
Implementations Using DSP Microprocessors

with Examples from TMS320C54xx

~~r-

Digital Signal Processing
Implementations

Using DSP Microprocessors-with
Examples from TMS320C54xx

'.

Avtar Singh
San Jose State University

t> S. Srinivasan
Indian Institute of Technology, Madras'

~.. (ENGAGE
,... Learning-

Andover. Melbourne. Mexico City. Stamford. CT • Toronto· Hong Kong ~ New Delhi. Seoul· Singapore .• Tokyo

Digital Signal Processing Implemfmtations
Avtar Singh & S. Srivnivasan

© 2004 by Brooks/Cole, a part of Cengage Learning

This edition is reprinted with license from BrookS/Cole, a part of Cengage Leaming, for sale in India,
Pakistan. Bangladesh, Nepal and Sri Lanka.

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced,
transmitted. stored or used in any form or by any means graphic. electronic, or mechanical. induding
but not limited to photocopying, recording. scanning. digitizing, taping. Web distribution, information
networks, or information storage and retrieval systems, except as permitted under Section 107 or 108
of the 1976 United States Copyright Act, without the prior written permission of the publisher

ISBN-13: 978-81-315-0034-7
ISBN-10: 81-315-0034-9

Cengage Learning India Private Limited
418, F.I.E., Patparganj
Delhi 110092
India

Tel: 91-11-43641111
Fax: 91-11-43641100
Email: asia-infoindia@cengage.com

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe,

including Andover, Melbourne, Mexico City, Stamford (CT), Toronto, Hong Kong, New Delhi. Seoul,

Singapore, and Tokyo. Locate your local office at: www.cengage.com/global

Cengage Learning Products are represented in Canada by Nelson Education, Ltd.

