmable DSP Devices

' ‘(Irjtéﬁ'upt request received)

Interrupt
_ ‘maskable?

IMR mask
bit=17"

InterruE‘ t acknowledged;
IACK generated -

Hardware intefrppt

or.
INTR instruction?

oy) INTM settol-
PC sévcd on software Staék 4-————1 .

Interrupt service routine run

y

Return instruction restores PC

ﬁdain progfam continues]

Flgure 9.12 A flow chart of interrupt handiing by the processor

© {Courtesy of Texas Instruments Inc.)

used for masking external and internal interrupts. An interrupt is unmasked
by making 1 the corresponding bit in the IMR. The INTM bit in ST enables
or disables all interrupts globally. If INTM is 0, the processor does not recog--
nize any maskable interrupt.

9.7 Interrupts and /O 251

As the progessor receives the mterrupt request, the corresporiding bit in
IFR is set high. An interrupt request is acknowledged depending upon certain
conditions. First, if the interrupt is nonmaskable, it is acknowledged immedi-
ately Maskable interrupts are first checked for priority, and then the INTM bit
in the ST1 is checked to see if all the interrupts are globally enabled. The cor-
responding bit in IMR is then checked to-see if it is masked or not. If the
INTM is 0 and the IMR mask bit is 1, the processor sends acknowledgment by
mieans of the TACK signal.

"To service the intefrupt, the program counter’s ctirrent contents are pushed
into the stack. This provides the mechanism for the execution to return to the
interrupted program. The INTM bit is set to 1 to disable interrupts during the
service routine. The instruction éxecution control transfers to the interrupt
request location in-the interrupt vector table. In the interrupt vector table,
‘we write 4 branch instruction to transfer the execution control to the corre-
sporiding interrupt service routine (ISR). After completion of the execution of -
the ISR, the saved contents of the PC are popped from the stack and loaded-
back onto the PC. In this way, the CPU then starts executing the suspended
program. Also, the return instruction in the semce routme re—enables the
interrupts by clearlng the INTM bit.

TMS320C54xx S TLC1550
INT1 & : INT .

TOUT [—{ >0— | CSTART

CLKOUT |— : »| CLKIN :

‘ — ADC

: . RD ‘ Analog In
. - e ,
| ——CS '

D0-D9 K :_.___ 1 Do-D9

IOSTRB ?) B T - S ‘
‘ ~) S DO-D7 \ ; I
orRH| - {wr pac OVTIC > ‘
_ - OUT2 >——+ Analog
Address |——"\Jy0 Address—— S naog
AO-A15 | _— : Out

Decoder IOWO7H © TLC7S24

Figure 9.13 Circuit for interfacing TLC1550 (ADC) and TLC7524 (DAC) to the TMS320C54xx

252 Chapter 9 Interfacing Memory and Parallel I/O Peripherals to Programmable DSP Devices

> Example 9.5

Solution

‘Interface the TMS320C54xx to a' 10-bit ADC (TLC1550) and an 8-bit DAC
(TLC?524) The sampled signal read from the ADC is to be written to the DAC
after adjusting its size. The start of the conversion is to be initiated by the
TOUT mgnal of the timer. :

The ADC and the DAC can be connected to the DSP as. shown in Figure 9.13.

o The rate of generation of TOUT is the sampling frequency for the ADC. Con-

version is initiated by TOUT, and as soon as it is completed, INT goes low and
the DSP receives the interrupt request on INTI1.. DSP suspends its current

_program and services the interrupt by initiating the execution of the ISR for
 INT1. The interrupt service routine involves the reading of the sampled data

from the port for the ADC data and writing it to the port.for the DAC. Before
writing the data to the output port, it is shifted to the right by 2 bits, because
the output from the ADC is a 10-bit word, whereas the DAC can receive only

8-bit words. .

L T . - Enter to service :
St) . . -the Interrapt - -

Figure 9.14

‘ l
Disable Interrupts | . - Read ADC sample
h ' ' v
Initialize Timer | - | Process the sample »
Enable Interrupts Save processed sample
Y v
Do other interruptible Write processed
functions i sample to DAC
“Réturn from
Interrupt
@ . R)

Flow charts for the main program (a) and the interrupt service routine (b)
for Example 9.5 - : S

9.7 Interrupts and /O 253

ﬁ***************k***********#k**************************************t**************

* % ¥ o % % %

* AUTHOR:

*

DESCRIPTION:

PROGRAM FOR EXAMPLE 9 5 (F]Ie ex9p5 asm)

This C54xx program reads an -input swgna] applied to the ADC and outputs

it to the DAC. The ADC is read and the data is written to'the DAC in
the interrupt service routine for INTI.

Avtar Singh, SJSU

****************************t******************************&*****t*********f***********

buffer:

_c_int00:

wait _main:

PMST_VAL
BSCR_VAL

SWWSR_VAL

init_DSP:

.ref ¢ .int00- .- -
. .mmregs”

.bss sample, 1
.text

stm #0x0500, SP
sshx INTM
‘call init_DSP

. call init_timer

.. stm #OXFFFF; IFR -
orm #0002h, IMR
rsbx INTM -

; memory mapped reg definitions

data buffer

; init SP to 0x0500

disable all interrupts

“init DSP processor

init timer

¢lear any pending interrupt
unmask INT1 interrupt
enable all interrupts

sYou may insert code here to be executed during interrupt wait

b wait_main -

.set 00AOh
.5et~0000h
.sethGOOh .
.text |

1d #0, DP
“stm #0, CLKMD

stm #0, CLKMD
stm #0x4007, CLKMD

ws

bl

i wait for an INT1 1nterrupt

o e 0 0 e 8 e o o S B P B e o 4 o S T e o £ 5 0 e o

- - - - - - T o 7 W S o o e o A o L O O Ol e Gy 0 A A T "

Interrupt vect at 80h,
MP/(MC*) = 0, OVLY = 1
64K mem bank, no extra cyc]es

- between consecutive reads

1/0 wait states = 2 clocks

; Data page = 0

; Processor speed = 5xcrg§t,Freq.'

ifigure 9.15

Program.for Example 9.5

(continued)

254 Chapte; 9. Interfacing Memory and Parallel /0 Peripherals to Programmable DSP Devices

stm #PMST VAL, PMST
stm #BSCR_VAL, BSCR
stm #SWWSR_VAL, SWWSR
ssbx OVM

sshx SXM

ret

nop

nop

; Timer Initialization Routine

c 8

]

»

»

3’

;“Init Processor Mode Status’ Reg
; Set Bank Switching Wait States
; Set S/W Wait State Reg -~ -
; Saturate on overflow.

; Select sign extension mode

; Return ’

¥ e o o e o o ., 8 7 ek o 0 S O S o o 4l s, O, 1 o o

; Timer out (TOUT) frequency = CPU Clock/{PRD+1} = samp11ng freq

‘--—---—------nﬁuq-_--_______-_--------____--‘--—--—_-a-_--_--—-m—----—m-------____,__-

PRD_ value .set 9999
TCR_value .set 0000

.text
init_timer: ’ ‘ .
stm PRD_value, PRD
stm TCR_value, TCR -
ret -
nop
nop

;3 Interrupt Service Routine -

H

»

s PRD value for 8 KHz TOUT

I

TCR value to start timer

; init PRD register
3 start the timer
7 .return

§ = e o o e 2 4

; This reads the 10- bit ADC samp]e, converts 1t to an 8-bit sample and

s writes it to the 8-bit DAC

------------------------------ r;_—-——--—gu_—_-_--—_-_-u-_-_-_--—-n—----—h—-—-------—»--

ADC Data_In .set- 05h
DAC_Data_Out .set O7h

.text
INT1_ISR: E ?
portr ADC Data_In, sample
id sample, -2, A
st] A, sample

portw sample, DAC_Data Out
ret
nop
nop

ADC data-in 1/0 address
DAC data-out I/0 address

read the ADC data

-convert 10-bit data to-8 bit

save as 8-bit data

Place for any DSP algorithm

s write data to DAC

. return:

Figure 9.15 Continued

NHI:

INTL:.

sect *.vectors®.

B _c¢ int00

Nop
- NOP

RET
NOP

NGP .
- NOP

.space 4*15*16

B INTL ISR

NOP

.NOP-.

.space 4%12%16

wend

' 9.8 Direct Memory Access (DMA). 255

---------------------- L L T 2 7 P EC Ry — - 5
H - " " Bl T LT T ypm—p—

3 Interrupt Vector Table
; Reset vector

; Nonmaskable Interrupt vector

; Space for unused vectors.
; INTL Vector =

; Space for-unused vectors

* Figure. 9.15 : Continued

Figure 9.14(a) and 9.14(b) show the flow charts ot the main program and
the interrupt service routine, respectively. Fxgure 9.15 shows the program for
the application. Notice in the program that we need to initialize the processor
and the timer. The timer is initialized for generating the TOUT signal at the
samphng frequency We also must set up the interrupt vector table to service
the INT1- request. As shown in the program, the service routine uses a mem-
ory location * sample to save the sample value before sending it to the DAC.

9.8 Dlrect Memory Access (DMA)

Direct memory access (DMA) is the method of data transfer between reglons
in the memory space, or between' memory and a peripheral, without any in-
tervention by the CPU. Transfer of data can be to and from internal memory,
internal peripherals, or external devices. DMA works in the background of the
CPU operation, A 'DMA controller, which: may be a part of the DSP device,
manages the DMA operation. In this way, the DMA speeds up ‘the overall
processing as-the two activities; s1gnal transfer and the processing in the CPU,
are carried out simultaneously.

TMS320C54xx devices have up to six’ mdependent programmable DMA
channels for direct data transfer. Each channel comnnects a source location
and a destination location. Therefore, six different source locations can be

256 . Chapter 9 Interfacing Memory and Parallel 1/0 Peripherals to Programmable DSP Devices

9.8.1

connected to the corresponding six destination locations. However; at a given
time during the DMA operation, only one of the six channels can be used for
mgnal transfer. Each channel has to be enabled before it can be used and each
is assigned a priority. A high-priority DMA channel is serviced before a low-
priority channel if they both request service at the same time. When multiple
channels are énabled and have the same priority level, ‘then the enabled
channels are serviced in a circular pattern. As transfer of data involves read
and write operations, it is necessary to specify the source and destination
address locations for each channel separately. Transfer is in the form of blocks
of data where each block consists of frames. Each frame" consists of data ele-

' ments, which can be 16 or 32 bits each. The sizes of the block, frame, and

elements are programmed for each channel. DMA transfer for a channel can
be programmed to be triggered by some specific event, such as the transmit
interrupt.

. The total number of CPU clock cycles requnfed to complete a DMA transfer
depends on the source and destination locations, external interface conditions
such as wait states and bank-switching cycle etc., and the number of active
DMA channels. A single data element transfer between two internal memory
locations takes four CPU clock cycles, two cycles for read and two for write.
In cases where external access is required, data transfer depends on the con- -
ditions of the external interface.

DMA Opi.arétio"ri‘: ﬁd_ﬁfigﬂré'tibn o

Priot to ‘transfer of data, the DMA. reglsters have to be configured suitably.
Conﬁguratlon involves’ specifying details such as which channel is to be used

, for transfer, mode of transfer, source and destination addresses, assignment
" of priorities to different channels, and the sizes of the block, frame, and data

element. A number of registers need to be programmed with configuration
information. These registers along with their addresses are shown in the table
of Figure A.9 in Appendix A.

The most important régisters to be conﬁgured are the DMA channel pri-

' ority and enable control register (DMPREC) and the channel context registers.
* The 16-bit DMPREC controls the enabling of the DMA channels and channel
-priorities. Six bits of this register are used to a,ss1gn channel priorities and

another six to enable each of the channels:
Each DMA-channel has a set of five channel context reglsters to configure

the operation of that channel.: These are the channel source address register
. (DMSSEC), the channel destination address register (DMDST), the channel
- element count register (DMCTR), the channel sync select and frame count

register (DMSFC), and the channel transfer code control register (DMMCR).
The DMSRC and DMDST of each channiél hold the source and the des-

' tination -addresses,’ respectively, for that channel. The DMCTR holds the

number of data elements to be transferred in a frame. The DMSFC determines

9.8.2

-.9.8 Direct Memory Access (DMA) 257

- which synchromzatmn events will be used to tngger the DMA transfers, the

word size (16 bit or 32 bit) for the transfer, and the frame count. The DMMCR
is a 16-bit register that controls the transfer mode and is used to specify the
source and destination spaces, such as program memory, data memory, or 1/0
space. The user shoiild consult the Reference Set to determine the contents to

be programm_ed'into the DMFC, DMMCR, and DMPREC registers [2].

Register Subaddressing

: ‘-;I.{egiéter subaddressing is thé technique used for configuring the DMA reg-

SUBBANK
ACCESS
REGISTERS

isters. As shown Figure 9.16, the stack of subaddressed registers is the set of
DMA registers. To configure a DMA register, its code for configuration is
loaded onto one of the two subbank access registers (DMSDI or DMSDN).

‘Each DMA register has a unique subaddress. The ‘subaddress of the DMA

register to be configured is foaded into the subbank address register (DMSA).
This directs the multiplexer to connect the subbank access registers (DMSDI
of DMSDN) to the desired physical location, as shown in the figure. DMSDI is
used when an automatic increment of the subaddress_is required after each
access. Therefore, DMSDI can be used to configure the eéntire set- of registers.
DMSDN is used if a single register access is desired. In this manner, just

~ two memory-mapped registers, DMSDI and DMSDN, enable the user to have

access to all DMA registers. However, addressmg becomes a two-step process,
one to set up the DMSA and the other to read or write to elther DMSDN or
DMSDL

]

s
\ 4

-DMSDI -

A& AA 4

A A A A

- DMSDN

A
Y

' } ‘ : Subaddressed
. . & > A

registers
DMSA .)

§§

SUBBANK
ADDRESS -
REGISTER’

-

Flgure 9.16 Register subaddressing techmque for conflgurmg DMA operatlon

(Courtesy of Texas Instruments Inc.)

http:subaddless.is

258 Chapter'9 Interfacing Memory and Parallel I/O Peripherals to Pfogrammable DSP Devices

>

>

B>

Example 9.6 Write code to show how the DMA channel 2 source address register can be

. mltlahzed w1th the value 1111h.

Solution ‘Since a single register is to be modiﬁed,tsubbank register DMSDN can be used.
"~ The TMS320C54xx code to achieve this is as follows:

DMSA .set
DMSDN .set
DMSRC2 .set

ST™M

STM

55h
57h
0Ah

DMSRCZ, DMSA

“#1111h, DMSDN -

.
4 "

"3 subaddress

t 4
-
»
‘o,
»

: subbank address register address

subbank access register address

DMSA = address of DMSRC2

?fwrite 1111h to DMSRCZ

N

—

Example 9.7 Write TMS320€54xx code to show how the DMA channel 5 context registers
can be mmahzed Choose arb1trary values, to be written to the registers.

Solutibn

Example 9.8

DMSA
DMSDI

DMSRC5
DMDST5
DMCTR5
DMSFC5
DMMCRS

STM
STM
STM

STM

STM
STM

.set
.set
Jset
.set
.set
.set
JSset

) Smce thls is.a case of conﬁgurmg a set of reglsters, a subbank access register
“with .auto, increment (DMSDI) is used.in this example. The code to achieve
this is as follows. Note that only first subaddress in the sequential addresses of
“the context registers is needed.

‘55h' : subbank address register address
56h " ; subbank access register address

1Ah
1Bh
1Ch
1Dh

DMSRC5, DMSA

#2000h, DMSDI

#3000h, . DMSDI
#0010h, DMSDI

#0002h, DMSDI
#0000h, DMSDI

b4

19h " ; subaddress of DMSRCS

; DMSA = first sub address
“write 2000h to DMSRCS

write 3000h to DMDSTS
write 10h to DMCTR5

3 write 2h to DMSFC5

write Oh to DMMCRS

Write a TMS320C54xx code to transfer a block of data from the program
memory to the data memory. Following are the specifications:

26000h in program space (extended memory page 2)

Source address:

Destination address:

Transfer size:
Channel use:

07000h in data space
1000h 'single (16-bit) words
DMA channel #0

References 259

Solution The following code assumes that DMA reglsters have been defined with ap-
ppropriate directives.

STM DMSRCP, DMSA ; .set source program page

STM #2h, DMSDN : S - -
STM DMSRCO, DMSA ; set source program address to 6000h
STM #6000h, DMSDI ; DMSA points to DMDSTO

STM #7000h, DMSDI ; set destination address to 7000h
h © 3 DMSA points to DMCTRO
STM #(1000h-1}, DMSDI ; set for 1000h transfers
C : ; DMSA points to DMSFCO
STM #00000h, DMSDI s configure DMSFCO _
: : ; DMSA points to DMMCRO
- STM #00105h, DMSDI ~ ; configure DMMCRO
) o ; DMSA points to DMSRCO
STM #00101h, DMPREC. ; configure DMPREC

9.9 Summary

~ In this chapter, we looked at the signals for parallel interfacing of memory

and peripherals and studied various interfacing circuits for memory and data

converters. Under memory interfacing, we considered various memory op-

tions such as SRAM, ROM, and flash. We also studied various types of 1/0

~ interfacing methods, including programmed 1/0, interrupt 1/0, and direct
. INemory access. '

R_efer_ences

1. .TMS320C54xx DSP Reference Set, Volume 1, Texas Instruments Inc., March
2001. :

2. TMS320C54xx DSP -Reference Set, Volume ‘5, Texas Instruments Inc., Iune
1999, .

3. Texas Instruments Inc., Application Report: Understandmg C54x Memory
Maps and Examining an Optimum -C5000 Memory Interface, SPRA607,
November 1999.

4-4». Texas Instruments Inc., Applzcatzon Report: Connectzng TMS320C54x DSP with
Flash Memory, SPRA585, August 1999,

260 Chapter 9 Interfacing Memory and Parallel I/O Peripherals to Programmable DSP Devices

Assignments

10.

11.

12.

13,
14.

15.

What is the range of addresses that can be decoded if A1 is pulled low in a
processor with 20 address lines?

Up to what limit can the program memory be extended in a processor with 20
address lines? How must the extended-memory be organized for addressing
by a C54xx processor?

How many address hnes are requlred to access all locations of an 16K x 16
SRAM?

If TMS320C54xx is reading a memory word operand from address FFFOOh in
an SRAM, specify the logic levels of the following signals while the read oper-
ation is being performed: A0-A19, R/W, DS, PS, IS, MSTRB, and IOSTRB.

- Design a circuit to interface a 4K x 16 and a 2K x 16 memory chip to realize

program memory space for the TMS320C54xx processor in the address ranges:
03FFFFh-03F000h and 05F800h-05FFFFh, respectively. -
Design a circuit to interface 64K words of the program memory space from
OFFFFFh to 0F0000h for the TMS320C5416 processor usmg 16K x 16 memory
chips.

Write an assembly language program for the system in Flgure 9.10 using the
programmed 1/Q approach as shown in the Figure 9.11.

Describe methods to implement the signal-processing subroutine block in
Figure 9.11 so that a uniform sampling interval can be realized.

‘What are the various classifications of mterrupts for the TMS320C5416 pro

cessor?

How does the interrupt handling in the TMS320C54xx DSP differ for a soft- -
ware and a hardware interrupt?

Redraw the circuit of Figure 9.13 for a 16-b1t ADC and a 16-bit DAC. Use INT¢
for the signal sample transfer.

Write a program for the circuit of Problem 9.11. Let the samplmg rate be

"1/4096th of the processor clock. The DAC output (at the same sampling rate) .

is to be generated by averaging the. unmedxate four input samples as received’
from the ADC.

How does DMA help in increasing the processing speed of a DSP processor?

For TMS320C54xx DSP operating at a clock frequency of 100 MHz, how many
16-bit data elements can be transferred between two internal memory loca-

- tions per second in the DMA mode? .

Write a TMS320C54xx code to initialize the DMA channel 5 destination reg-

- ister to #5555h without using autoincrement. Rewrite the code using auto-

increment for the same operation. -

Assignments 261

16. Write a TMS320C54xx code to transfer a block of data from the program
memory to the data memory. Following are the specifications:

~ Source address: © 6000h in program space
Destination address: 8000h in data space
Transfer size: 800h single (16-bit) words
Channel use:: =~ DMA channel #1

Chapt_er,1 0

Interfacing Serial Converters to a
Programmable DSP Device

10.1 introduction

- In the previous chapter, wé studied the parallel peripheral interface of pro-
grammable DSP devices. In a DSP system, in addition to the parallel interface,
there is provision to interface serial peripherals. In the serial interfacing mode,
data transfer takes place bit by bit. The serial data transfer may be synchro-
nous or asynchronous, Synchronous serial transfer allows faster data com-
munication but requires a clock signal as the timing reference.

* In this chapter, we study the synchronous serial interface as provided in the
TMS320C5416 DSP. This device provides three multichannel buffered serial
ports (McBSP). We,also study how to interface the DSP to an audio CODEC
PCM3002 that provides a serial analog-to-digital converter (ADC) and a serial
digital-to-analog converter (DAC). This is the device that is used on the C5416
DSK board. Specifically, the following tOPlCS are considered:

Synchronous serial interface

A multichannel buffered serial port (McBSP)
McBSP programming

A CODEC interface circuit

CODEC programming

A CODEC-DSP interface example

10.2 Synchronous Serial Interface |

;Thf.a synchronous serial interface of the C54xx DSP [1] allows it to communi-
cate with the serial peripherals. Such an interface is shown in Figure 10.1 for a
device called an analog input/output CODEC. The CODEC consists of A/D

262

Figure 10.1

10.2 Synchronous Serial Interface 263

C54xx CODEC
DX v » DIN
DR [— DOUT
FSX FS*
FSR
CLKX , SCLK
CLKR

Synchronous serial interface {Ssh bétween the C54xx and a VCODE,’CVL device

and D/A converters. The signals used in the interface are shown in Figure 10.1.
On the DSP device the DX data line transmits the seria] data to the CODEC,

" and the DR receives it from the CODEC, The receive data-is timed with refer-

ence to the clock signal CLKR, and the transmit data with respect to the clock
signal CLKX. The start of the respective data (the first bit) is synchronized to
the frame sync signals FSR and FSX. Similar to the DSP -device, the corre-
sponding signal pins are provided on the CODEC device.

Figure 10.2(a) is the timing diagram for the receive operation for the inter-
face. Data reception starts with the FSR pulse. A bit is received. for each clock

“pulse of the CLKR. After receiving all bits, 8 in this case, the processor gen-

erates a RRDY signal to indicate that the word of data is ready in the data
receive register of the serial port. The status signal RRDY can be read by the
processor to determine if a word of data has been received.

Similar to receive timing is the transmit- timing shown in Figure 10.2(b).

‘Here the transmission starts with FSX and the completion is indicated by

XRDY changing from logic 0 to logic 1. The XRDY indicates that the pre-
viously placed data word has been transmitted and the port is ready to trans-
mit the next word, if so desired.

http:completion.is

264 Chapter 10 Interfacing Serial Converters to a Programmable DSP Device

. || o
FSRII'}ﬂlllllll}
T ‘

|

|

[

o [}i) N e

: ———h | | A

R\

RBR1 to DRR1 copy(A) Read from DRR1(A) RBRI1 to DRR1 copy(B) Read from DRR1(B)
‘ ' (@) '

I

l

Lo

-

Lo P

i Il I&'l ::
oy | |/} R

Figure 10.2(a) Receive operation timing for the SS!
(Courtesy of Texas Instruments Inc.)

Dx IE@ | @ @@@@@@ B9

i i I i E i'l l ¥ =

L N

DXR1 to XSR1 copy(B) Write to DXRI(C) DXR] to DXR1 copy(C) Write to DXR1
(b)

Lo
||
[
b
I
—
o

|

|
I~
il

|

Figure 10. 2(b) Transmit operation timing for the Ssi
{Courtesy of Texas Instruments Inc.)

10.3 A Multichannel Buffered Serial Port (McBSP)

MCcBSP is a full-duplex synchronous serial pdrt. Three such ports are provided -

on the TM8320C5416 DSP. McBSP can be used to interface synchronous serial
peripherals such as a CODEC. The block diagram of Figure 10.3 shows the
structure of this port. We will briefly discuss the McBSP here. For details, the
reader is advised to read the manual referenced at the end of this chapter [2].
The incoming data enters the port through the DR line into the receive

shift register, RSR, where it is assembled into a word that is transferred to re-

CLKX] lSPCR {4

10.3 A Multichannel Buffered Serial Port (McBSP) 265

McBSP ,
: N N Compand - P
DR —» RSR |»{ RBR Expand - 1 DRR |
DX «—1—{ XSR | —_Compress DXR |+

v

" CLKR € ’ Clock and l RCR ,LA- B L6-bit
FSX <« y -
.) frame syne XCR e . peripheral
FSR <« ’ generation - bus
CLKS — and control l SRGR % 411>

Figure 10.3

[PCR }<
l MCR }4 >

Multichannel .
selection RCER -+

IXCER }4

¥

A 4

AT

féﬁ; _ : Interrupts to CPU
REVT —
. XEVT > Synchronization
REVTA N events to DMA

XEVTIA —+»

Block diagram of the McBSP of C54xx

(Cburtesy of Texas instruments Inc.}

ceive buffer register, RBR. From the buffer register it is transferred to the data
receive register, DRR. The DSP processor reads the data from the memory-
mapped register DRR using an internal peripheral data bus. The port informs
the processor about the data in DRR using receive interrupt request, RINT, or
using the DMA signals. The DRR status is recorded in the serial port control
register 1, as the RRDY bit, so that the processor can determine when the data
is ready for transfer. The DSP can send the data to the outside world using the
memory-mapped data transmit register, DXR. The data written to DXR is
transferred to the transmit shift register, XSR, for shifting out 1 bit at a time.
The port informs the processor about the data in DXR using transmit inter-
rupt request, XINT, or using the DMA signals. The DXR status is recorded in
“the serial port control register 2, as the XRDY bit, so that the processor can
determine when the data has been transmitted.

266 Chapter 10- Interfacing Serial Converters to a Programmable DSP Device

There are six memory-mapped registers associated with each port. These
registers with their addresses are shown in the table of peripheral memory-
mapped registers in Appendix A. Bach register is of 16-bit length. There are
two receive registers to enable received data lengths upto 32 bits. Similarly,
there are two transmit registers for each port. There are two more reglsters—
SPSA for address and SPSD for data—associated with each port. It is by using
these two registers that we can access subbank control registers for program-
‘ming the serial port. The control registers are shown in the table for McBSE
control régisters and subaddresses in Appendix A. For instance, to write data
to receive control register 2 (RCR22) of McBSP2 whose subaddress is 0x0003h,
we write 0x0003h to register SPSA2 at memory address 0x0034h and the data
to memory—mapped register SPSD2 at address 0x0035h. A similar sequence
- must be used while readmg a subbank register.

+ 10.4 McBSP Programi'ni_ng

In order to configure the McBSP, one needs to write appropriate data to the

control registers. The functions of the bits of these registers are described in

the manual (see chapter reference [2]), which should be consulted to program

the port. A sample program is shown in Figure 10.4. This program configures

_ the McBSP2 to work with serial 20-bit input data and serial 20-bit output data
:and will be used in the example at the end of this chapter.

From the manual and Appendix A, we can see that the control register
SPCR12 enables or disables the receiver. Similarly, SPCR22 serves to enable or
disable the transmitter function. The control register RCR12 selects the 20-bit
data mode for the receiver, and RCR22 specifies that FSR will be used to start
receiving the data bits. Similarly, the control registers XCR12 and XCR22 se-
lect the corresponding functions for the transmitter. Finally, the PCR2 defines
clocks and frame sync pulses to be external and active high. This register also-
specifies other functions of the pins of the serial port, as indicated in the pro-
gram of Flgure 10.4. ‘

105 A coDEc Interface Circuit

The PCM3002 [4] is a device that can be directly connected to the synchronous -
serial port of the DSP. It provides 16/20-bit oversampling sigma-delta A/D
-and D/A converters. The maximum sampling rate that can be implemented
~ with this device is 48 KHz. Figure 10.5(a) shows the building blocks ‘of the
CODEC device. The detailed block diagram of Figure 10.5(b) shows the inter-
nal architecture of the PCM3002. As you can see from the block diagram, the
device provides stereo ADC and DAC with single-ended voltage input and
output for the left and right channels. The CODEC can be programmed for

10.5 A CODEC Interface Circuit 267

k***********

init’McBSP?_.asm ,
t

This modu1e initializes the ser1a1 port MCBSPZ on the (5416 DSK.

Author: Avtar S1ngh SJSU

EEE I T I S

B e L T L E 2 T X T E T T Ry

.include “regs.asm"
.def {nitMcBSP2

* Define the default values for the registers of McBSPZ.
é_Seria1 Port Control Register 1 {0010 0000 0010 0000)
5 Bitls = 0: Digital loopback disabled
; Bit14-13 = 01: Right-justify, sign extend

; Bit12-11 = 00: Clock stop disabled
; Bitl0-8 = 00: Reserved

; Bit7'= 0: DX enabler off

; Bité = 0: A-bis mode disabled

; Bith-4 = 10: RINT driven by frame sync

; Bit3 = 0: No sync error

; Bit2 = 0: RBRs not in overrun condition

; Bitl = 0: Receiver not ready '

s Bit0 = 0: Receiver in disabled and in reset state
VAL_SPCR1 .set 2020h

; Serial Port Control Register 2 (0000 0000 0000 0000)

s Bit15-10: = 00h: Reserved

; Bit9 = 0: Free running modée disabled
; Bit8 = 0: Soft mode disabled
<3 Bit7 = 0: Frame sync not generated
" ; Bit6 = 0: Disable sample rate generator
; Bit5-4 = 00: XINT driven by XRDY
; Bit3 = 0: No sync error .
3 Bit2 = 0: XSRs empty
s Bitl = 0: Transmitter not ready
; Bitd = 0

: Transmitter in disabled and in reset state

Figure 10.4 A program to initialize the McBSP2 . ‘ . | (continued)

268 VChapter 10 Interfacing Serial Converters to a Programmable DSP Device

VAL_SPCR2 .set 0000h
; Receive Control Register 1 (0000 0000 0110 0000)

3 Bitls = 0: Reserveq :
: Bit14-8 = 0000000: 1 word per frame

; Bit7-5 = 011: 20 bit receive word:
;3 Bit4~0 = 00000: Reserved
VAL_RCR1 ~ .set 0060h

; Receive Control Register 2 (0000 0000 0110 0001)

; Bitl5 = 0: Single phase frame

; Bit14-8 = 00h: 1 word per frame

; Bit7-5-= 011: 20 bit receive word

; Bit4-3 = 00: Ro companding o

3 Bit2 = 0: Receive frame sync pulses not ignored
; Bitl-0 =01: 1-bit data delay

o o#

VAL RCRZ .set 006lh

.

"3 Transmit Control Register 1 (0000 OOOO OLiO 0000)

s Bitl5 = 0: Reserved

; Bitl4-8 = 00h: 1 word per frame v
3 Bit7-5 = 011: 20 bit transmit. word

3 Bit4-0 = Qh: Reserved

VAL _XCR1 .set 0060h

-

Transmit Control Register 2 (0000 0000 0110 0000)

Bitl5 = 0: Single phase frame

; Bit14-8 = 00h: 1 word per frame

Bit7-5 = §11: 20 bit transmit word

‘Bit4-3 = 00: No companding .
Bit2 = 0: Transmit frame sync pulses not ignored
; Bitl-0 = 00: 0-bit data delay

»e
i

wh e s

VAL_XCRZ .set 0060h

; Pin Control Register (0000 0000 0000 1100)

Figure 10.4 Continued

10.5 A CODEC Interface Circuit 269

s Bitl5-14 = 00: Reserved

Bitl3
Bitl2
Bitll
- Bit10
; Bit9
; Bit8
s Bit7
; Bité
;s Biths
;. Bitd -
; Bit3
. 3 Bit2
; Bitl
'; Bit0

e we me

VAL PCR .set

i

ComROOO0 OO

L]

[T e I e S

DX, FSX, and CLKX are serial port pins

DR, FSR, CLKR, and CLKS are serial port pins
External transmit frame sync

External receive frame sync

: External transmit clock

External receive clock

Reserved ;

CLKS status oo
DX status : o
DR -status

FSX active high

FSR active high ;

Transmit data sampled on rising edge of CLKX
Receive data sampled on rising edge of CEKR

000Ch

* This procedure initializes the McBSP2 for use with the PCM3002 codec

* on the (5416 DSK
text

initMcBSP2:
stm
1dm
and
stim

stm
Tdm
and
stim

stm
stm
stm

stm

stm
stm

#SPCR1, MCBSPZ_SPSA = ; Disable McBSP2 RX
MCBSP2_SPSD, A)
#OFFFER, A

A, MCBSP2_SPSD

#SPCR2, MCBSP2_SPSA ; Disable McBSP2 TX
MCBSP2_SPSD, A ’

#OFFFEh, A

A, MCBSP2_SPSD

#SPCR1, MCBSP2_SPSA ; Set SPCR1.
#VAL_SPCR1, MCBSP2_SPSD

#SPCR2, MCBSP2_SPSA ; Set SPCRZ
#VAL_SPCR2, MCBSP2_SPSD

#RCR1, MCBSP2_SPSA ; Set RCRI
#VAL_RCR1, MCBSP2_SPSD

Figure 10.4 Continued

270 Chapter 10 Interfacing Serial Converters to a Programmable DSP Device

stm #RCRZ, MCBSP2_SPSA ; Set RCR2

stm #VAL_RCR2, MCBSP2_SPSD

stm #XCR1, MCBSPZ_SPSA ; Set XCR1
" stm #VAL_XCR1, MCBSP2_SPSD

stm #XCR2, MCBSP2_SPSA 3 Set XCR2
stm #VAL_XCR2, MCBSP2_SPSD-

stm #PCR, MCBSP2_SPSA ; Set PCR
stm - #VAL_PCR, MCBSP2_SPSD

ret

Figure 10.4 Continued

digital de-emphasms, digital attenuation, soft mute, dngltal loop-back, and the
power-down mode for the ADC and the DAC.

An analog signal is applied to the combination of a delta—sigma modulator

~ and a decimation filter to convert it tq a corresponding digital signal. The

input signal is sampled at a 64X oversampling rate, eliminating the need for
a sample-and-hold circuit and also simplifying the need for an antialiasing
filter. A decimation filter is used to reduce the digital data rate to the sampling
rate before generating the output bitstream. A highpass filter removes the dc
components of the signal. ‘

The delta-sigma modulator in conjunction with an interpolation filter
forms the DAC, which converts the serial digital signal to the corresponding
analog signal. The interpolation filter is used to increase the sampling rate to

LebIn O Analog Delta-Sigma Digital g = Rigitat Ont
Front-End | "} Modulator | *|Decimation ,
RechIn 0—] . Filter - Serial Interface |—G Digital In
~ - and ‘ '

. . - Mode Control :

Lch Out 0— Lowpass Fiiter | Muitilevel Digital : — SQeri
and | Delte-Sigma [+—{Interpolation/¢ Serial Mode Control

Reh Out O— Output Buffer Modulator Filter ¢— System Clock

®

Figure 10.5(a) Block diagram for the PCM3002. CODEC
{Courtesy of Burr-Brown Corporation)

10.5 A CODEC Interface Circuit 271

Decimation ,

LRCIN

BCKIN

DIN

DOUT

v

MCUYDEMO@

MDUYDEM1@

MLO
20BITO

FDDA®
RSTO/PDAD®

' ;
i X
i + ‘
Analog)] !
] - Qs
Vil ——+» FrontEnd | D;;;aduf;f:a S — . >
X Circuit (-) Highpass Filter :
i 1 N
veer 4! . . .
REF ; ! Serial Data
' ADC -
Veom — Reference :) Interface
VeeeR ; : &
i I
1 s A R N _
: Analogdv (=3 Delta-Sigma Decimation |
ViR +—p| Front-En Modulator |1 and |
o Circuit +) Highpass Filter :
;
; |
L J
Pl e '
. Analog Multilevel Interpolation X <
Vourl 44— Lowpass Delta-Sigma | Filter < ;
' Filter Modulator 8X Oversampling Mode
t *+— Control L
. - DAC : Interface
i
! Analog . Multilevel Interpolation :
VoyrR €4 Lowpass Delta-Sigma Filter 4 +
! Filter Modulator 8X Oversampling] ' -
e —— N P Reset and
* Power Down |4-
Power Supply Clock - Zero Detect)
A
‘ 1
AGND2 Vpc2 AGNDI Vel DGKD Vpp SYSCLK ZFLGW

NOTES: (1) MC, MD, ML, RST, and ZFLG are for PCM3002 only.

(2) DEM0, DEM1, 20BIT, PDAD, and PDDA are for PCM3003 only.

(®)-

Figure 10.5(b) - Details of the PCM3002 CODEC

{Courtesy of Burr-Brown Corporation)

the one needed by the modulator. The converted signal is ﬁltered w1th an
analog lowpass filter to generate the analog output.

. As shown in the Figure 10.5(b), there are two distinct parts of the CODEC

~dev1ce: one tg -handle the serial data transfers, and the other for its initializa-
tion and to set it to work in the desired mode. The two blocks, the serial data
interface and the mode control interface, handle these two functions.

A block diagram of how the PCM3002 CODEC device is used in the C5416

" DSK board is shown in Figure 10.6. The CPLD on the DSK provides the system

272 Chapter 10 Interfacing Serial Converters to a Programmable DSP Device

12.288 MHz
Oscillator

HPI
TMS320VC5416 | T PCM3002
- » | ——»{ DIN
. McBSP2 [¢———— MUX g | DOUTData Interface
: »| LRCIN'
DSP Bus — BCLKIN
CPLD
: | SYSCLK
L // | Control
| ML, MC, MD Interface

Figure 10.6 Block diagram showing the PCM3002 interface to the TMS320VC5416 in the DSK
(Courtesy of Spectrum Digital inc.)

clock and fh,e other txmmg signals for the mode control interface. It also con-

" trols the choice of using the McBSP2 port on the DSP for connection either to

the host PC (HPI) or to the PCM3002. The CPLD has user-accessible registers
that can be loaded to define thé various parameters of the CODEC data and
control interfaces [3]. ‘

The system clock for generating various timing signals for the CODEC is its
SYSCLK. This clock must be 256f;, or 384f;, or 512f;, where f; is the sampling
frequency. The CODEC detects the system clock and uses it to generate the
internal clock at 256f; for the digital filters and delta-sigma modulators. In
the C5416 DSK board, the SYSCLK is supplied by the CPLD-generated clock

CODEC_SYSCLK, which is generated from the 12.288 MHz CODEC_CLK.

The data interface of the CODEC and the DSP is by way of DIN for data
input, DOUT for data output, BCKIN for data bit clock, and LRCIN for frame
sync signal for the left and. right channels. The data bit clock and the frame
sync signals are generated by the CPLD from the CODEC_CLK and applied to
the CODEC and the DSP. The timing for the data input and output is shown
in Figure 10.7 for the four possible data formats. The frequency of the LRCIN .
signal is the ADC/DAC sampling frequency. The bits are transferred using the

-bit clock BCLKIN. In the CPLD, the BCKIN and LRCIN are generated from
the 12.228-MHz oscillator .clock called the CODEC_CLK, which is also the
default CODEC_SYSCLK, applied to the CODEC device. The corresponding

10.5. A CODEC Interface Circuit 273
FORMAT 0: PCM2002/3003
DAC: 16-Bit, MSB-First, Right-Justified N
LRON | ~Leh ~ Reh ~
=10 i O 1 A A N 1 1 A -
L T ZiZZZIIIZﬁl I L[4
E X 2 X 2
S MSB LSB' MSB LSB '
ADC: 16-Bit, MSB-First, Left-Justified
i
LRCIN | L-ch , R-ch I
2160 O N 1 O 1 Ln
DoUTZZZZZIIIZZIZZ S V2 -1 N L)1 LT M A Y
: . |
' MSB LSB ' MSB LSB |
FORMAT 1: PCM2002/3003
DAC: 20-Bit, MSB-First, Right-Justified o
. i 1
’LRC]N L-ch : R-ch —
BCKIN T ZIZZIH]]]ILT:ZI:ZZZZ]I[[II[[E:ZZZZLHHJ]IZZI:IZZZIIE[[L[IFI
DIN _ iiiiii: Y 2 N 710 NN W 72 2 I 710
| f! \ f
! _ MSB ISB' MSB LSB'
ADC: 20-Bit, MSB-First, Left-Justified
\ .
IRCIN _ [L-ch » R-ch
21 S 1 2 A 111
pouT ____11 R 118!19122'0| N lkl\zrl,?al IR
' MSB LSB | MSB LsB
Figure 10.7 Data transmission formats for the PCM3002 CODEC {continued)-

{Courtesy of Burr—Brown Corporation)

default bit clock BCLKIN frequency is 3.0122 MHz (or one-fourth of the
CODEC_SYSCLK), and the sampling frequency is 48 KHz. The default fre-
quencies can be changed by dividing the CODEC_CLK by 2, 4, 6, or 8. This
provides the capability to change the sampling rate to one of five rates, the
smallest being 6 KHz and the largest 48 KHz. :

274. Chapter 10 Interfacing Serial Converters to a Programmable DSP Device

FORMAT 2: PCM3002 Only {
DAC: 20-Bit, MSB-First, Lefi-Justified | o
LRCIN | ‘ I<h — - R-ch N
BCKIN’:_UI[LIEE::::::HI.’U]I[:::::J]]]]IE:::::I[M::::;I
DIN 11 S 1T T N 5 :::::::::__,:
' MSB ' LS8 - ' MsB LsB |
ADC: 20-Bit, MSB-First, Left-Justified .
LRCIN Lch o R-ch [~
BCKIN::jm:::::m::::m::::zm::::ﬁ
DOUT ____[1T1203] T[sfmeRel T M[2[3[T [i8[I9R0] ::::,
' MSB LSB ' MSB LSB 3
FORMAT 3: PCM3002 Only
DAC: 20-Bit, MSB-First, S . -
! , o, .
LRC]N—-i L~ch : R-ch E
1o, O I N o 0 1 1 ':
DIN__ " [M[2[3f - iRl if2[3] T TTishoRd
X / N / i
‘MSB LSB ' MSB S LSB '
ADC: 20-Bit, MSB-First, 'S ‘ -1
3]]
LRCIN L-ch 5 R-ch ‘E::
BCKIN __ I*m:fff::m::f:]]I[[[DIZ:::::I[FL[DT_::_' ;
157010y SN R /11 Y 1 31721 N 58 2 I I 3711 I
i) ! ‘\ - '

<\ MSB ‘ LSB ' MSB ~ LSB

Figure 10.7 : ‘Continued

- [> Example 10.1 Determine the timing parametérs for a 16-bit data communication in a DSK
configured for a clock divisor of 6. The oscillator clock (CODEC_CLK) is at
12.288 MHz. ‘ : o

" Solution CPLD input clock (CODEC_CLK) — 12.288 MHz

CPLD output clock for the PCM3002 (CODEC_SYSCLK) = 12.288 MHz/6 = °
< 2,044 MHz N

http:lJJJJJ.1T

10.6 CODEC Programming 275

Sampling frequency f; = 2.044 MHz/256 = 8 KHz.

'Samplmg interval = 1/8K = 125 msec

Bit clock frequency {(BCLKIN) = 2.044 MHzI4 =511 KHz
" Bit clock period = 1/511K = 1.96 psec

Time to communicate 16 bits of data = 16 x 196y = 3131 psec
Thus, in each 125 msec of time, the data is communicated just for 2 x 31.31

 Hsec for both channels.

10.6 CODEC Programming

ML |

To configure the CODEC we send control data using the mode control inter-
face signals as shown in the timing diagram of Figure 10.8. The mode bits
represented by the signal MD are sent-using the mode clock signal MC. The
mode load signal ML ‘defines the start and end of latching the bits into the
CODEC device. In the DSK these signals are generated in the CPLD from
the oscillator clock. The 16-bit mode control data that is transferred comes
ftom the CPLD and is placed into one of the foar reg13ters of the CODEC
device to program it,

" The four program registers of the PCM3002 are shown in anure 10.9(a).

‘The description of the various bits of these registers is shown in Figure

10.9(b). For a detailed description the reader is advised to consult the data

* sheet-for the CODEC device (see reference 4 at the end of this chapter). In the

program registers the two bits indicated as A1A0 specify the register to which
the data in other bits refer. For instance, for register 0 these bits are 00. Reg-

‘ister 0 can be loaded to control the attenuation to be applied to the DAC for

the left channel. Similarly, register 1 can be loaded with the attenuation data
for the DAC of the right channel. The number loaded in the 8 bits of either of

_these two registers applies the attenuation to the two channels according to

‘the equation

I

ve THU U fifyyu

¥

ot 1 t 1 i i 1 1 1 1 (t t

MD

[BiS{Bﬁ]BﬁJBﬁ{BiﬂBflo{ B9 [B8 | B7[B6 [B5 B4 [B3 | B2] 1_5.1‘] B0

Figure 10.8 v Mode‘cdntrol interface signal timing for the PCM3002 CODEC)
{Courtesy of Burr—Brawn Corporation) ‘ . N

276 Chapter 10 Interfacing Serial Converters to a Programmable DSP Device

BIS Bl4 BI3 BIZ Bll- BIO B9 BS B7 B6 BS. B4 B3I B2 Bl B0
REGISTERO [res | res | res | res | res | Al | A0 JIDL ALTI AL6] ALS| AL4] AL3 | AL2| ALI | ALO|

REGISTER1 | res | res | res | res | res | Al‘{ AD lLDRIAR?lAR6|AR5]AR4]AR3!AR2[ARHARO[
REGISTER2 [res | res | tes | tes | res | Al | A0 |PDAD|BYPS|PDDA] AIC | 1ZD | OUT JDEMI|DEMO| MUT]
REGISTER 3 | res‘l tes | rtes | res | res | Al | AD | res | res | res | LOP I res JFMT1]FMI0] LRP | res]

Figure 10.9(a) ‘Program registers for the PCM3002 CODEC
(Courtesy of Burr-Brown Corporation) '

REGISTER _BIT
‘NAME - NAME DESCRIPTION
Register 0 A(1:0) Register Address 00"
res Reserved, should be set to 0"
LDL DAC Attenuation Data Load Control for Lch
AL (7:0) _Attenuation Data for Lch
Register 1 A (1:0) Register Address "'01""
' res Reserved, should be set to 0" ,
LDR - DAC Attenuation Data Load Control for Rch
AR (7:0) - - DAC Attenuation for Rch
Register 2 A(1:0) Register Address "1,0\"';
" res Reserved, should be set to “0"
_PDAD ‘ADC Power-Down Control
PDDA DAC Power-Down Control .
BYPS ~ ADC High-Pass Filter Operation Control
ATC DAC Attenuation Data Mode Control
1ZD DAC infinite Zero Detection Circuit Control
ouT DAC Output Enable Control
DEM (1:0) DAC De-emphasis Control
MUT Lch and Rch Soft Mute Control
] ‘Register 3 A (1:0)) Register Address 11"
: “res Reserved, should be set to 0"
LOP ADC/DAC Analog Loop-Back Control
FMT (1:0) ADC/DAC Audio Data Format Selection

LRP ADC/DAC Polarity of LR-dock Selection’

Figure 10.9(b) Definition of the bits. of the program registers of the PCM3002 CODEC
(Courtesy of Burr~Brown Corporation) :

10.7 A CODEC-DSP Interface Example 277

‘Attenuation = 20 log(ATT/255)

where ATT is the value represented by the 8 attenua’uon bits in register 0 or
register 1. :

Either the LDL bit in regmter 0 or the LDR in regmter 1 can use the atten-
pation data to control the two channels.

The bits in register 2 are meant to select the power down mode for the
ADC and DAC, the ADC highpass filter bypass control, DAC attenuation
channel control, DAC infinite zero detection circuit control, DAC output en-

" able control, DAC deemphasis control, and the DAC soft mute control. To
enable or select a mode, the corresponding bit or bits are made 1. For the
deemphasis control, the two bits used. are as follows: 00 selects deemphasis
44.1 KHz, 01 deselects deemphasis, 10 selects 48 KHz deemphasis, and 11 se-

- lects 32 KHz deemphasis. -

Register 3 provides ADC/DAC loopback control, audio data format selec-
tion, and polarity selection for the LRCIN signal. A 1 in the LOP bit enables
the loopback, A 1 in the LRP bit selects the left channel when LRCIN is low
and the right channel when it is high. The data format is selected by the two’

- bits FMT1 and FMTO. The 00 on these two bits selects the format 0 for the
data as received from the ADC or applied to the DAC. These data formats are
shown in Figure 10.7 and provide four different ways to communicate data.

The CPLD that provides data for the four ptogram registers and other
coutrols on the DSK board has eight registers accessible from the DSP. These
registers are shown in Figure 10.10. These registers are each 8 bits wide and

" are located 'in the 1/0 space of the C5416. For instance, the registers at I/O
addresses 2 and 3 hold the CODEC programming data. For details of the bits
of these registers, the reader should consult the DSK manual [3], which is"also
available in the DEBUG environment of the CCS. The most significant bit in
the miscellaneous register at the [/Q address 6 must be checked each time any
new data is written to the CPLD registers for programming the CODEC.

The sampling frequency can be changed by loading the divisor, for the
CODEC clock, to the CODEC-CLK register at the I/O address 7. The sequence
of steps that need to be followed is: stop the clock, load the divisor, start the
clock, and select the divisor. The bits. of the CODEC-CLK register need to be’
loaded appropriately to accomplish these steps. The other CPLD registers are
there for configuring the memories and for communicating with the user
switches and the LEDs of the DSK.

10.7 A CODEC-DSP Interface Examplé

In this section, we write a simple application that involves conﬁgufii;g
McBSP2 and the PCM3002 on the DSK board. The configured system is used

Vo , , :
Add | Name Bit 7 Bit 6 1 Bit5 Bit 4 Bit3 Bit 2 Bit 1 Bit 0
0 USER_ USR_ USR_ | USR_ USR_ USR_ USR_ USR_ USR_
REG SW3 SW2 SW1 SWo " LED3. LED2 LED1 LEDO
R R R R RIW R/W RIW RIW
, . 0 (Off) 0(off) | 0(0f) | 0(0ff)
1 DC_REG | DC_ DC_ DC_ DC_ DC_ 0 DC_ DC_
DET ID_CTL' | STAT1 STATO RST ‘CNTL1 CNTLO
R R/W R R R/W RIW . RIW
) ‘ 0 0 (No Reset) 0 (Low) 0 (Low)
]2 CODEC_L CODEC_L_CMD [7..0]
* RIW
0
3 CODEC_H CODEC_H_CMD [15..8]
RIW -
. 0 .
4. | VERSION CPLD_VER [3..0 1o - BOARD_VER [2..0]
‘ R 7 R
5 DM_ DM_ | MEM MEM DM_ DM_ DM_ DM_ - DM_
CNTL SEL TYPE_DS | TYPE_PS | PG4 PG3 "PG2. PG1 PGO
R/W | RIW R/W R/W RIW R/W R/W ‘RIW
‘ 0 (internal) 0 (FLASH) | O (FLASH) | 0 (Page 0) | 0 (Page 0) 0 (Page 0) | 0 (Page 0} 0 (Page 0)
6 MISC CODEC_ 0 0 1o 0 DC_ DC32_ BSP2_
o | RDY : WIDE DDD SEL
R RIW R/W R/W
| 0(Ready) 0 (18 bits) | 0 (Even) 0 (CODEQ)
7 | CODEC_ |0 0 - 0 0 DIV_ CLK_ CLK_ CLK_
CLK : SEL STOP DIV1 ‘DIVO
RIW R/W R/W R/W

Figure 10.10 CPLD register definitions in the DSK5416
(Courtesy of Spectrum Digital 'lncr)'

aayxad dSa s[qewweiSold e 01 SISPIIAUO) [erag Suepayu] o7 481dvyDH 817

- 10.7 A CODEC-DSP Interface Example 279

© Start here
following reset.
Initialize stack pointer.
Disable all interrupts.
Initialize the processor.
(init_5416)

v

" Initialize the serial port.
(init_McBSP)

v

Initialize the AIC,
(init_PCM3002)

'

Enable serial port transmitter.
Enable serial port receiver.

v

Clear any pending interrupt.
Unmask serial port receive interrupt:
Enable all interrupts.

Wait here fora

serial interrupt to -
occur

'Figure 10.11(a) Main program flow chart for the signal loopback progrém

to implement a signal loopback by reading a signal applied to the ADC and
writing it to the DAC. The application can be easily extended to include any
kind of processing on the signal read from the ADC before sending it to the
DAC. The flow chart of the main program is shown in Figure 10.11(a).

The main- program starts by initializing the stack pointer and disabling
the interrupts. Establishing the stack allows using subroutines. The disabled

280 Chapter 10 Interfacing Serial Converters-to a Programmable DSP Device

Enter

Read sample from McBSP2
Data Receive Registers

v

Process the sample

v

Write processed sample
to McBSP2DXR
Data Transmit Registers

v

Enable interrupts and retum

Figure 10.11(b) Receive interrupt service routine flow chart

interrupt system ensures that during initialization interrupts will be ignored.
This is followed by three subroutines that initialize the processor, the serial
port, and the PCM3002. After the initializations are done, the serial port trans-
mitter and the receiver are énabled. Next, any pending interrupt is cleared and
the receive interrupt is unmasked before enabling the interrupts. At the end,

the processor waits for the receive interrupt to occur.

When a receive interrupt occurs, the corresponding service routine is exe-
cuted. In the service routine, the DRR registers are read into the accumulator.
The word so read is written back to the DXR after formatting it for the DAC.
The return from the service routine, with interrupts enabled, makes the pro-
gram wait for the next interrupt, which occurs after the ADC provides the next
sample to the port. It is-in this routine that any signal processing on the
received signal can be implemented. The receive interrupt service routine flow

chart is shown in Figure 10.11(b).

The entlre prc}gram, shown in Figure 10.11{(c), consists of the mam module

ules 1th5416 asm, initMcBSP2.asm, and" 1thCM3002 asm; and the module
regs.asm that defines various constants used in the program. Notice that some
of the definitions in the regs.asm module are specific to the DSK-implemented
registers, such as DSP_CPLD_CODEC_L. These registers are described in the
DSK manual [3] and in the Help facility of the DSK software Code Composer

Studio (CCS).

10.7 A CODEC-DSP Interface Example 281

**~

*

* signallBmain.asm

.)

* This program reads an input signal from the ADC and writes it to the DAC on the
* DSK5416 board. This main module includes the entry-point for the program.

* . . .)

* Author: Avtar Singh, SJSU

*

Ferterdodede ek e e e e Ve 6 e ok ek e e ek Ak e ek Aok ok ek ok e ook e ek e ek ke ek ek ok ke

.include

ref
.ref
*.ref
.def
.def

- Lref

.ref
VAL_SP : .set
.data

sample_upper_word k .word
- sample_lower_word .word

.text

"regs.asm®
initC5416
initMcBSP2
initPCM3002
_c_int00
brint2_isr
sample_receive
sample_transmit

0x0500

* The entry-point for the program

_c_int00:
) ~stm
ssbx

call
call
call

stm
orm

stm
orm

#VAL_SP, SP
CINTM

initC5416
initMcBSP2
initPCM3002

#SPCR1, MCBSP2_SPSA

#0001h, MCBSP2_SPSD

#SPCR2, MCBSP2_SPSA

#0001h, MCBSPZ_SPSD

ws

we

initial stack address

received sample

Define the stack ‘
Disable all interrupts

Init the DSP processor
Init the McBSPZ port
Init the DSK CODEC

Enable McBSP2 receiver

Enable McBSPZ;iransﬁitter :

- Figure 101100 A signal kloo;‘)back implementation program for the DSK5416

282 Chapter 10 Interfacing Serial Converters to a Programmable DSP Device

stm #0FFFFh, IFR .3 Cledr pending interrupts

orm #040h, IMR ; Unmask McBSPZ RX int
rsbx INTM ; Enable all interrupts
wait_main: idle 1 CoL ; Wait for an RX interrupt
' b wait_main
nop
nop
nop

* Interrupt service routine for McBSPZ Receiver

brint2_isr: - g ’
call sample_receive . 3 Receive the sample
nop . 3 Process’ the sample
call sample_transmit . 3 Transmit the sample
rete - ‘

* This procedure receives a 20-bit value from the ADC
* Return with A (LSBs) = 20 bit received sample

sample_receive:

pshm ARS
Tdm MCBSP2_DRRZ, B ; Retrieve upper 16 bits
stm #sample_upper_word, ARS '
stl B, *AR5+ ;3 Save upper bits locally
Tdm MCBSP2_DRR1, A ; Retrieve lower 16 bits
and #0FFFFh, A
stl A, *AR5 ; Save lower bits locally
sft] B, 15
“or B, I, A ", Construct the sample in A
popm AR5 .
ret’

% This procedure sends a 20-bit value in A (LSBs) to the DAC. o ’

Figure 10.11{(c) Continued"

10.7 A CODEC-DSP Interface Example 283

sampie_transmit:

. ~ _stlm A, MCBSPZDXRL - ; Transmit lower 16 bits
S sfta A, -16 o
stim A, MCBSP2_DXR2 ; Transmit upper'bits
ret
.end

#***
*

* initC5416.asm

*®

_* .This module in%tia%izes the proceésor.
+*

* Author: -Avtar Singh, SJSU:
*
#***

.include "regs.asm"
.def initéséiﬁ
* Define ;alues for the DSP registers.
;_Procesgbp‘Mode Stétus Regi;ter~(0000 0000 1110 IOOO)W

IPTR = 000000001 Vector table res1des at address 0080h
/ 3 MP/MC* = 1: Enable microprocessor mode
3 OVLY = 1: On chip RAM addressable in data space, but not in
: program space
; AVIS = 0: Address visibility mode
; DROM = 1: On-chip ROM not mapped 1nto data space
3 CLKOUT = 0: CLOCKOUT off
3 SMUL = 0: Saturation on multiplication
; 88T = 0: Saturation on store

"VAL_PMST * .set 00EBh

; Software Wait State Register (0111 1111 1111 1111)

3 XPA = (: Extended program address contrel bit

; 1/0 = 111: Base wait states for I/0 accesses

; Data = 111: Base wait states for upper external data access
"; Data = 111: Base wait states for lower external data access ‘

; Program = 111: Base wait states for upper extern prog access

; Program = 111: Base wait states for Tower extern prog access

Figure 10.11{c) Continued

284 Chapter 10 Interfacing Serial Converters to a Programmable DSP Device

VAL_SWWSR _.set 7FFFh
ctext
init(5416: - ‘
1d - #0, DP : ; Data page = 0
stm #4007, CLKMD ; DSP clock = 5xPLL
stm * #VAL_PMST, PMST ; Init PMST
stm #VAL_SWWSR, SWHWSR -+ Init SWWSR
sshx SXM ; Enable sign extension
ret

'***&************************************t***** .

*

“* initMcBSP2.asm

*

* This module initializes the serial port McBSP2 on the (5416 DSK.

*

* Author: ' Avtar Singh, SJSU
*) i
**
.include "regs.asm"
.def initMcBSPZ

* Define the default values for the registers of McBSP2.

; Serial Port ControT'Register 1 (0010 0000 0010 0000)

s Bitl5 =-0: Digital loopback disabled

H Bitlé-;3 = 01:'Right-justify, sign extend
3 Bitl2-11 = 00: Clock stop disabled

; Bitl0-8 = 00: Reserved ‘

; Bit7 = 0: DX enabler off

; Bit6 = 0: A-bis mode disabled

; Bit5-4 = 10: RINT driven by frame sync

3 Bit3 = 0: No sync error

; Bit2 = 0: RBRs not in overrun condition

; Bitl = Ot Receiver not ready -
=

3 Bito Receiver in disabled and in reset state

Figure 10.11(c) Continued

VAL_SPCRI

VAL_SPCR2

VAL_RCR1

VAL_RCR?

10.7 A CODEC-DSP Interface Example 285

.set 2020h

+ Serial Port Control Register 2 (0000 0000 0000 0000)

; Bitl15-10: = 00h: Reserved

; Bit9 = 0: Free running mode disabled

; Bit8 = 0: Soft mode.disabled

3 Bit7 = O: Frame sync not generated.

; Bith = 0: Disable sample rate generator

; Bit5-4 = 00: XINT driven by XRDY

3 Bit3 = 0: No sync error

; BitZ = 0: XSRs empty

; Bitl = 0: Transmitter not ready ;

; Bit0 = 0: Transmitter in disabled and in reset state
.set 0000h

; Receive Control Register 1 (0000 0000 0110 0000)
; Bitl5 = 07 Reserved

; Bitl14-8 = 0000000: 1 word per frame

; Bit7-5 = 011: 20 bit receive word

; Bit4~0 = 00000: Reserved

.set 0060h

3 Receive Control Régister 2 (0000 0000 9110 0001)

; Bitl5 = 0: Single phase frame
; Bitld4-8 = 00h: 1 word per frame

; Bit7-5 = 011: 20 bit receive word

; Bitd-3 = 00: No companding

; Bit2 = 0: Rece1ve frame sync pulses not 1gnored
; Bitl-0 = 01: 1-bit data delay

.set 0061h
; Transmit Control Register 1 (0000 0000 0110 0000)

s Bitls = 0: Reserved

; Bitl4-8 = O0h: 1 word per frame

3 -Bit7-5 = 011: 20 bit transmit word-
; Bitd-0 = Oh: Reserved '

0

Figure 10.11(:) Continued

286 Chapter 10 Interfacing Serial Converters to-a Programmable DSP Device

CVALXCRL .set

0060h

; Transmit Control Register 2 (0000 000C 0110 0000)

; Bitls =
s Bitl4-8 = OCh: 1 word per frame

3 Bit7-5 =
-3 Bit4-3
; Bit2 =

; Bitl-0

VAL_XCR2 .set

0: Single phase frame

011: 20 bit transmit word

00: No compand1ng

Transm1t frame sync pulses not 1gnored
00: 0-bit data .delay

ll(:ill

0060h

; Pin Control Register {0000 0000 0000 1100)

; Bitl5-14 = 00: Reserved

; Bitl3
; Bitl2
“5 Bitll
; Bitl0
3 Bit9
s Bit8
; Bit7
; Bité
; Bith
; Bitd
; Bit3
3 Bit2
3 Bitl
;. Bito

now & ¥ owow onow #n
DOm0 000
Py e as

VAL_PCR .set
* This procedure initializes
.text

initMcBSP2:
stm
Tdm
and
stim

i

0: DX, FSX, and CLKX are seial port pins

.0: DR, FSR, CLKR, and CLKS are serial port pins
0: External transmit frame sync '

0: External receive frame sync

External transmit clock

External receive clock

+ Reserved

CLKS status

DX status

DR status

FSX active high

FSR active high

Transmit -data sampled on rising edge of CLKX
: Receive data sampled on rising edge of CLKR

000Ch

the McBSPZ for use with the PCM3002 codec on the C5416 DSK.

#SPCR1, MCBSP2_SPSA ; Disable McBSP2 RX
- MCBSP2_SPSD, A :

#OFFFER, " A

A, MCBSP2_SPSD

Figure 10.11(c} Continued

10.7 'A CODEC-DSP Interface Eiample 287

stm . #3PCR2, MCBSP2_SPSA . . ; Disable McBSP2 TX

Tdm MCBSP2_SPSD, A
and #0FFFEh, A

stim A, MCBSP2_SPSD

stm #SPCRL, MCBSP2_SPSA ; Set SPCRI -

stm . #VAL_SPCR1, MCBSPZ.SPSD
stm. #SPCR2, MCBSP2_SPSA ; Set SPCR2
stm . #VAL_SPCR2, MCBSPZ_SPSD
stm #RCR1, MCBSP2_SPSA ; Set RCRI
stm “#VAL_RCR1, MCBSP2_SPSD
stm #RCR2, MCBSP2_SPSA. ; Set RCRZ .
stm #VAL_RCR2, MCBSP2_SPSD - S
stm #XCRL, MCBSP2_SPSA ; Set XCRl
stm #VAL_XCR1, MCBSPZ_SPSD
stm #XCR2, MCBSP2_SPSA ~ ; Set XCR2
stm #VAL_XCR2, MCBSP2_SPSD
stn -~ #PCR, MCBSP2_SPSA ; Set PCR
stm #VAL_PCR, MCBSP2_SPSD -
ret . . .
f*****************
* .
* initPCM3002, asm
* o o .
* This module 1nitia1izés the PCM3002 codec on the {5416 DSK.
* N . f .
* Author: Avtar Singh, SJSU
*

k*********f*?*****************

.izclude - "regs.asm"
.def initPCM3002
.def sampling_rate set

* Define values for tﬁe codec clock register {in the CPLD) and the control registers of
* the PCM3002 codec.

Figure 10.111¢) Continued

‘288 Chapter 10 Interfacing Serial Converters to ‘a'Programmable DSP Device

*

VAL_CLK_REG .

.

VAL_REGO

1 4

ws

*

VAL_REG]

Y -e we ws

'

3 Bit7-4

;s Codec clock Reg1stér (0000 1010)

0000: Reserved

s Bit3 = 1: Clock divisor selected

0: No divisor, 48 KHz sampling rate
Bit2 = 0: Clock enahled
Bitl-0 = 00: Clock divisor for 24 KHz sampling rate
01: Clock divisor for 12 KHz sampling rate
10: .Clock divisor for 8 KHz sampling rate
11: Clock divisor for 6 KHz sampling rate

set 12h

; Register 0 (0000 0001 1111 1111)
; Bit15-11 .= 00000: Reserved

Bitl0-9 = 00: Register address 0.

; Bit8 = 1: Enable DAC attenuation data LDL
: Bit7-0 = 11111111: 0 dB left channel attenuation

.set 01ffh
; Register 1-(0000 0011'1111'1111)

; Bit15-11 = 00000: Reserved

Bit10-9 = 0l: Register address 1
Bit8 = 1: Enable DAC attenuation data LDR

; Bit7-0 = 11111111: 0 dB right channel attenuation

.set 03fth

Register 2 (0000 0100 1000 0010)

Bit15-11 = 00000: Reserved
Bit10-9 = 10: Register address 2

Bit8 = 0: Disahle ADC power-down control (PDAD)
Bit7 = 1: Bypass high-pass filter

Bit5 = 0: Individual channel attenuation control
Bitd = 0: Infinite zero detection disabled

Bit3 = 0: DAC outputs enabled

‘Bit2-1 = 01: De-emphasis off
Bit0 = 0: Mute disabled

Figure 10.11(c) Continued

VAL_REGZ .set’

10.7 A CODEC-DSP Interface Example 289

0482h

; Register 3 (0000 0110 0000 1000)

- 3 Bit15-11 = 00000: Reserved -

; Bit10-9 =

; Bitg-
; Bits
; Bitd
3 Bit3-
3 Bitl
; Bit0

VAL_REG3 .set

.text

6

N8

11: Register address 3
= 000: Reserved

0: Loop-back disabled

0: Reserved

= 10: Format 2 o

0: Left is H, Right is L
0: Reserved

0608h

* This procedure initializes the PCM3002 codec on the C5416 DSK via the CPLD.
* The procedure uses 1ocat1on 60h as scratch pad:

nitPCM3002:
portr
andm
portw

call

1d
call

1d
call

1d
call

1d
cali

ret

DSK_CPLD_MISC, 60h
#OFFFEN, 60h
60h, DSK_CPLD_MISC

sampling_rate_set

#VAL_REGO, A
CPLD_write

#VAL_REG1, A
CPLD write

#VAL_REGZ, A
CPLD write

#VAL_REG3, A
CPLD_write

¥

*

>

Select codec

; Set Sampling rate
3 Program codec reg0
: P%ogram codec regl

3 Program codec reg2

3 Progrém codec reg3

Ty

Figure 10.11{c) Continued

290 Chapter 10 Interfacing Serial Converters to a Programmable DSP Device

This procedure sets the clock for the PCM3002 codec. ' ‘
The following sequence is specified: :

*

*

*

* 1. Set the CLK_STOP bit to 1.

* 2. Set the CLK_DIV1 and CLK_DIVO bits to the sampling rate value, keeping the CLK STOP
* - bit as 1. T '
* 3. Reset the CLK_STOP bit to 0.
* 4. Set the DIV_SEL bit to 1.

*

*

*

*

Enter with A = #VAL CLK_REG to specify the sampling rate.
The procedure uses location 60h as scratch pad
sampling_rate_set: S
portr DSK_CPLD_CODEC_CLK, 60h ; Stop the clock
orm #04h, 60h
portw 60h, DSK_CPLD_CODEC_CLR

1d #VAL_CLK_REG, A © ;i Get Sample rate value-

bc NoDivisor, AEQ s Check if highest rate
and #03h, A - ; Select the divisor bits
or #04h, A "3 Keep the clock stopped
stl’ A, 60h - : . '3 Set the clock divisor

portw 60h, DSK_CPLD CODEC_CLK

andm #0FBh, 60h ; Resume the clock
portw - 60h;, DSK.CPLD_CODEC_CLK - '

orm #08h, 60h ; Select the divisor
' portw 60h, DSK_CPLD CODEC_CLK '

b sampling_rate_done

NoDivisor:

st #00h, 60h ' ,;‘ Resume the clock
portw 60h, DSK_CPLD CODEC CLK ’

sampling_rate_done:
) ret

Figure 10.11(c) Continued

http:IVAl_ClK_REG.Ai

10.7 A CODEC-DSP Interface Example 291

* This procedure transmits a 16-bit control word to the PCM3002 via the CPLD.
* The procedure uses location 60h as scratch pad
*
*

Argument A: 16-bit -control word

_ CPLD_write:

st A, 60h " ; Write Tow control byte
portw 60h, DSK_CPLD_CODEC_L
st A, -8, 60h ; write high control byte
portw 60h, DSK_CPLD_CODEC_H
.. CODEC_WAIT:
portr DSK CPLD MISC, 60h
andm - #80h, 60h- " ; Get-the CODEC_RDY bit
1d 60h, A o
be CODEC_WAIT, ANEQ ; wait till all bits sent
ret ..
**
* C5416vec.asm
* -
* This module contains the interrupt vector table for the signal loopback program.
* N .
* Author: ' Avtar Singh, SJSU
*

)
e e ke s e e e e e e e e e e e e e e ke s e e e s de e ke o de e ke o e ke ke e e e e e e e e ke s ok ok ke s ok e e e e e ok e o e ok e ook ok e de ke ok e e ke ok e de ke ok ek dekede e dede ke ok

.ref
.ref

.sect

RESET: : b
.nop-~
nop

RMI: ~ rete
nop
nop
nop

_c_int00
brint2_isr

".vectors"

_c_int00 " ; Reset vector

; Nonmaskable Interrupt vector -

Figure_10.11(c) Continued

292 C}iayter 10 Interfécing Serial Converters to a Programmable DSP Device

.space 14*4*16 » 3 Space for unused s/w interrupts

.space 6*4*16 ; Space for unused h/w interrupts

BRINT2: b brint2_isr ; Receive Interrupt Vector

BXINT2: rete ; Transmit Interrupt Vector

.space 16%4*2

*
* regs.asm

*

* This module defines constants for the TMS320C54xx DSP and the 5416 DSK Board.
* R . .
* Adapted from regsl.h available in TI literature

* . .

* Author: Avtar Singh, SJSU

#***************************

.mmregs
*

" * MCBSPO Registers
* ’ .
MCBSPO_DRR2 - .set 0020h ; McBSPO Data Rx Reg?
MCBSPO_DRR1 .set 0021h ; McBSPO Data Rx Regl
MCBSPQ_DXR2 .set 0022h -3 McBSPC Data Tx Reg2
MCBSPO_DXR1 .set ~ 0023h :+ McBSPO Data Tx Regl
MCBSPG_SPSA .set 0038h : ;3 McBSPO Sub Bank Addr Reg
MCBSPO_SPSD .set 0039 ; McBSPO Sub. Bank Data Reg
%
* McBSPL Registers
*
MCBSP1_DRR2 , .set 0040h ; McBSP1 Data Rx Reg2
MCBSP1_DRR1 .set 0041h "~ 3 McBSP1 Data Rx Regl
MCBSP1_DXR2 .set 0042h ; McBSP1 Data Tx Reg2

* Figure 10.11(c) Continued

MCBSP1_DXR1 .set
MCBSP1_SPSA .set
MCBSP1_SPSD .set

*

*'McBSPZ Registers

*

MCB3P2_DRR2 .set.
MCBSP2_DRR1 .set
~ MCBSP2_DXR2 .set
~ MCBSP2_DXR1 . .set
MCBSP2_SPSA .set

MCBSP2_SPSD .set

'*-.

* McBSPO, McBSP1 and McBSP2 Subbank

* .

SPCR1 .set

SPCR2 .set
‘RCR1 .set
RCR2 : .set
XCR1 - .set
. XCR2, . .set
- SRGR1 .set
SRGR2 .set
MCR1 .set
MCR2 .set
RCERA .set
RCERB - : .set
-XCERA - .set
XCERB o .set

PCR ‘ C L.set

. . !

* CPLD Registers (DSK5416)
- .
DSK_CPLD_USER REG .set
DSK_CPLD_DC_REG .set

' DSK_CPLD_CODEC_L .set

DSK_CPLD_CODEC H .set
DSK_CPLD_VERSION .set
DSK_CPLD_DM CNTL .set
DSK_CPLD MISC .set

* DSK_CPLD_CODEC_CLK .set

0043h

- 0048h

0049h

0030h
0031h
0032h
0033h
0034h
0035h

0000h
0001h
0002h
0003h
0004h
0005h
0006h
0007h
0008h
0009h
000Ah
000Bh

000Ch
00CDh
000ER -

- 0000h

0001h
0002h
0003h
0004h
0005h
0006h
0007h

10.7 A CODEC-DSP Interface Example 293

-

Addressed Registers

McBSPL Data Tx Regl
McBSPL Sub Bank Addr Reg
McBSP1 Sub Bank Data Reg

; McBSP2 Data Rx Reg?

McBSP2 Data Rx Regl
McBSPZ Data Tx Reg?
McBSP2 Data Tx Regl
McBSP2 Sub Bank Addr Reg
McBSPZ -Sub Bank Data Reg

Ser Port Ctrl Regl

Ser Port Ctrl Reg2

Rx Ctrl Regl

Rx Ctrl Reg2

Tx Ctrl Regl

Tx Ctrl Reg2

Sample Rate Gen Regl
Sample Rate Gen Reg2
Multichan Regl

Multichan Reg2

Rx Chan Enable Reg Part A
Rx Chan Enable Reg Part B
Tx Chan Enable Reg Part A

Tx Chan Enable Reg Part B

Pin Ctrl Reg

UservLEDswand Switches Reg

; Daughter Card Register

CODEC_L_CMD Register
CODEC_H_CMD Register
Version Register

Memory Control Register
Miscellaneous Register
CODEC Clock Register

Figure 10.11(c) Continued

294 Chapter 10 Interfacing Serial Converters to a Programmable DSP Device

/*********************************ﬂ******************
* - o

* Signal loopback program command file (signallB.cmd)
*) B

*********#***********************ﬁ******************/

MEMORY
{

PAGE 0: DARAMV: origin
PAGE 0: DARAMP: origin
PAGE 1: DARAMD: origin

0080h, length = 0080h
1000h, length = 1000h
4000h, Tength = OBOOOh

it

} 8]

SECTIONS -

{
.text > DARAMP PAGE 0. -
.vectors > DARAMV PAGE 0
.data > DARAMD PAGE 1

}

Figure'10.1 1{d)- The command file for the Ioopback'pro‘grém

To build the program for the DSK, the command file shown in Figure

10.11(d) can be used..

To test the program functionality, a signal can be apphed to the micro-
phone input on the DSK. A speaker connected to the analog output should
receive the signal when the program is loaded to the board and run. A PC can
provide this test setup if its speaker output is applied to the microphone input
of the DSK (using an appropriate cable) and the speaker output of the DSK is

_connected to another speaker or the one disconnected from the PC. Any audio

~ file played on the PC with the DSK program running can be heard on.the
_speakers. The program can also be tested with an input signal from a signal
generator. There are also programs available that can be run to generate a test
signal on the PC. One such program'can be downloaded from the site in the

reference at end of this chapter [5].

4

10.8 Suvmmary‘ _

In this chapter, we looked at the serial peripheral interfacing using the multi-
channel buffered serial port (McBSP). We also considered a specific serial
peripheral, PCM3002, that provides 16-bit synchronous serial ADC and DAC.
The chapter ends with an example of the DSK to illustrate the interface and

the associated program.

http:shown.ip

Assignments 295

References

TMS320C54xx DSP Reference Set, Volume 1, Texas Instruments Inc., March
2001. '

2. TMS320C54xx DSP Enh‘anced Peripheml Reference Set, Volume 5, Texas In- .
struments Inc., SPRU302, June 1999,
3. TMS320VC5416 DSK Technical Reference, Spectrum Digital Inc., 506005-0001
Rev. A, March 2002. :
4. Burr-Brown Corporation, PCM3002/3003 Data Sheet Ianuary 2000,
5. NCH Tone Generator Software, www.nch.com
Assignments

10.1 ~ Frame sync is generated by dividing the 8.192-MHz clock by 256 for the serial
communication. Determine the sampling rate and the time a 16-bit sample

~ takes when transmitted on the data line,

10.2 What is the address for the PCR register of McBSP2? Write an instruction
sequence to write to it data deﬁned by PCR_VAL. ;

10.3 Write an instruction sequence to reset and disable the transmitter and re-
ceiver for the McBSP2.

10.4 Which registers and which bits need to be changed to implement an 8-bit
transmission and reception for the McBSP2?

10.5 A PCM3002 is programmed for the 12-KHz sampling rate. Determine the
divisor N that should be written to the CPLD of the DSK and the various clock

" frequencies for the setup.
10.6 Determine the timing parameters for a 20-bit data communication at 8 KHz.
10.7 Which bits and register are used to program the analog input gain? Determine
N the bit setting to obtain a 0-dB gain.

10.8 Which bits and register of the PCM3002 are used to program the apphcatlon
of a 48-KHz deemphasis to the DAC output of the PCM3002? Determine the-
bit setting.

10.9 What are the maximum and the minimum sampling rates that can be im-

‘ plemented for the PCM3002 on the 5416 DSK? Determine the bits, their value,
and the register that needs to be programmed to achieve the maximum and

minimum sample rate settings. ,

© 10.10 Modify the program in Figure 10.11(c) to change the sampling rate to 12 KHz.
10.11 Modify the program in Figure 10.11(c) to output the absolute value of the

signal sampled at the input,

http:www.nch.com

~ 296 Chapter 10 Interfacing Serial Converters to a Programmable DSP Device

10.12 Modify the program in Figure 10.11(c) to incorporate the FIR filter imple-

mented in Chapter 7, Section 7.3.

10.13 Determine, using CCS-debug capability, the processing time per sample for the
filter implemented in Problem 12. Assume that the DSP is running at 80 MHz..
Based on this measurement and the consideration for the CODEC device,
what is the maximum sampling frequency that can be implemented? Also
determine the highest signal frequency that can be handled for processing.

10.14 Implement the FFT program of Chapter 8 so as to process a real-time signal to
compute its spectrum and display it ‘on an oscilloscope. Compute the spec-
trum each time a new sample is received. Determine the maximum sampling

rate that can be used in the implementation on the DSK.

10.15 Repeat Problem 14 for computing the spectrum, each time, after receiving the

block of samples used in FFT calculations.

Chapter 1 1

Applications of Programmable
DSP Devices

1.1 Introduction

As commercial programmable DSPs are becoming more and more powerful
in terms of their speed and functionality and are available at lower and
lower costs, there is. an explosion of applications in which these devices are
increasingly used. These applications span a wide spectrum of areas, such
as automotive, control, communication; entertainment, instrumentation, and
medicine. Typical applications include toys, medical instruments, speech syn-
thesis and recognition systems, audio equalizers, echo cancellers, and robotic
controllers. These applications exploit such capabilities of the programmable
DSP devices as high speed and throughput, facility to carry out complex
computations with precision, ease of programming, and ability to interface
with host processors and external peripherals. In this chapter, we look into a
few representative applications and study their réquirements to see how these
are met by systems implemented using DSPs. Foﬂowmg are the representative
applications considered in this chapter:

An ECG processing system

A speech processing system
An image processing system
A position control system

A power measurement system

11.2 A DSP System

 Digital signal processors are computational devices that process digital rep-
resentation of input signals and produce digital representation of signals as

297

298 Chapter 11 Applications of Programmable DSP Devices

Analog] Analog
Signal in Samplo.and : ISD N - Signal out
Antialiasing ample-and- SN econstruction |
—® Filter |] hold Circuit A/D J7] P D/A T 7 ‘Filter —>
: ‘[Processor :
Figure 11.1 The block diagram of a DSP system

outputs. The difference between these devices and the general-purpose pro-

cessors lies in the fact that DSPs process data representing real-world signals,”

whereas the general-purpose processors deal with applications requiring large
volumes of stored data. Since real-world signals are mostly analog, they have
to be converted into digital signals before being processed by the DSP and,

likewise, DSP output needs to be converted back to analog for use in the real

world. Figure 11.1 shows the block diagram depicting the processing blocks of
a typical DSP system. We have discussed this system in previous chapters. It
consists of the DSP processor between the analog front end and the analog
back end. The analog front end consists of an antialiasing filter, a sample-and-

‘hold circuit, and an analog-to-digital converter feeding into the DSP. The back
- end consists of a digital-to-analog converter to convert the dxgltal output to its

analog value, followed by a reconstruction ﬁlter
The block diagram of Figure 11.1 applies to almost all DSP systems. All or
just some of the blocks shown in the figure may realize a particular system.

“Implementations may differ in details such as the signal frequency spectrum,

the sampling rate, memory requirements, and the computational complexity.
In the application examples that follow, we look at the nature and computa-
tional complexity of the algomthm to be 1mplemented with a view to under-
standing how the processing power and other features of the programmable
DSPs are utilized in each case. Description and design of the analog front and
back ends as well as the analog-to- dlgltal and the digital-to-analog converters
are beyond the scope of this book. :

11.3 DSP-Based Biotelemetry Receiver

Biotelemetry is a process by which -physiological information or signals are
transferred from one remote location to another, typically using radio fre-
quency links. The importance of biotelemetry becomes obvious when we
consider monitoring life in remote or inaccessible locations such as an astro-
naut in space or a baby in mother’s womb. The biomedical signals at the
source are encoded, modulated, and then transmitted. At the receiver end, the
signals are demodulated, decoded, displayed, and analyzed to extract diag-
nostic information for evaluation.

http:shown.in

11.3 DSP-Based Biotelemetry Receiver 299

v

| Demodulator

Anzlog | |Digital Signat | [Multiple > EcG.
Signal [Processing [} Irlx:::agr;’;aée —> Changel » HR
Processing (DSP) - BY/A Converter

Figure 11.2 A DSP-based biotelemetry receiver system

11.3.1

Figuré 1.3

The block diagram shown in Figure 11.2 shows a scheme that can be used
to implement a biotelemetry receiver [1}. The DSP device receives the de-

‘modulated signal as obtained from the demodulator and analog processing

circuits. The device can be programmed to decode the received-signal by
inverting the process of encoding used in the transmitter and thus generate
the corresponding biomedical signals. The decoded mgnals can be presented
to a D/A converter to generate analog signals.

Pulse Position Modulation {PPM)

PPM is a scheme that can be used to encode a single signal or multiple signals.
The position of a pulse encodes the sample value of a signal. A PPM signal
that encodes two signals in addition to providing a fixed sampling rate is
shown in Figure 11.3. The PPM signal requires a sync signal (two pulses) to

Pulse Interval : tp Atl - Atl A2 A2
] = =
T0r T
o P Pl
i {1 [
L L
Sync | - . | N : | Sync
1 - 2 t3
" Pulses }‘—t AR - | Pulses
Parameter Function _ Duration {usec)—an Example
11 _ Encodes signal 1 = 1000 '
12 Encodes signal 2 - 800
13 Compensation interval 1700
Each pulse interval {tp) 100
Sync interval "3x 100

Total t1 +t2 +13 + 5tp ~ Sampling interval 4000

A PPM signal for encoding two biomedical signals

. 300 Chapter 11 Applications of Prégrammable DSP Devices

11.3.2.

mark the beginning of a cycle for encoding two or more signals. As shown in’
the figure, t1 encodes one signal, and t2 encodes the other. The time interval

. 13 is simply needed to keep the sampling interval constant to provide a fixed

sampling rate. In the example shown, the fixed sampling rate is 2.5 KHz. The.
example encoding can be modified to encode three signals by incorporating
another time interval for the third signal or by superimposing the third signal
in either of the intervals t1 or t2. The superimposed signals should be distin-
guishable in the frequency domain so that it can be separated in the receiver.
For instance, the system can be used to encode ECG, temperature, and pres-
sure signals. Temperature being the lowest frequency signal, it is combined
with the highest frequency ECG signal and encoded as interval t2.

Decoding Scheme for the PPM Receiver

The schematic diagram in Figure 11.4 shows how a DSP device can be used to

~ decode a PPM signal to recover the encoded biomedical signals. The decoding

requires measurements of time intervals in a PPM signal. The DSP device
timer can be used for time measurement. To initiate the measurement pro-
cess, the pulses in the PPM signal can be used to generate interrupt signals for
the DSP device, which then are used to start or terminate the timer. This
approach avoids using an A/D converter to handle the PPM signal, but it
requires that the DSP device be fast enough so as not to miss a pulse or

introduce time measurement error.

: 4 |
Sync 11 12 33 Sync

DSP T 3 h & A&
Interrupts | .. |

-..4-___1
B
P—

[I——,

[SO

DSP Timer DSP Timer

, vm)_\. v2&

Figuré 11.4 A DSP-based decoding scheme for a PPM signal

Fﬂigure 11.5

11.3.3

11.3.4

. 11.3 DSP-Based Biotelemetry Receiver 301

PPMInput [pppy | |TMS320C5402) L > ECG
» » . Dual -

Signal Interrupt DAC DAC > HR
Interface Request Interface | | 1.07226

A DSP-based biotelemetry receiver implementation

Biotelemetry"ReceiVer lmplementatioyn _

The block dlagram in Figure 11.5 shows the system used for implementation.
The PPM signal is processed in the analog domain before it is applied to the
interrupt -system of the signal processor., The DSP device is interfaced to
appropriate digital-to-analog converters so that signals can be generated for
analog display monitoring devices. The signal processor in the system is the
TMS320C5402. An EPROM device can provide storage for the operating sys- .
tem as well as the decoding software. In order for the DSP to generate the two
recovered biomedical signals, a dual-channel parallel digital-to-analog con-
verter can be used.

Two types of software programs are stored in the EPROM. One is the soft-
ware for decoding PPM signals to generate the encoded biomedical signals.
The other software allows providing debugging capability using a PC con-
nected to a parallel port similar to a DSK. In fact, a DSK can be used to debug
the software before building the receiver.

ECG Signal Processing for Heart Rate Determination

The most important information contained in an ECG signal is the associated
heart rate. Determining the heart rate involves determining the time interval
between QRS complexes. Therefore, we need a reliable algorithm to detect the
QRS complexes so that the QRS interval can be determmed to compute the

- heart rate.

A nonlinear transformatlon is used to enhance the QRS complex so that it
can be detected reliably with a threshold detector, The transformation in our
implementation uses absolute values of the first and second derivatives of the
signal as follows: » :

A yUn) = [x(n) — x(n — 1)|
¥2(n) = |x(n — 2) = 2x(n ~ 1) + x(n)]
¥3(n) = yl{n) + y2(n)

302 Chapter 11 Applications of Programmable DSP Devices

where x(n) refers to the ECG signal sample, y1(n) is the absolute value of the
first derivative, y2(n) is the absolute value of the second derivative, and y3(n)
is the combined absolute first and second derivatives.

The transformed signal is filtered to remove high-frequency noise compo-
nents. To accomplish this, we use a simple IIR filter as follows

y4(n) = a(y3(n) — y&n — 1)) + ya(n — 1)

where «, a number less than 1, is the IIR filter coefficient. Its value is chosen
based on the smoothing effect that should be used to discard high frequencies.
The y4(n) in the difference equation denotes the filtered transformed signal.

. A QRS complex is detected using a threshold detector. Processing typical
ECG signals by the above algorithm and determining the mean of half of the

- peak amplitudes of the filtered signals determines the threshold for the detec-

tor. This estimated threshold value is then used to detect the QRS complexes
in a given ECG waveform.)

The time interval between two complexes is the QRS interval. Fmally, the
heart rate (HR) in beats per minute (BPM) is computed using the formula

= (Samplihg rate X 60)/QRS interval

The sampling rate is determined from the time duration of a PPM cycle or
depends upon the modulation technique. To produce a heart rate value accu-
rate on an average, the computed heart rate can also be filtered using an
appropriate filter. Flgure 11.6 shows the ECG and HR waveforms generated
by the system.

11.4 A Speech Processing System

Depending on the-objective of speech processing, the techniques of processing
differ. For instance, if the objective is to understand speech characteristics,
analysis-type algorithms are used. To improve the speech quality, filtering
algorithms are employed. Here, we consider a technique called pitch period
estimation. Pitch period estimation (or, equivalently, fundamental frequency
estimation) is one of the most important problems in speech processing. Pitch
detectors are used in vocoders, speech identification and verification systems,
and in aids to the handicapped. Because of its importance, many solutions
have been proposed to this problem. Here, we present pitch estimation using

the autocorrelation technique implemented on the DSP. Before describing the

algorithm for pitch detection, we introduce the concept of how speech is gen-
erated and classified.

- Transmitted ECG Signal

200

2000

0 1200 400 B 600 800 1000 - 1200 1400 1600 1800
: PPM Si

1.5 1 T T Y |.gna1 T T - T H N
e ! . | : .
0 o nus) .) A L X

] o200 4000 600 . 800 1000 1200 1400 1600 - 1800

N Decoded ECG Signal

15q 13 i L B
1 M

800

1600

1200

Transformed and Filtered ECG Signal

2000

T 7

T

90 200 400 800 1000 1200 1400 1600 2000
. - ‘ . Heart Rate

80 [~ :] T ¥ A T ¥ T T]

60+ o _

40 - -

20+)

,00 10- 20 30 40 50 - 60 70

Figure 11.6 ECG signal and heart rate generated by the DSP telemetry receiver from the PPM signal

£0€ woals4g Burssadord yaadg v 11 :

304 Chapter 11 Applications of Programmable DSP Devices

MUSCLE FORC

LUNGS

NASALTRACT NOSTRIL

—-’UN

—® Uy P

—ﬂm* |

TRACHEA VOCAL VOCALTRACT MOUTH
BRONCHI CORDS

Figure 11.7 A schematic diagram of the human vocal apparatus

11.4.1 A Digital Model for Production of Speech Sigrial

11.4.2

A schematic diagram of the human vocal apparatus is shown in Figure 11.7.
The vocal tract is an acoustic tube that is terminated at one end by the vocal

- chords-and at the other end by the lips. An ancillary tube, the nasal tract, can

be connected or disconnected by the movement of the velum. The shape of
the vocal tract is determined by the position of the lips, jaws, the tongue, and
the velum. Sounds can be generated in different ways. Voiced sounds are
produced by exciting the vocal tract with quasi-periodic pulses of air pressure

_caused by vibration of the vocal chords. Unvoiced or the fricative sounds are

produced by forming a constriction somewhere in the vocal tract and forc-
ing air through the constriction, thereby creating turbulence that produces a
source of noise to excite the vocal tract {2]. The vocal tract can be charac-
terized by its natural frequencies (or formants), which correspond to reso-
nance in the sound transmission characteristics of the vocal tract.

Autocorrelation ’ t :

In the voiced intervals, the speech signal is characterized by a sequence of
peaks that occur periodically at the fundamental frequency of the speech sig-
nal. In contrast, during unvoiced intervals the peaks are relatively smaller and
do not occur in-any discernible pattern. Autocorrelation is a common method
of obtaining the pitch of the speech signal. Periodicity in the autocorrelation
function indicates the periodicity of the speech signal.

Speech is not a stationary signal but the properties of the speech signal
remain fixed over relatively long time intervals. However, the major limita-
tion of the autocorrelation representation is that it retains too much of the

11.4 A Speech Processing System 305

information in the speech signal. Techniques known as spectrum flattening
techniques are applied to the speech signal before performing the autocorre-
lation so as to filter out extraneous details. The block diagram of a clipping
autocorrelation pitch detector is shown in Figure 11.8.

Autocorrelation-Computation

The computation of the autocorrelation function for a three-level center-
clipped signal is particularly simple [3]. If we denote the output of the three-
level center clipper as y(n), then the product terms y(n +m)y(n+m-+ k) in
the autocorrelation function [4]

N—k-1
R,(K)= Y y(n+m)y(n+m+k)

m=0

can have only three different values; that is,

y{n+m)y(n+m+k)x0 if y(n+m)=0o0r y(n+m+k)=0,
=41 if y(n+m) = y(n+m+k), and
=1 if yn+m)# yn+m+k)

The three-level clipping scheme is shown in Figure 11.9. The algonthm for
pitch period estimation is summarized below:

The speech signal is ‘filtered with & 900 Hz lowpass analog filter and sam-
pled at the rate of 10 KHz. :

Filtered signal segments, each of length 30 msec (300 samples), are selected
at 10-msec intervals. Thus, the segments overlap by 20 msec.

The average of absolute magnitudes is computed with a 100:sample rect-
angular window. The peak 31gna1 level in each frame is compared to a thres-
hold determmgd by measuring the peak signal level for 50 msec of background
noise, as shown in the block “compute silence level threshold” in the block
diagram, If the peak signal level is above the threshold, signifying that the

-segment is speech, not noise, then the algorithm proceeds as follows; other-
wise the segment is classified as silence and no further action is taken.

The clipping level is determined as a fixed percentage (e.g., 68%) of the
minimum of the maximum absolute values in the first and last 100 samples of
the speech segment,

Using this clipping level, the speech signal is processed by a three-level
center clipper, and the correlation function is computed over a range span-
ning the expected range of pitch periods.

The largest peak of the autocorrelation function is located and the peak
value is compared to a fixed threshold (e.g,, 30% of R,(0)). If the peak falls

“ ~3{ Find absolute peak
level over first 10
msec~—ipkl
- Set clipping
level
€, =k~ MIN(IPK1, IPK2)
Find absolute peak
2> level over last
10 msec—ipk2
s s(n))
: =~ Sectioninto
AD =230 mcec sections| = Voiced
: Period = IPOS
0-900 HZ
-3 Center clipper, infinite * Autocorrelation |~ Find position, value of ’Compare peak value
peak clipper — computation 7| autocorrelation peak with v/u threshold |~
Unvoiced
: Compute energy . Compare peak signal with | -
of section silence threshold Silence

Compute, silence
. level threshold

External
Initiation

Figure 11.8 The block diagram of a clipping autocorrelation pitch detector

saoa(dsq sfqewruwrerdoid yo suoneonddy 7 4a1dvyn gog

11.5 An Image Processing System 307

- Ol

IPK

Figure 11.9 Three-level center-clipped signal

below threshold, the segment is classified as unvoiced, and if it is above the
threshold, the pitch period is defined as the location of the largest peak.

11.4.3 Implementation on the TMS$320C54xx Processor

Speech samples were recorded using voice recorder software in Windows 98.
- The signal was sampled at 16 KHz in 16-bit mono format. The autocorrelation
module is the most computation-intensive section for pitch detection. For this
reason DSP was used to compute a 400-point autocorrelation for a 480-sample
segment. For the sampling frequency of 16 KHz, 30 msec of speech corre-
sponds to 480 samples, and it takes about 17200 clock cycles or 0.17 msec for
the TMS320C5402 running at 100 MHz. Timing can be improved by using a
lower sampling rate and thereby reducing the section size. Reduction of
window size for computation of autocorrelation or using adaptive methods
for determining the frame size will further reduce the computations involved.
Figure 11.10 shows the autocorrelation output of a voiced speech signal -and
- Figure 11.11 that of an unvoiced speech signal. The complete implementa-
tion of the block diagram shown in Figure 11.8 is left as an exercise for the

implementor. A

11.5 An Image Prdcessing‘ System

Images represent huge amounts of data. Image processing applications such
as high-definition television, video conferencing, computer communication,
and so forth require large storage and high-speed channels for handling the
huge volumes of data. In order to reduce the storage and communication
channel bandwidth requirements to manageable levels, data compression

308"

Chapter.11 Applications of Programmable DSP Devices

150 T ’l T - T 'I T l'] Y T
100 | ‘ _ o

50

-100) ' i A ' I L ' L :
0 50 100 150 200 250 300 350 400 450 500

»Figuré 11.10 »Typica)l autocorrelation output for a voiced speech segment

techniques are imperative. Data compression on the order of 20 to 50 is
feasible depending on the actual picture contents and techniques adopted for
compression.

JPEG, which stands for Joint Photographlc Experts Group, the name of the
committee that wrote the standard, is a still-image compression standard.
JPEG is used to compress either full-color or gray-scale images of natural or
real-world scenes. It works well on pictures such as photographs and natural-
istic artwork, not so well on lettering, simple cartoons, and line drawings.
JPEG is “lossy,” meaning that the decompressed image is not exactly the same
as the original. JPEG is designed to exploit knewn limitations of the human
eye, notably the fact that small color changes are perceived less accurately
than small changes in brightness. Thus, JPEG is intended for compressing
images that will be looked at by humans. The usefulness of JPEG is that the
degree of lossiness can be adjusted by varying the compression parameters.
This means that the image maker can trade off file size against image quality.
JPEG achieves image compression by methodically throwing away visually in-
significant image information. This information includes the high-frequency
components of the image, which are less important.to image content than the

http:important.to

' Figure 11.11

180 — ,

11.5 An Image Processing System 309

160
a0l
120 |
100
80
60
40

20

1] t ‘ L b L i . 1 N
0 50 100 150 -~ 200 250 ° 300 350 400 450 500

Typical autocorrelation output for an uhvoiced speech segment

low-frequency components. When an image is compressed using JPEG, the
discarded high-frequency component cannot be retrieved. Another important
aspect of JPEG is that decoders can trade off decoding speed against image

* quality, by using approximations to the required calculations.

11.5.1

JPEG'Algorithm Overview

The original image is divided into 8 x 8 blocks. Each 8 x 8 block is trans- |
formed by the forward discrete cosine transform (DCT), which extracts the

~ various frequency components and their relative amplitudes of the two-

dimensional image signal represented by the 8 x 8 block into a set of 64
values, referred to as DCT coefficients [5]. Each of the 64 coefficients is then
quantized using a quantizing table, which allocates more bits for ‘coefficients
corresponding to more dominant frequency components and fewer or zero
bits for insignificant frequency components. The resulting 64 values (includ-

ing zero values) are. further coded by a process known as entropy encod-

ing, wherein based on the statistical probability of occurrence of these long
sequences, shorter codes are allotted to long-running sequences of 0s and 1s.

310 Chapter 11 Applications of Programmable DSP Devices

8 X 8 block
* [T T T T T T T T T T T T S S mm e !
: HUFFMAN | |
-——E—b DCT % QUANT. > ENCODE ¥
. ! :
i ________________ ?_ ___________________________ T_ _____ 4 Compressed Data
Original Image g
‘ QUANT. HUFFMAN
TABLE TABLE
Figure 11.12 The block diagram of the JPEG encoder
el i
1 -]
e :
HUFFMAN : ~
— P DeQUANT. H» IDCT
_ | | DECODE =QUAN i
Compressed Data l_“____.T_ ____________________________ ? ______________ J
:] N Recovered Image
HUFFMAN DEQUANT.
~ DECODE TABLE
TABLE

Figure 11.13 The block diagram of the JPEG decoder

11.5.2

This way, the two-dimensional image data is converted to a bitstream of much
smaller size compared to the original image data retaining most of the image
features while discarding the insignificant information not easily discernible
by the human eye. Figure 11.12 shows the block diagram of a JPEG encoder.
The JPEG decoding process is the reverse of encodmg and it is shown in
Figure 11.13 [6].

JPEG Encoding

As mentioned above, the first step in JPEG encoding is computing the forward
DCT of the 8 x 8 image block. We obtain the 64 DCT coefficients after apply-
ing the forward DCT on the two-dimensional image matrix. One of these
values is referred as the dc coefficient and the other 63 as the ac coefficients.
. The forward DCT is computed from the equauon

=‘CMCVZnyxC S (2x+1)mz

x=0 y=0

cos 2y+1wvr

16

1153

11.5.4

115 An Iinage Processing System 311

The second step is quantization. Each of the 64 coefficients is quantized using
one of 64 corresponding values from a quantization table. After quantization,
the dc coefficient and the ac coefficients are prepared for entropy coding,
which is also known as Huffman coding. The previous dc coefficient is sub-
tracted from the current dc coefficient, and the difference is encoded. The 63
quantized ac coefficients undergo no such differential encoding, but are con-
verted into a one-dimensional zig-zag sequence oefore being coded. Since

many coefficients are zero, runs of zeros are identified and coded efficiently.

JPEG Decoding

In the reverse processes of Huffman decoding, dequantization and the inverse
DCT are used to recover the original image data. The Huffman decoding table
is used to recover the compressed data from the bitstream format to 64 16-bit
data. The values in the dequantization table are the inverse of the values in the
quantization table. The inverse DCT equation is

(2x + Dun (Zy + 1
by 4?1;5;"“6”'f"“ P YT e

After IDCT, decoding of the 8 x 8 image block is completed. The last proce-
dure is to combine the 8 x 8 blocks to create the image.

Encoding and Decoding of JPEG Using the TMS320C54xx

For implementing the DCT of an 8 x 8 block, the FDCT algbrithm by Lee [7]

is used. The signal flow graph for computing the 8-point DCT using Lee’s DCT
algorithm is shown in Figure 11.14. The IDCT is obtained using the same flow
graph by reversing the direction of the arrows and inputs given from the
opposite side.

‘The matrix used for quantization and dequantization is- shown in Figure
11.15. Notice the large quantization steps at the high-frequency end of the
matrix compared to the smaller values at the low-frequency end.

For the implementation described here, the Huffman-coding and —decodmg
algorithms were programmed in C and interfaced to the DSP codes for DCT/
quantization and IDCT/dequantization, respectively. After merging, the entire
program was run in the TMS320C5402 processor. Encoding an image of a

© 256 x 256 size requires approximately 150,000,000 instruction cycles, or 150

msec in the TMS320VC5402, with an instruction cycle of 10 ns. The time taken
for decoding is about the same. Figure 11.16 shows a sample image before and
after being processed by the JPEG encoder and decoder, The two images look
very much alike.

312 Chapter 11 Applications of Programmable DSP Devices

"@ , 6

-1 ~Cl

1%

Data sequence ’ . . . ’ Transform sequence
1 "
0 » Ll N 'J—] » Ll - » '-!—
1 V2 A 2 1
N :
2 : 2
WIIA“ :
; ‘ < j 3
. /A\. > _ Cis yl e 4
1
7
i
z

@

N

Figure 11.14 Signal flow graph for an 8-point DCT algorithm

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
|72 92 95 98 112 100 103 99 |

Figure 11.15 Matrix used for quantization and dequantization

11.6 A Position Control System for a Hard Disk Drive

One important application for digital signal processors is the positioning of
a read/write head on a hard disk. The DSP provides the computational capa-
bility, while a microcontroller handles the driver’s functions for positioning
of the head. Today, the single-chip solution using a DSP offers low cost, im-
proved reliability, and low power consumption for hard disk controllers.
Details of the control system are shown in Figure 11.17. The parameter to
- be controlled is the drive input of a servomotor that determines the position -
of the read/write head on the disk. The controller issues the appropriate
“commands to the servomotor via the DAC. The servomotor, in turn, moves

11.6 A Position Control System for a Hard Disk Drive 313

(@) . v ' ®

Figure 1116 A sample image before and after JPEG processing: '(a) raw image and (b) the image
after JPEG compression and decompreé;sigjh

Input 4 : Output
Dsp » DAC »| Servomotor - »
: RW |
ADC. head |®

Figure 11.17 The block diagram of a hard disk drive servo control system

the read/write head from the current position to the desired track on the disk.

. The design objective is to keep the position error minimized at all times. The
DSP controller incorporates the algorithm to minimize the position error and
use the position error to control the motor.

With the constant increase in disk storage capacity, there is a steady in-
crease in the number of tracks and a decrease in their widths. The demand
for accurate head position and tracking requires a more frequent sampling
of the head position than would have been otherwise needed. Another reason
for increasing the sampling rate is the decrease in the time constant of the
process to be controlled. Therefore, the disk controller must be capable of high

http:Figure11.17

314 Chapter 11 Applications of Programmable DSP Devices

x(n)

n

uln) s(n)

Reference model
R(»)

e(n}

Copy of the i <(n) Adaptive
-adaptive reference
inverse model

Servo plant |

6p(2) » reference

inverse model

A

/

/ Servo plant output

¥ o

Figure 11.18 An adaptive scheme for head p05|t|on|ng in.a servo control system in the presence

- of noise

sampling rates in addition to a-math-intensive alg'orithm for the digital con-
trol of the servomotor.

Figure 11.18 shows an adaptive scheme for head posmomng in the presence
of environmental variations [8]. According to this scheme, the servo-plant
output, c(n), must follow a reference (desired) model output, s(n). A digital
controller, D(z) and the servo plant, G(z), comprise the reference model, R(z),

“while a servomotor, G(s), and the DAC comprise the servo plant, Gp(z). The

adaptive reference inverse model is an inverse model of the servo plant,
which, when combined with the servo plant and the reference model, gives an
output, y(n), that follows the reference model output s(n). The adaptive ref-
erence inverse model is computed offline. Once an adaptive reference inverse
model is obtained, it is incorporated into the control system. The servo plant
is driven by the output obtained from a copy of the adaptive reference inverse
model, which is updated after each seek operation. This ensures that the servo
plant follows the same profile as the reference model at all times.
The reference model transfer function as given in reference [8] is

0.01524z + 0.0147
2 — 1.6847z + 0.7147

R(z) = C(z)/E(z) = p,

This reference model may now be used to derivé the adaptive reference in-
verse model of the servo plant. Figure 11.19 illustrates the adaptive reference

. inverse modeling technique. This particular model incorporates a 40-tap trans-

versal filter whose coefficients are updated according to the least-mean-square
algorithm. The compromise between the accuracy and computational com-
plexity dictates the choice of the number of taps in the transversal filter. The

~ following equations describe this model:

11.6 A Position Control System for a Hard Disk Drive 315

x(n) o Reference : - s
model
‘ ' v v+
»| ~Servo plant C{n)_} Adaptive reference yn) | ED
Gp(z) inverse model
’ e(n)

Figure 11.19 _ Adaptive inverse modeling scheme

Servo plant output: ,
¢(n) = 0.0048x(n — 1) + 0.0046x(n) + 1.9¢c(n — 1) — 0.90%4c(n — 2)

Reference model output:

s(n) = 0.01524x(n — 1) + 0.0147x(n — 2) + 1.68476s(n — 1) — 0.7147s(n — 2)

‘ Adaptive reference inverse model output:

yn)=>wlile(n—i+1) i=1t040
Error: e(n) = s(n) — y(n) | |

Weight vector update:
wi = wy - pecn—i-+ 1), i=1,40.

The weight vectors, w;, which represent the adaptive reference inverse
model, are obtained by performing 500 iterations of the adaptive loop. The
parameter #, which detérmines the rate of convergence for obtaining the:
weight vector, is chosen empirically, in this case, to be 0.05. The input to
the system is assumed to be a step. Once the adaptive reference of the inverse
model is obtained, it can be applied to the control system of Figure 11.18. Due

. to the adaptive reference inverse model, any variations in the internal vari-

ables of the servo plant result in corresponding-changes in the coefficients of

- the adaptive reference inverse model. Hence, the servo output follows the ref-

erence at all times.

316 Chapter 11 Applications of Programmable DSP Devices

522
418

1

Pl W

313
209 4

104 -

- 104

-~209

PENEEWE ERNNY R

—313

—418

caeatig

—3522 T T T T T T L s B
-0 280 56.0 84.0 112 140 168 196 224 252 279

Figure 11.20 The control signal c(n) as obtained from the implementation of the control System on
the TMS320C5402 processor

The initial 40 coefficients of the transversal filter were obtained from a
MATLAB program and were then used in the final assembly language code of
the DSP. Once an inpuf impulse is given to a DSP, the output settles down in
about 201300 instruction cycles, which is 0.2 msec for the TMS320C5402, for
which each instruction cycle takes 10 nsec. Figure 11.20 shows the graph for

c(n) obtained from the actual implementation of the control system on the
TMS32005402 processor.

11.7 DSP-Based Power Meter

Measurement of power is an important task in evaluatmg performance of a
system or a household appliance. Power has been conventmnally measured
using older electromagnetic-mechanical systems, This project is about design-
ing a power measuring system using modern DSP technology. The result of
this approach can be a device that provides better performance at lower cost.
The project details are available elsewhere in a report [9].

11.7 DSP-Based Power Meter 317

; , User Interface Unit

LCD

1T

On-Board

T4 Computer

Data Acquisitidn Unit

‘j % %_ AD)
j Converter
q %
¢ ,
.) ’ Bus Interface
- Logic -
[EITD]
= N

DSP Kit

DSP Unit

Figure 11.21 Block diagram of a DSP-based power meter

11.7.1 -Power Méasurement System

Figure 11.21 shows a block diagram that can-be implemented to measure
power. The block diagram shows three functional units: the data acquisition
unit, the DSP unit, and the user interface unit. The data acquisition unit gets
the electrical signals representing power, the DSP unit processes the signals to
compute power, and the user interface presents the results to the user for
viewing graphically.

318 Chapter 1i Applicatibns of Programmable DSP Devices

FSXI > CONV

CLKRI1 > — XCLK
- 0sCl

' SYNC

A A

SOUTA DSP102

CLKIN
: CLKOUT

FSR1
TMS320C5402 Ry

Figure 11,2’2k ADC interface to the DSP using McBSPs

Data Acquisition Unit

Data acquisition consists of acquiring the voltage signal using a voltage trans-
former and the current signal using a current transformer. The voltage trans-
former is used to transform the voltage signal to a value that can be handled
by an A/D converter. Similarly, the current transformer produces voltage
proportional to the current in the circuit. This voltage is fed to a second A/D
converter. The A/D converters produce digital data at the selected sampling
rate. The number of A/D bits specifies'the resolution for the digital signal. The
dual-channel ADC device (DSP102 from TI), with the maximum sampling rate
of 200 KHz, 16-bit resolution, and serial interface, was used in this design.

DSP Unit

For power computations, the Texas Instruments DSK5402 DSP board was
used. The development software package, CCS, running on PC, was used to
develop and download software for the DSP, The DSP’s on-chip multichannel
buffered serial ports (McBSPO and McBSP1) provide the mechanism to collect
data from the two A/D converters on the data acquisition unit. Figure 11.22
shows the interface between the A/D converters and the DSP.

Programming the McBSP registers can configure the clock and sampling
frequencies. The sampling frequency was programmed for 12.2 KHz. The DSP
is programmed to generate the A/D convert pulse. The A/D supplies two data
samples as a 32-bit number after asserting the sync signal on the FSR of the
serial port. The receiver has two 16-bit registers, DRR11 and DRR21, that re-
ceive the data every conversion cycle. From here, it is the DMA that transfers
the signal data to the DSP memory. Two DMA channels are used for the two.
signals. The DMA is also used to transfer the data from the DSP to the user
interface unit using another DMA channel and the transmitter register DXR10

Figure 11.23

11.7 DSP-Based Power Meter 319

] o <>
e 2 &
k4 :
MCBSP1 | A at mcespo A
'RSRI1 | RSR21 ~ XSRI0 RSRI0 | RSR20
* P
DRRI1 | DRR2I | | pxrio || DRri0 | DRR20
"16-Bit Peripheral Data Bus
=
~_ 7 .
DMAC2 | | DMAC4 ' DMACS

< " 16BitMemory DataBus > DARAM

DSP’s DMA system for interfacing to ADCs'ahdvto the user interface unit

on the McBSPO serial port. Figure 11.23 shows the details of the DMA interface
for receiving the A/D data using McBSPl and- transmitting the computed sig-
nal data using the MCcBSPO.

User Interface Unit

The user interface displays the signals received from the DSP. For this .
purpose, in this project a complete embedded computer system was used. In
this way, the DSP can dedicate itself to analyzing the data, and the computer

320 Chapter 11 Applications of Programmable DSP Devices

CLKRO
FSRO

TMS320C5402 e
CLKX0

FSX0

DX0

ADDR DATA

LIl

ADDR DATA

X_CNTLO

CPLD

< DSP_CLKR <‘r
< DSP_FSR ISA_SA SA
“* DSP_DR
<+ DSP_CLKX ISA
< "Dsp_rsx ISA~SQ< :>SD Controll
> osrox XC4005XL ontroller
) ISA_SMEMRDC » SMEMRDC
psP_CNIL 1SA_SMEMWTC + SMEMWTC
ISA_DRQ > DRQ3
ISA_DAK < DAK3
r'y ISA_INT » IRQY

Figure 11.24 DSP-to—computef interface logic

provides capability to display s1gnals on a LCD- display. This requires provi-
sion of two-way communication between the DSP and the computer. The in-
terface was designed using Xilinx XC4005XL-PC84 FPGA An EEPROM is used
to configure the FPGA upon power-up.

The bus interface logic shown in Figure 11.24 has two main responsibilities.

- First, it controls the DSP and second, it supplies the DSP data to the com-

11.7.2

puter. For the computer to control the DSP, the interface converts parallel
data and delivers it serially to the DSP. For the DSP to send data‘to the com-
puter, the opposite mechanism, that is, serial-to-parallel conversion, is used in
addition to coordinating the DMA transfer to the computer. .
The embedded computeér uses a graphic controller to drive the LCD. The
LCD provides a resolution of 640 x 480. To implement the interface, a few

computer resources such as interrupt and memory locations are dedicated to
the interface.

Software for the Power Meter

The software for the device consists of the system software and the application
software. The system software consists of routines that manage the hardware,
both for the DSP and the computer.

The DSP system software consists of modules, written in C, that manage

~ the ADC and operate the computer interface logic. This software is stored in

Figure 11.25

11.7 DSP-Based Power Meter .'321

Voltage 173.7623
VRHS 122.84 V

~176.6691

0.5188
Current

IRHS 0.26884 A

~0.6109

74.4238
Power

PAUG 13.74 W

-9.8988

3

Waveforms and computed _qua_nﬁties as displayed on the LCD screen

the flash memory of the DSK. A user interface device driver that runs on the
computer provides read/write operations to the DSP and starts the DSP.

The application software running on the DSP uses the current and voltage
signal data to compute the quantities in the following equations:

p(B) = Vi), k=kk+1,..k+N

Vims = , [UN Y v2(k)
E N .
oms = JUNS " i2(k)
] Y

Pavg = UNZ P(k\)
N

An example of these computed signals and quantities as displayed on the LCD
screen is shown in Figure 11.25. The waveforms and the text are displayed
using the user interface software running on the computer.

'322 Chapter 11 Applications of Programmable DSP Devices

11.8 Summary

In this chapter, we have seen that the programmable DSP can be used for a
variety of applications. Although these applications vary in the nature of the
signals to be processed and their computational complexities, the architecture

_and other features of the DSP are suitable for implementing these and many
other applications. As examples, we studied the use of the DSP for five repre-
sentative applications. :

References

1. Singh, A., Hines, 1., an'd-Sbmps, C. “A digital Signal Processor Based Hand
' Held Multichannel, Multiple-Subject Biotelemetry System,” NASA Ames Uni-
versity Consortium Report, NCC2-5112, 1996. ’
“Z.. Rabiner, L. R., and Schafer, R. W. “Digital Representation of Speech Signals,”
Proc. IEEE, Vol. 63, pp. 662-677, April 1975. ‘
3. Rabiner, L. R. “On the Use of Autocorrelation for Pitch Detection,” IEEE
" Trans. Acoust., Speech and Signal Processmg, Vol. ASSP-25, No. 1, February
1977.

4. Rabiner, L. R, and Schafer, R.W. Digital Processmg of Speech Signals, Pfennce
Hall Inc., 1978.

5. Rao, K. R, and Yip, P. Discrete Cosine Transform Algor:thms, Advantages,
Applications, Academic Press, 1969.

6. Shi, Y. Q., and Sun, H. Image and Video Compression for Multimedia En-
gineering: Fundamentals, Algorithms, and Standards, CRC Press, 2000.
7. Lee, B. G. “A new algorithm to calculate the Discrete Cosine Transform,” IEEE
Trans. Acoust. Speech, and Signal Processing, Vol. ASSP-32, pp. 1243-1245,
December 1984.

8. Nekoogar, E., and Moriarty, G. Digital Control using D:g:tal Signal Processing,
- Prentice Hall Information and System Sciences Series, 1999.

© 9. Muico, U, and Larios, H. DSP-Based Power Measurement Device, EE198
Senior Project Report, San Jose State University, Fall 2001.

~

Appendix A

" Architectural Details of TMS320VC5416

Digital Signal Processor

15

6 5 4 32 1 0

IPTR - MP/MC | OVLY | *AVIS |-DROM g;'f: SMUL - | - ssT
R/W-1FF

MP/W R/W-0 R/W-0 R/W-0 -R/W-0 R/W-0 R/W-0

Pin -

LEGEND: R = Read, W = Write

BIT ,
NO. NAME

RESET
VALUE

FUNCTION

15-7 IPTR

6 MP/MC

 1FFh

MP/MC
pin

15-7 IPTR 1FFh Interrupt vector pointer. The 9-bit IPTR field points
to the 128-word program page where the interrupt vectors reside. °
The interrupt vectors can be remapped to RAM for boot-loaded
operations. At reset, these bits are all set to 1; the reset vector
always resides at address FF80h in program memory space; The
RESET instruction does not affect this field.

Microprocessor/microcomputer mode. MP/MC enables/disables
the on-chip ROM to be addressable in program memory space.

. MP/MC = 0: The on-chip ROM is enabled and addressable.

_ MP/MC =1: The on-chip ROM is not available. MP/MC is setto
the value corresponding to the logic level on the MP/MC pin
when sampled at reset. This pin is not sampled again until the
next reset. The RESET instruction does not affect this bit. This bit
can also be set or cleared by software.

Figure A.1 Processor Mode Status (PMST) Register T © (continued)

{Courtesy of Texas Instruments Inc.y

323

324 Appendix A Architectural Details of TMS320VC5416 Digital-Signal Processor

5 ovLY 0 RAM overlay. OVLY enables on-chip dual-access data RAM blocks
: to be mapped into program space. The values for the OVLY bit
_ OVLY = 0: The on-chip RAM is addressable in data space but
not in program space. _ OVLY =.1: The on-chip RAM is mapped
into program space and data space. Data page 0 (addresses Oh to
7Fh), however, is not mapped into program space.’

4 AVIS 0 - Address visibility mode. AVIS enables/disables the internal
' program address to be visible at the address pins. _ AVIS = 0: The
external address lines do not change with the internal program
address. Control and data lines are not affected and the address
bus is driven with the last address on the bus. _ AVIS = 1: Thls
mode allows the internal program address to appear at the pins
of the 5416 so that the internal program address can be traced.
Also, it allows the interrupt vector to be decoded in conjunction
with IACK when the interrupt vectors reside on on-chip memory. -
3 DROM 0 - DROM enables on-chip DARAM4-7 to be mapped-into data space.
 The DROM bit values are: _ DROM = 0: The on-chip DARAMA4-7 is
not mapped into data space. _ DROM = 1: The on-chip DARAMA4-
7 is mapped into data space. ‘

-2 CLKOFF 0 CLOCKOUT off. When the CLKOFF blt is 1, the output of CLKOUT
» is disabled and remains at a high level. ‘ o
1 SMUL N/A ,Saturatlon on multiplication. When SMUL = 1, saturation of a

multnplicatidn result occurs before performing the accumulation
~ in a MAC of MAS instruction. The SMUL bit applnes only when
OVM = 1 and FRCT = 1.

0 $ST . N/A ~ Saturation on store. When ST = 1, saturation of the data from '
‘ the accumulator is enabled before storing in memory. The
saturation is performed after the shift operation.

Figure A.1 Continued

Appendix A Architectural Details of TMS320VC5416 Digital Signal Processor

325
15 4 12 11 9 8 6 5 3 2 0
XPA 10 Data Data. | Program | Program

R/W-0 R/W-111 R/W-111 R/W-111 R/W-111 R/W-111

LEGEND: R = Read, W = Write, 0/111 = Value after reset

BIT

- NO.

NAME

RESET
VALUE

FUNCTION

15

14-12

11-9

8-6

2-0

XPA

o
Data

Data

Program k

Program

111
M
1M

111

m

Extended program address control bit. XPA is used in conjunction
with the program space fields (bits 0 through 5} to select the

- address range for program space wait states.

10 space. The field value (0-7) corresponds to the base number
of wait states for IfQ space accesses within addresses 0000-FFFFh.
The SWSM bit of the SWCR defines a multiplication factor of 1 or
2 for the base number of wait states.

Upper data space. The field value (0-7) corresponds to the base
number of wait states for external data space accesses within
addresses 8000-FFFFh. The SWSM bit of the SWCR defines a
multiplication factor of 1 or 2 for the base number of wait states.

Lower data space. The field value (0-7) corresponds to the base
number of wait states for external data space accesses within
addresses 0200-7FFFh. The SWSM bit of the SWCR defines a
multiplication factor of 1 or 2 for the base number of wait states. -

Upper program space. The field value (0-7) corresponds to the
base number of wait states for external program space accesses
within the following addresses:
+ XPA = 0: xxB000 — xxFFFFh
+ XPA = 1: 400000h — 7FFFFFh. The SWSM bit of the SWCR
defines a multiplication factor of 1 or 2 for the base -
number of wait states.

Program space. The field value (0-7) corresponds to the base
number of wait states for external program space accesses within
the following addresses: »
s XPA = 0: xx0000 — xx7FFFh ;
« XPA = 1: 000000 — 3FFFFFh. The SWSM bit of the SWCR
defines a multiplication factor of 1 or 2 for the base
number of wait states.

Figure A.2 Software Wait-Signal Register (SWWS5R)

{Courtesy of Texas Instruments Inc.)

326 Appendix A Architectural Details of TMS320VC5416 Digital Signal Processor

15 \ . 1 0
Reserved - : SWSM

R/W-0 ' R/W-0

LEGEND: R = Read, W = Write

PIN
—orm o RESET .
NO. ~ NAME VALUE FUNCTION '
15-1 Reserved 0 These bits are reserved and are unaffected by
A A , writes.
0 SWSM- 0 Software wait-state multiplier. Used to multiply
‘ the number of wait states defined in the P

SWWSR by a‘factor of 1 or 2. .
+ SWSM = 0: wait-state base values are .
~unchanged (multiplied by 1).
«. SWSM = 1: wait-state base vaiues are
muitiplied by 2 for a maximum of 14 wait
states ‘

Figure A.3 Software Wait-State Control Register (SWCR)

{Courtesy of Texas Instruments Inc.)

Appendix A Architectural Details of TMS320VC5416 Digital Signal Processor 327

15 127 13 12 M1 3 2 S o

CONSEC* | DIVFCT | IACKOEF | Reserved | -HBH BH Res
R/W-1 R/W-11 R'W-1 ~ R - R/W-0 R/IW-0 R

R = Read, W = Write

. RESET
BIT NAME VALUE FUNCTION
15 CONSEC* 1 Consecutive bank-switching. Specifies the bank- switchin'g mode,

CONSEC* = 0: Bank-switching on 32K bank boundaries only.
This bit is cleared if fast access is desired for
continuous memory reads (i.e., no starting and

_ . trailing cycles between read cycles).
- CONSEC* = 1: Consecutive bank switches on external memory
‘ reads. Each read cycle consists of 3 cycles: starting
‘ cycle, read cycie, and trailing cycle.

13-14 DIVFCT 11 .CLKOUT output divide factor. The CLKOUT output is driven by
an on-chip source having a frequency equal to 1/(DIVFCT + 1) of
the DSP clock.

DIVFCT = 00: CLKOUT is not divided. ;

 DIVFCT = 01; CLKOUT is divided by 2 from the DSP clock.
DIVFCT = 10; CLKOUT is divided by 3 from the DSP clock.
‘DlVFCT = 11: CLKOUT is divided by 4 from the DSP ciock -
' (default value following reset).

12 IACKOFF 1 IACK* signal output off. Controls the output of the fIACK
’ : signal, JACKOFF is set to 1 at reset.
IACKOFF = 0: The IACK* signal output off function is disabled.
AACKOFF = 1: The 1ACK* signal output off function is enabled.

11-3 Rsvd — Reserved
2 HBH . 0 HPI bus holder. Controls the-HPI bus holder. HBH is cleared to 0
at reset.

HBH = 0: The bus holder is disabled except when HPI 16 = 1.
HBH = 1: The bus holder is enabled. When not driven, the HPI
data bus, HD[7:0] is held in the previous logic level.

L

Figure A4 Bank—Switching Control Register (BSCR) (contini;ed)

(Courtesy of Texas Instruments Inc.}

328 Appendix A_Architectural Details of TMS320V(5416 Digital Signal Processor

1 BH 0 Bus holder. Controls the bus holder. BH is cleared to 0 at reset.
‘ BH = 0: The bus holder is disabled.
BH = 1: The bus holder is enabled. When not driven, the data
~ bus, D[15:0] is held in the previous logic level.

0 Rsu — Reserved

- Figure A.4 Continued

CLKMD RESET

CLKMD1 CLKMD2 CLKMD3 VALUE = CLOCK MODE
0 0 0 0000h 172 (PLL disabled)
0 0 1 9007h PLL x 10
0 1 0 4007h - PLLx 5
1 0 0 1007h PLL x 2
1 1 0 FOO7h. PLL x 1
1 i 1 - 0000h 1/2 (PLL disabled)
1 0 1 - FOOOh 1/4 (PLL disabled)
0 1 1 — Reserved (Bypass mode)

tThe external CLKMD1-CLKMD3 pins are sampled to determine the desired
clock generation mode while RS is low. Following reset, the clock generation;
mode can be reconfigured by writing to the internal clock mode regiscer in
software.

Figure A.5 ‘Clock Modé]Settihgs_ at Reéet

{Courtesy of Texas Instruments Inc.)

- Appendix A Architectural Details of TMS320VC5416 Digital Signal Processor 329

ADDRESS

NAME DEC - HEX DESCRIPTION -
MR- - 0 0 Interrupt mask register
“IFR - S 1 “Interrupt flag register
- 2-5 2-5 Reserved for testing
ST T 6. B Status register 0
ST1 - 7 7 Status register 1
AL -8 . 8 Accumulator A low word (15-0) |
AH g 9 Accumulator A high word (31-18)..
AG 10 A Accumuiator A guard bits (39-32)
BL 11 B Accumulator B jow word (15-0)
"BH -« - 12 C ‘Accumulator B high word (31-16)
BG 13 -D Accumulator B guard bits (39-32) .
TREG . . . 14 . E Temporary register
TRN - - 15 F . Transition register
ARO 16- 10 ‘Auxiliary register 0
. AR1 17 . 11 Auxiliary register 1
AR2 . 18 12 Auxiliary register 2
AR3 - 19 13 Auxiliary register 3
AR4 - 20 .14 Auxiliary register 4
ARS 21 15" Auxiliary register 5
ARG - - 22 16 Auxiliary register 6
AR7 23 17 Auxiliary register 7
P - 24 -18 Stack pointer register
BK 25 19 Circular buffer size register
BRC 26 1A Block repeat.counter '
RSA 27 . 1B Block repeat start address
REA: 28 . . 1C Block repeat end address , .
PMST 29 - 1D Processor mode status (PMST) register
XPC - 30 1E Extended program page register

L — i 31 . 1F Reserved :

Figure A.6 Memory—Mépped Registers'
{Courtesy.of Texas Instruments Inc.)

330 App"end_i‘x A Architectural Details of TMS320VC5416 Digital Signal Processor

ADDRESS

NAME DEC - HEX DESCRIPTION
DRR20 32 20 McBSP 0 Data Receive Register 2
DRR10 33° ‘ 21 McBSP 0 Data Receive Register 1
DXR20 34 w22 McBSP 0 Data Transmit Register 2
DXR10 35 e 23 McBSP 0 Data Transmit Reglster 1
TIM 36 : 24 Timer Register
PRD - ©. 37 25 Timer Period Register
TCR Timer - 38" . 26 Control Register
— -390 27 Reserved
SWWSR 40 " - - 28 Software Wait-State Register.
BSCR = - -~ 41 29 . Bank-Switching Control Register
- cL82 2A Reserved
SWCR 43 - 2B Software Wait-State Control Register
HPIC 44 - 2C HP! Control Register (HMODE 0 only)
— 45-47 2D-2F Reserved
DRR22 48 30 McBSP 2 Data Receive Register 2
DRR12 49 3 McBSP 2 Data Receive Register 1
DXR22 50- 32 ‘McBSP 2 Data Transmit Register 2

~ DXR12 51 33 McBSP 2 Data Transmit Register 1
SPSA2 52 ° 34 McBSP 2 Subbank Address Registert
SPSD2 53 35 McBSP 2 Subbank Data Registert
- 54-55 36-37 Reserved
SPSAQ 56 - 38 McBSP 0 Subbank Address Registert
SPSDO 57 -~ 39 MCcBSP 0 Subbank Data Registert
— . 58-59 . 3A-3B Reserved .
GPIOCR 60 3C. . General-Purpose I/O Control Register
GPIOSR : 61 3D General-Purpose /0 Status Register
CSIDR ~ 62 - . - 3E Device ID Register
— e 63 . © 3F Reserved
DRR21 64 40 McBSP 1 Data Receive Register 2
DRR11 65 - 41 McBSP 1 Data Receive Register 1
DXR21 66 42 MCcBSP 1 Data Transmit Register 2
DXR11 67 43 McBSP 1 Data Transmit Register1 “
— 68-71 44-47 Reserved
SPSA1 ‘ 72 48 MCcBSP 1 Subbank Address Registert
SPSD1 73 49 McBSP 1 Subbank Data Reglster'r
— 74-83 4A-53 = Reserved
DMPREC - 84 ‘ 54 DMA Priority and Enable Control Register
Figure A.7 Peripheral Memory-Mapped Reyisters .) (continued)

(Courtesy Texas Instruments Inc.)

- Appendix A Architectural Details of TM$320VC5416 Digital Signal Processor 331

DMSA DMA 85 =~ 55 ' Subbank Address Register?

DMSDI 86 56 DMA Subbank Data Register with Autoincrements
DMSDN - 8 . - 57 . DMA Subbank Data Register®

CLKMD ' - 88 - 58 Clock Mode Register (CLKMD)

—_ '89-95 . 59-5F Reserved

tSee Table Figure A.8 for a detailed description of the McBSP control registers and their sub-
addresses.

¥See Table Figure A.9 for a detailed description of the DMA subbank addressed registers.

Figure A.4 Continued

332 Appendix A Architectural Details of TMS320VC5416 Digital Signal Processor

| McBSPO McBSP1 - McBSP2

e SUB
NAME ADDRESS .NAME -~ ADDRESS NAME ADDRESS ADDRESS DESCRIPTION
SPCR10 39h SPCR11 49h SPCR12 35h - 00h _Serial port control
o ‘ : ~ register 1 |
SPCR20 3%h - 'SPCR21. 4%h SPCR22 - 35h 01h - Serial port control
' ‘ register 2 .
~RCR10 3%h . RCR11 = 4%h. "RCR12 35h - .7 02h . Receive control.
, A A N register 1
“RCR20 3%h RCR21 49h RCR22 35h 03h Receive control .
" register 2
XCR10 3%h XCR11 49h XCR12 35h 04h Transmit control
’ ‘register 1
XCR20 3%h XCR21 49h XCR22 "35h " 05h - Transmit control
' ' ‘ register 2
SRGR10 3%h SRGR11 49h "SRGR12 35h . 06h Sample rate
. ‘ ‘ generator register 1
SRGR20 3%9h SRGR21 "4%h SRGR22 35h 07h - Sample rate
generator register 2
MCR10 39h MCR11 4%h MCR12 35h 08h " Multichannel
: register 1
. MCR20C 3%h MCR21 49h MCR22 35h 0%h Multichannel
. ' . register 2
RCERAO 39h RCERA1 49h RCERA2 35h 0Ah Receive channel
‘ -enable register
partition A
RCERBO 39h RCERB1 49h RCERAZ2 35h 0Bh Receive channel
‘ © enable register
» ‘ partition B
~ XCERAQ 39h XCERA1 48h XCERAZ 35h 0Ch Transmit channel
» enable register
partition-A
XCERBO 39h XCERB1 49h XCERA2 35h 0Dh Transmit channel
: enable register
partition B
PCRO 39h PCR1 49h PCR2 '35h 0OEh " Pin control register
RCERCO 3%h RCERC1 49h RCERC2 35h ‘010h Additional channel
- ‘ ‘ enable register for
128-channel selection
Figure A.8 MCcBSP Control Registers and Subaddresses (continued)

{Courtesy of Texas instruments inc.)

Appendix A Architectural Details of TMS320VC5416 Digital Signal Processor 333

RCERD1 4%h

RCERDO 39h

XCERCO 39h XCERC1 49h
XCERDO 3%h XCERD1 4sh
RCEREO ~ 39h RCERE1 49h
RCERFO 39h RCERF 49h
XCEREO 39h XCERE1 49h
XCERFO 39h XchF1 49h
RCERGO 3gh ~ RCERG1 49h
RCERHO 3%h RCERH 49h -
XCERGO 39h XCERG1 49h
XCERHO 39h - XCERH1 45h

'RCERD2
XCERC2
XCERDZ
RCERE2
RCERF2
x¢EREé

XCERF2

RCERG2

RCERH2

XCERG2

XCERH2

35h
35h

35h

35h

35h
35h
35h
35h
35h
35h

35h

011h

012h

013h

014h

015h

ot6h

017h

018h

019h

01Ah

01Bh

~

Additional channel
enablie register for .
128-channel selection
Additional channel
enable register for
128-channel selection
Additional channei
enable register for
128-channel selection
Additional channel
enable register for-
128-channel selection
Additional channel
enable register for
128-channel selection
Additional channel
enable régister for
128-channel selection
Additional channel
enable register for
128-channel selection
Additional channe]
enable register for .
128-channel selection
Additional channel
enable register for
128-channel selection
Additional channel
enable register for
128-channel selection
Additional channel
enable register for
128-channel selection

Figure A8 Continued

334 Appendix A Architectural Details of TM$320V.C5416 Digital Signal Processor

SUB

NAME ADDRESS ADDRESS DESCRIPTION
DMSRCO 56h/57h 00h DMA channel 0 source address register
DMDSTO 56h/57h 0th DMA channel 0 destination address register
DMCTRO 56h/57h 02h DMA channel 0 element count register
DMSFCO 56h/57h 03h DMA channel 0 sync select and frame count register -
DMMCRO 56h/57h 04h - DMA channel 0 transfer mode control register
DMSRC1 56h/57h 05h DMA thannel 1 source address register.
DMDSTY 56h/57h 06h DMA channel 1 destination address register
DMCTR1 - 56h/57h - 07h DMA channel 1 element count register
DMSFC1 56h/57h 08h DMA channel 1 sync select and frame count register
DMMCR1 56h/57h 09h DMA channel 1 transfer mode control register
DMSRC2 56h/57h 0Ah DMA channel 2 source address register
DMDsST2 56h/57h 0Bh DMA channel 2 destination address register
DMCTR2 56h/57h och DMA channel 2 element count register : .
DMSFC2 . 56h/57h 0Dh DMA channel 2 sync select and frame count register
DMMCR2 . 56h/57h OEh DMA channel 2 transfer mode control register '
DMSRC3 56h/57h OFh DMA channel 3 source address register
DMDST3 56h/57h 10h . DMA channel 3 destination address register
DMCTR3 56h/57h 11h DMA channel 3 element count register)
DMSFC3- - 56h/57h 12h - DMA channel 3 sync select and frame count register
DMMCR3 56h/57h ~ 13h DMA channel 3 transfer mode control register
DMSRC4 56h/57h 14h DMA channel 4 source address register
DMDST4 56h/57h 15h DMA channel 4 destination address register
DMCTR4 56h/57h 16h DMA channel 4 element count register
DMSFC4 56h/57h 17h DMA channel 4 sync select and frame count register
DMMCR4 56h/57h 18h DMA channel 4 transfer mode control register
DMSRC5 56h/57h 19h DMA channel 5 source address register
DMDST5 56h/57h 1Ah DMA channel 5 destination address register
DMCTRS 56h/57h 1Bh DMA channel 5 element count register -
DMSFC5 . 56h/57h 1Ch DMA channel 5 sync select and frame count register
DMMCRS 56h/57h 1Dh DMA channel 5 transfer mode control register
DMSRCP 56h/57h 1Eh DMA source program page address {(common channel)
DMDSTP 56h/57h 1Fh DMA destination program page address {common

: channel) i -
DMIDX0 56h/57h 20h DMA element index address register 0
DMIDX1 56h/57h 21h DMA elemént index address register 1
DMFRIO 56h/57h 22h DMA frame index register 0
DMFRI1 56h/57h 23h DMA frame index register 1
DMGSAQ = 56h/57h 24h DMA global source address reload register, channel 0
Figure A9 DMA Subbank Addressed Registers {continued)

(Cour‘iesy of Texas Instruments Inc.)

http:56h/5.7h

DMGDAO

- DMGCRO

DMGFRO

XSRCDP
XDSTDP

DMGSAT
DMGDA

DMGCR1
DMGFR1
DMGSA2
DMGDA2

DMGCR2

'DMGFR2
DMGSA3
DMGDA3

DMGCR3
DMGFR3
DMGSA4

DMGDA4

DMGCR4
DMGFR4
DMGSAS
DMGDAS

DMGCR5
DMGFR5

56h/57h

56h/57h

56h/57h
56h/57h

56h/57h

56h/57h

56h/57h .

56h/57h
56h/57h
56h/57h

56h/57h

56h/57h

56h/57h

56h/57h

56h/57h

56h/57h

36h/57h
56h/57h

56h/57h ;

56h/57h
56h/57h
56h/57h

56h/57h

56h/57h
56h/57h

25

~ 26h

27h
28h

29h ‘

" 2Ah

2Bh

2Ch
2Dh
2Eh

-~ 2Fh

30h

31h
2h

.33h

"34h
35h

36h
37h

- 38h

39h
3Ah
3Bh

3Ch

3Dh

" Appendix A Architectural Details of.TMSBZOVCSQIIG Digital Signal Processor 335

DMA global destination address reload register,
channel 0 _
DMA global count reload register, channel .0

- DMA global frame count reload register, channel 0

DMA extended source data page (currently not

- supported)

DMA extended destination data page (currently not
supported)

DMA global source address reload register, channel 1
DMA global destination address reload reg:ster
channel 1

DMA global count reload register, channel 1

DMA global frame count reload register, channel 1
DMA global source address reload register, channel 2
DMA global destination address reload register,
channel 2

DMA global count reload register, channel 2

DMA global frame count reload register, channel 2
DMA global source address reload register, channel 3

DMA global destmatnon address reload regnster

channel 3

DMA global count reload register, channel 3

DMA global frame count reload register, channel 3
DMA giobal source address reload register, channel 4
DMA global destination address reload register,

‘channel 4

DMA global count reload register, channel 4

DMA global frame count reload register, channe! 4
DMA global source address reload register, channel 5
DMA global destination address reload register,
channel 5 A _

DMA global count reload register, channel 5

DMA global frame count reload register, channel 5

Figure A.9 Continued

336 Appeﬁdix A Architectural Details of TMS320VC5416 Digital Signal Processor -

, LOCATION.
NAME R DECIMA HEX PRIORITY - FUNCTION
RS, SINTR 0o - o0 1 . Reset (hardware and software reset)
NMI, SINT 16 4 04 2 Nonmaskable interrupt
SINT17 8 08 — Software interrupt #17
- SINT18 12 0cC L— Software interrupt #18
SINT19 16 10 — Software interrupt #19
SINT20 , .20 14 S— Software interrupt #20
SINT21 24 18 — Software interiupt #21
SINT22 28 1C — Software interrupt #22
SINT23 32 . 20 - Software interrupt #23
SINT24 36 36 _ Software interrupt #24
SINT25 40 28 — Software interrupt #25
SINT26 .44 2C - Software interrupt #26
SINT27 48 30 — _ Software interrupt #27
SINT28 ‘ 52 34 _ Software interrupt #28
SINT29 . 56 - . 38 — Software interrupt #29
SINT30 60 3C — Software interrupt #30°
INTO, SINTO 64 40 3 External user interrupt #0
INT1, SINT1 68 - .44 4 External user interrupt #1
INT2, SINT2 72 48 5 External user interrupt #2
TINT, SINT3 76 4c 6 Timer interrupt :
RINTO, SINT4 80 30 7 MCcBSP #0 receive interrupt (default)
XINTO, SINTS . 84 54 8 McBSP #0 transmit interrupt (default)
RINT2, SINT6 88 58 9 McBSP #2 receive interrupt (default)
XINT2, SINT7 92 5C¢ 10 MCcBSP #2 transmit interrupt (default)
INT3, SIN]'S - 86 ... 60 11 External user interrupt #3
HINT, SINT9 100 64 12 . HPI interrupt ;
RINT1, SINT10 104 ' 68 13 McBSP #1 receive interrupt {(default)
XINT1, SlNT1 1 108 6C 14 McBSP #1 transmit interrupt (default)
DMAC4, SINT12 1 12 70 15 DMA channe! 4 (default)
DMACS, SINT13 116 74 16 DMA channel 5 (default)
Reserved 120-127 78-7F — Reserved
15-14 .13 12 1 10 9 8 7 - 6 5 4 3 2 1 0

Resvd DMACS | DMAC4 | XINTT| RINTT| HINT | INT3 | XINT2 | RINT2 | XINTO | RINTO | TINT | INT2 | INT1 | INTO

Figure A.10 Interrupt Vector Table and interrupt Mask Register/Interrupt F|ag Register (IMR/IFR)
(Courtesy of Texas Instruments Inc.)

A Appendix A Architectural Details of TMS320VC5416 Digital Signal Processor 337

15-12

11

10 9-6 5 4 3-0

Reserved

Soft

Free ©PSC " TRB ©TSS TDDR

Reset

Bitt Name Value

Function

15-12 Reserved @ —

11 Soft

10 Free

9-6 PSC
5 TRB

4 TS5

0

3-0 ~ TDDR 0000

Reserved; always read as 0

‘Used in conjunction with the Free bit to determme the state of
the timer when a breakpoint is encountered in the HLL

debugger. When the Free bit is cleared, the Soft bit selects the
timer mode. i
Soft = 0 The timer stops immediately.

Soft = 1 The timer stops when the counter decrements to 0.

Used in conjunction with the Soft bit to determine the state of
the timer when a breakpoint is encountered in the HLL
debugger. When the Free bit is cleared, the Soft bit selects the
timer mode.

Free = 0 The Soft bit selects the timer mode.

Free = 1 The timer runs free regardless of the Soft bit.

Timer prescaler counter. Specifies the count for the on-chip timer.
When PSC is decremented past 0 or the timer is reset, PSC is
loaded with the contents of TDDR and the TIM is decremented.

Timer reload. Resets the on-chip timer. When TRB is set, the TiM
is loaded with the value in the PRD and the PSC is loaded with
the value in TDDR. TRB is always read as a. 0.

Timer stop status. Stops or starts the on-chip timer, At reset, TSS -

is cleared and the timer immediately starts timing.
TSS = 0 The timer is started.
TSS = 1 The timer is stopped.

Timer divide-down ratio. Specifies the timer divide-down ratio

(period) for the on-chip timer. When PSC is decremented past 0,
PSC is loaded with the contents of TDDR.

Figure A.11

Timer Control Register {TCR)

{Courtesy of Texas Instruments Inc.)

Index

2-D signal processing, 201

AJD conversion errors, 49
" absolute file, 158
absolute lister, 158
accumulator, 120
adaptive filter, 198
coefficient of adaptation, 201
error signal, 198
address arithmetic unit, 96
address generation unit, 90
addressing, 4
bit-reversed, 4
modulo, 4
addressing mode, 81, 83
bit-reversed, 87 ‘
circular, 85
direct, 82
immediate, 81
indirect. See also indirect addressing mode
register, 82
aliasing, 7
noise, 7
ALU. See arithmetic and logic unit
overflow management, 75
register file, 76
- status flags, 75 :
amplitude degradation of D/A output, 56
antialiasing filter, 1, 7,270 .
API functions, 164
architecture, 3, 77
Harvard architecture, 3, 77
Von Neumann architecture, 77
archiver utility, 158
arithmetic and logic unit, 75
assembler, 159
assembly source file, 159
assembly source program, 159

assembly translation assistant, 158

-autocorrelation, 105, 304

BCLKIN, 273 ,
biomedical signals, 298

-biotelemetry, 298

biotelemetry receiver, 299
implementation, 301
pulse position modulation, 299
PPM receiver, 300
bit reversing, 218

block floating-point format, See number formats

Block exponent, 46, 47
block repeat, 137
board confidence testing, 158
board drivers, 158
branching, 93 ‘
buffered serial port, 146
butterfly, 216

C compiler, 157
CCS. See code composer studio
circular buffer, 85, 178 .
code composer studio, 161
CODEC. See also synchronous serial interface
ATT,277 .
BCLKIN, 272
CODEC programming; 275
FMTO, 277
FMT1, 277
LOP, 277
LRCIN, 277
LRP, 277
MC, 275
MD, 275
ML, 275
CODEC_CLK, 272
CODEC_SYSCLK, 272

339

340 Index

CODEC (continued)
CPLD, 271
DIN, 272
DOUT, 272
LDL, 277
LDR, 277
LRCIN, 272~
PCM3002, 266
PCM3002 CODEC, 271
SYSCLK, 272

CODEC interface circuit, 266

digital attenuation, 270
digital deemphasis, 270
digital loopback, 270
power down mode, 270
soft mute, 270)
COFF object files, 157
commercial DSP devices, 107
~ ADSP 2100, 108
DSP 56000, 108
TMS32010, 108
TMS$32020, 108
TMS320C25, 108
TMS320C54xx, 108

compare, select and store unit (CSSU), 114, 117

compensating filter, 57
compiler

CICT™ compiler, 161)
complex exponential sequence, 9

- computational accuracy, 42

convolution, 13, 23
crosscorrelation, 105
cross-reference lister, 158

D/A conversion errors, 54

data address generatidn unit (DAGEN), 114

data addressing. See addressing mode
debug options, 162

breakpoints, 163

graphing, 164

probe points, 163

profiling, 164

real-time analysis, 164

single-step, 162 ‘

watch window, 163
debuggmg tool, 158

_ decimation, 21, 190

decimation factor, 21, 190
decimation filter, 190, 270
decimation in time, 87

device configuration, 138

DFT. See Fourter transform

DFT pair; 10

DIF. See decimation-in-frequency

DIF FET algorithm, 219

digital filters, 14

frequency response, 15

group delay, 17

group delay response, 30

linear phase, 15

magnitude frequency response, 16

phase frequency response, 16
digital frequency, 9; 10 : -
digital signal, 7 V
direct memory access, 255
directives, 160

.end, 160

.global, 160

.mmregs, 160

section directives, 160

.data, 160
text, 160
DIT. See decimation-in-time
DIT FFT algorithm, 219
DMA. See direct memory access
DMA controller, 155
DMCTR. See channel element count register -
DMDST. See channel destination address register
DMMCR. See channel transfer mode control
register

. DMPREC. See channel pnonty and enable control

register

DMSA, 257 -

DMSDI, 257

DMSDN, 257

DMSEC. See channel sync select and frame count
- register

DMSSEC See channel source address regmter

DSK. See DSP system design kit

DSP computational building blocks, 63

DS$P computational errors, 52

DSP system design kit, 155

DSP/BIOS kernel, 164

dual data memories, 95

dynamic range, 42

ECG signal processing, 301
BPM, 302
HR, 302
QRS complex, 302

editor, 157
embedded executable functions, 158
emulator, 154
error, 51, 52
mean, 51, 52
variance, 51, 52
evaluation module, 155
EVM. See evaluation module
executable COFF object file, 158
exponent, 44; 45 ~
exponent encoder (EXP), 114
extension :
.out, 162
extension bits. See guard bits
external interfacing, 102
direct memory access, 102
interrupts, 102
parallel 1/0, 102
serial /0, 102
timer, 102
external memory access, 239 -
timing reference, 239

fast Fourier transform, 4, 10, 11, 219
decimation-in-frequency, 219
decimation-in-time, 219
overflow, 220
radix-2 algorithm, 11
scale factor, 223
scaling, 220
zero-padding, 219

FFT. See fast Fourier transform

finite impulse response (FIR) filter. See FIR

filter
FIR filter, 14, 178
© design, 19
Parks-McClellan FIR filter, 19, 37

flash memory, 155, 243

Fourier transform
discrete, 10
forward transform, 216
in-place computation, 216
inverse discrete, 10
inverse transform, 216
signal flow graph, 216

frequency-domain sequence, 216 .

Gibbs’ phenomenon, 19
guard bits, 54, 73,114

Index 341

hard disk drive, 312

read/write head, 312
hardwired control, 103
Harvard architecture, See arcuitecture
heart rate, 301
hex conversion utility, 158
host port interface, 155
host utilities, 158
HPL See host port interface

IDCT. See inverse DCT
IDE. See integrated development environment
IDFT. See Fourier transform
IFR. See interrupt flag register
IIR filter, 17, 181
" design, 20
based on analog techniques, 20
Butterworth lowpass IIR filter design, 33
direct design, 20 o
Yulewalk, 21, 35
higher-order IIR filter, 181
image processing system, 307
data compression, 308
lossy, 308
immediate, 118
implied 1, 45
implied binary point, 43
IMR. See interrupt mask register
include files, 162

_indirect addressing mode, 82

post_decrement, 84
post_offset_add, 84
post_offset_subtract, 84
pre_decrement, 84
pre_increment, 84
" pre_offset_add, 84 -
pre_offset_subtract, 84
infinite impulse response filters. See IIR filter
instruction cache, 80
instruction register, 93
instruction syntax, 118
integrated development environment, 161
interpolation, 21
factor, 22, 188
filter, 187, 270
polyphase subfilters, 188
linear interpolation, 188
interrupt, 248, 279
NMI, 249 -
TACK, 251

342 Index V

interrupt (continued)
RS, 249
acknowledgement, 251
hardware interrupt, 249
interrupt flag register, 249
interrupt mask register, 249
interrupt vector table, 249
INTM, 249
maskable, 249
nonmaskable, 249
priority, 251
service routine, 248
software interrupt, 249
interrupt IO, 246
interrupt service routine, 93, 252
interrupt vector table, 93

joint photographic experts group, 308
dequantization, 311
Huffman decoding, 311
JPEG algorithm, 309
DCT, 309
entropy encoding, 309
inverse DCT, 311
- quantization, 309
JPEG decoding, 311
JPEG encoding, 310
ac coefficients, 310
dc coefficient, 310
JPEG. See joint photographic experts group
JTAG emulation logic, 155

last-in-first-out, 92

mean square error, 198
memory, 77
data memory, 78
dual data memories, 78
dual-access memories, 80
memory access times, 79
off-chip memories, 79
on-chip memory, 79
memory space of TMS320C54xx processors,
129
-law expansion table, 129
A-law expausion table, 129
bootloader, 129
- DARAM, 129
data-memory space, 129
extended pages, 129
interrupt vector table, 129
. memory-mapped peripherals, 129
on-chip DARAM, 129
on-chip RAM, 129
on-chip ROM, 129
processor mode status register, 129
program memory space, 129
SARAM, 129
sine look-up table, 129
speech codec table, 129
microcode, 93
microinstructions, 93
microstore, 93
modify auxiliary register, 123
MSE. See mean square error
multichannel buffered serial port, 155, 264
control registers, 266

library modules, 158 DMA, 265
library-build utility, 158 DRR, 265
LIFO. See last-in-first-out DXR, 265
linker, 158 McBSP programming, 266
loops, 93 RBR, 265
: RINT, 265
MAC. See multiply and accumulate RRDY, 265
- MAC unit. See multiply and accumulate unit RSR, 264
machine program, 160 subaddresses, 266
macros, 158 XINT, 265
mantissa, 44, 46 v XSR, 265
MAR. See modify auxiliary register multiple buses, 96
MATLAB, 23 multiple memories, 96
- matrix multiplication, 206, 207 multiplier, 63

memory organization, 207 array, 63
McBSP. See multichannel buffered serial port Baugh-~Wooley, 66

Braun multiplier, 64
bus widths, 66
for signed numbers, 64
parallel, 63
speed, 66
multiply and accumulate, 3, 52, 53
multiply and accumulate unit, 71

noise variance, 52

normalization, 45

number formats, 42
accuracy, 47, 49
block floating-point format; 46
double-precision fixed-point format, 44
dynamic range. 47, 49
fixed-point format, 43
floating-point format, 44
IEEE-754 format, 45
precision, 45, 46
resolution, 48, 49

object formats, 158
. object library, 158
on-chip cache, 80
operand syntax, 123
overflow, 53, 54, 72, 74
overflow error; 54
oversampling sigma-delta converters, 266

parallel 1/O interface, 245
timing diagram, 246
parallel muitiplier, 64
parallelism, 96
system leve] parallelism, 98
PCI configuration data, 159
PCM3002. See stereo codec
periodic sequence, 10
peripheral memory-mapped reglsters, 266
SPSA, 266
SPSD, 266
PID controller, 193
erroi, 194
error derivative, 194
error integral, 194
pipeline latency, 97
pipeline operation of the TMS320C54xx, 148
pipelining, 97
system level plpehnmg, 98 .
PMST. See processor mode status register

Index 343

position control system, 312
environmental variations, 314
head positioning, 314
position, 312
position error, 313
reference, 314
reference inverse model, 314
reference model, 314
reference model output, 314
servomotor, 312
servo-plant output, 314
track, 313
transversal filter, 316
weight vectors, 315

power measurement system, 317
current transformer, 318
data acquisition unit, 318
DSP unit, 318
user interface unit, 319

power meter, 316

- power spectral density, 11, 25, 27

PPM. See pulse position modulation
PRD. See timer period register
probability density function, 50
program address generation unit (PAGEN), 114
program counter, 93
program execution, 91

control unit, 93

hardwired, 93
program sequencer, 93
condition logic, 95

program memory, 78
program prefetch, 148
programmed 1/0, 246, 247

BIO, 247

GPIOCR, 247

GPIOSCR, 247

handshake, 247

XE, 247)
project creation window, 162
project menu, 162

load program, 165
project toolbar, 162

add files to project, 164

build, 165

debug, 162

new, 164

rebuild all, 132

release, 162

344 Index

project view window, 162
pseudocode, 105

Q-notation, 176
quantization error, 49, 50

real-time data exchange, 164
real-world signals, 298
reconstruction filter, 1, 2, 7

. record length, 11
register subaddressing, 257)
relocatable COFF object files, 158
resolution, 48, 49 .
reverse-carry-add, 89
rounding, 177
rounding error, 50, 51
RTDX. See real-time data exchange

sample-and-hold circuit; 270
sampled-data signal, 7
sampling, 7
frequency, 7
interval, 8
oversampling, 270
rate, 7, 300
theorem, 8
saturation logic, 74
serial port, 146
shifter, 68
barrel shifter, 69
signal power, 52
signal spectrum, 232, 233
signal to-noise ratio, 52
.signed fractions, 43, 44
signed integers, 43, 44
sinc function, 56 ,
single-step execution. See debug options
sinusoidal sequence, 10
software, 320
device driver, 321
software development flowchart, 156
speech.processing system, 302
autocorrelation, 302
autocorrelation computation, 305
clipping level, 305
fundamental frequency estimation, 302
pitch detectors, 302
pitch period estimation, 302, 305
. spectrum flattening, 305

three-level clipping scheme, 305
vocoders, 302

 speech signal, 304

digital model, 304
fricative sounds, 304
nasal tract, 304
natural frequencies, 304
unvoiced speech signal, 307
vetum, 304
vocal apparatus, 304
voiced speech signal, 307
stack, 80, 92
stack pointer, 279
status and control bits of timer, 142
status display, 158
status register ST1, 116
stereo codec, 155
subbank access register, 257
DMSDI, 257
DMSDN, 257
subbank address: reglster, 257

" _subroutines, 93

SWWSR. See software wait state reglster
synchronous serial interface, 262
CLKR, 263 -
CLKX, 263
CODEC, 263
DR, 263
DX, 263
- frame sync signal, 263
PSR, 263 '
FSX, 263
full-duplex, 264
PCR, 266
RCR, 266
. receive timing, 263
RRDY, 263
SPCR, 266
subbank control registers, 266
- transmit timing, 263
XRDY, 263
system ful}ction, 14

target libraries, 158

TCR. See timer control register
TDDR, 143

TDM. See time-division mulnplexed
throughput, 2, 97 V

TIM. See timer register

‘time-division multiplexed, 146
tine-domain sequence, 216
time-invariant system, 12
linear, 12
timer, 155 .
timer control register, 142
timer period register, 142
timer register, 142
TINT, 143
TOUT, 143
TMS320C5402, 311, 316
TMS320C5416
bus interfacing signals, 238
1/0 space, 277
memory interface, 244, 245
TMS320C54xx, 108
addressing modes, 117
absolute addressing
dmad, 120
1k, 120
PA, 120
pruad, 120 -
bit-reversed addressing, 127
circular addressing, 124
direct, 121 ')
dual-operand addressing, 127
memory-mapped register, 127
stack, 128 ' _
ARAUDO. See auxiliary register arithmetic units
ARAUL, See auxiliary register arithmetic units
auxiliary regiéter arithmetic units, 112, 123
auxiliary register ARx, 126
BK. See circular-buffer size register
bus cycle, 241 =)
bus structure, 111
central processing unit, 112
circular-buffer size register, 125
CLKOUT, 239,
compiler mode bit, 121
CPL. See compiler mode bit
CPU registers, 117
data bus pairs, 112
data-page pointer, 121
direct memory access
register subaddressing, 257
DMA channels, 255
DMA operation, 256
chanriel destination address register, 256
“channel element count register, 256

Index 345

channel priority and enable control register,
256 :

channel source address register, 256

channel sync select and frame <ount
register, 256

channel transfer mode control register, 256

configuration, 256

DP. See data-page pointer

dual-access type, 117

internal memory, 117
interrupts, 146

external, 146

internal, 146

maskable, 146

nonmaskable, 146
memory interface, 238 .
memory space organization, 236

paging, 241 '
mentory-mapped register, 117
on-chip peripherals, 142

clock generator, 145

hardware timer, 142

host port interface, 143

serial I/0 ports, 146 -
peripheral registers, 117
PMST registers, 117
program bus pair, 112
program control, 131°

hardware stack, 131

PAGEN, 132

‘program control unit, 131

repeat counters, 131, 132

status registers, 131
programming examples,-137
single-access type, 117

SP. See stack-pointer
“ stack pointer, 121
TMS320C54xx instructions, 132

arithmetic, 133
instruction set, 132

- load and store, 132

logical, 133

multiply, 134 :
multiply and accumulate, 134
multiply and subtract, 135

multiply, accumuldte, and delay, 136

PORTR, 245
PORTW, 245, 246
program-control, 133

346 ‘ Index

TMS320C54xx instructions (continued)
READA, 121 ‘
WRITA, 121

TMS320VC5416, 155, 237

TMS320V(C5416 DSK, 155

transfer function, 14

truncation, 177 ‘

truncation error, 50, 51

twiddle factor, 216

unconditional 1/0, 246
underflow, 72, 74 .
universal serial bus, 155
USB. See universal serial bus
user-mode DLL, 159

Viterbi algorithm, 117

wait states, 240
READY, 240
software programmable, 240
software wait state register, 240
Win32 DLL, 158
wraparound, 44, 54, 74
error, 74

Yulewalk technique, 57
zero-order hold, 54, 56

zero-overhead looping, 3
Z-transform, 13