For product information, visit our website at www.cengage.co.in

Printed in.lndia

Eleventh Indian Reprir'f 2011

-----_._. i,
I

http:www.cengage.co.in
www.cengage.com/global
mailto:asia-infoindia@cengage.com

Contents

Chapte.r 	1

Introduction

1.1 A Digital Signal-Processing System

1.2 Programmable Digital Signal Processors 	 2

1.3 Major Features of Programmable Digital Signal Processors 3

1A The Scope of the Book 4

References 5

Chapter 	2

Introduction to Digital Signal Processing 6

2.1 Introduction 	 6

2.2 A Digital Signal-Processing System 	 6

2.3 The Sampling Process 	 7

2.4 Discrete Time Sequences 	 9

2.5 Discrete Fourier Transform (DFT) and Fas::: Fourier Transform (FFT) 10

2.5.1 The DFT Pair 10

2.5.2 The Relationship between DFT and Frequency Response 11

2.5.3 The Fast Fourier Transform (FFT) 11

2,6 Linear Time-Invariant Systems 12

2.6.1 Convolution 13

2.6.2 Z-Transform 13

2.6.3 'rhe System Function 13

2.7 Digital Filters 	 14

2.7.1 Finite Impulse Response (FIR) Filters 14

2.7.2 Infinite Impulse Response (IIR) Filters 17

2.7.3 FIR Filter Design 19

2.7.4 IIR Filter Design 20

iii

1

iV, Contents

2.8 	 Decimation and Interpolation ~,21

2.9 	 Analysis and Design Tool for DSP Systems: MATLAB 23

2.10 	 Digital Signal Processing Using MATLAB 24

2.11 	 Summary 38

References 38

Assignments 38

Laboratory Assignment 40

Chapter 	3
Computational Accuracy in DS~ Implementations, 42

3.1 	 Introduction 42

3.2 	 Number Formats for Signals and <;:oefficients in DSP Systems 42

3.2.1 	 Fixed~Point Format 43

3.2.2 	 Double-Precision Fixed-Point Format 44"
3.2.3 	 Floating-Point format 44
3.2.4 	 Block Floating-Point Format 46

3.3 	 Oynamic Range and Precision 47
3.4 	 Sources of Error in DSP Impl~mentations 49
3.5 	 AID Conversion Errors 49

1
3.6 	 DSP Computational Errors 52 i

3.7 	 D/A Conversion Errors 54
3.7.1 	 Compensating Filter 57

3.8 	 Summary 59

References 59

Assignments 59

Chapter 	4
Architectures for Programmable Digital
Signal-Processing Devices 61

4.1 	 Introduction 61
4.2 	 Basic Architectural Features 61
4.3 	 DSP Computational Building Blocks, 63

4.3.1 	 Multiplier 63

Contents vi.i

6.8.1 Building a Project 162

6.8.2 The Debug Options 162

6;9 DSP Software Development Example 164

6.10 	 Summary 167

References 174

Laboratory Assignments 175

Chapter 	7

Implementations of Basic DSP Algorithms 176

7.1 Introduction 	 176

7.2 The Q-notation 	 176

7.3 FIR Filters 	 178

7.4 IIRFilters 	 181

7.5 Interpolation Filters 	 187

7.6 Decimation Filters 	 190

7.7 PID Controller 	 ·193

7.8 Adaptive Filters 	 198

7.9 2-D Signal Processing 	 201

7.9.1 Matrix Multiplication 206

7.10 	 Summary 211

References 211

Assignments . 211

Chapter 	8

Implementation ,of FFT Algorithms 215

8.1 Introduction 	 215

8.2 An FFT Algorithm for DFT Computation 	 .215

8.2.1 2-Point DFT Computation 216

8.2.2 4-Point DFT Computation 217

8.2.3 8-Point.oFT Computation 218

8.2.4 N =2M -Point Computation 218

8.3 A Butterfly ComputatIon 	 219

viii 	 Contents

. 8.4 Overflow and Scaling 	 220

8.5. 	 Bit-Reversed Index Generation .223

8.6 	 An 8-Point FFT Implementation on the TMS320C54xx 224

8.7 	 Computation of the Signal Spectrum 232

8.8 	 Summary 233

References 233

Assignments 233

Chapter 	9

Interfacing Memory and Parallel 1/0. Peripherals to

Programmable DSP Devices 236

9.1 Introduction 236

9.~ Memory Space Organization 236

9.3 	 External Bus Interfacing Signals 238

9.4 	 Memory Interface 238

9.4.1 	 Timing Se~uence for External Memory Access 239

9.4.2 	 Wait States 240

9.4.3 	 Memory Design Examples 243

9.5 	 Parallel 110 Interface 245

9.6 	 Programmed 110 247

9.7 	 Interrupts and 110 248­

9.7.1 	 Handling of Interrupts 249

9.8 	 Direct Memory Access (DMA) 255

9:8.1 DMA Operation Configuration 256

9.8.2.Register Subaddressing 257

9.9 	 Summary 259

References 259

Assignments 260

Chapter 	10

Interfacing Serial Converters to a

Programmable DSP Device 262

10.1 Introduction 262
10.2 Synchronous Seria I Interface 	 262

Contents ix

10.3 	 A Multichannel Buffered Serial.Port (McBSP) 264
10.4 	 McBSP Programming 266
10.5 	 A CODEC Interface Circuit 266
10.6 	 .CODECProgramming 275
10.7 	 A CODEC-DSP Interface Example· 277
10.8 	 Summary
 294

References

Assignments

Chapter 	11
Applications of Programmable DSP Devices'

295
295

297

11.1 Introduction 	 297

11.2 	 A DSP System 297

11.3 	 DSP-Based Biotelemetry Receiver 298

11.3.1 	 Pulse Position Modulation (PPM) 299

11.3.2 	 Decoding Scheme for the P~M Receiver 300

11.3.3 	 Biotelemetry Receiver Implementation 301

11.3.4 ECG Signal Processing for Heart Rate Determination 301

11.4· A Speech Processing System 302

11.4.1 	 A Digital Model for Production of Speech Signal 304

11.4.2 	 Autocorrelation 304

11.4.3 	 Implementation on the TMS320C54xx Processor 307

11.5 	 An Image Processing System 307

11.5.1)PEG Algorithm Overview 309

11.5.2 	 JPEG Encoding 310

11.5.3 	 JPEG Decoding 311

11.5.4 	 Encoding and Decoding ofJPEG Using the TMS320C54xx 311

11.6 	 A Position Control System for a Hard Disk Drive· 312

11.7 	 DSP-Based Power Meter 316

11.7.1 	 Power Measurement System 317

11.7.2 	 Software for the Power Meter 320

11.8 	 Summary 322

References 322

x Contents

Appendix A
Architectural Details of TMS320VC5416
Digital Signal Processor 323

Index 339

.,._--- .--_..-._-----­

--'">~ --- ••"--"~~.

Preface

Due to advances in VLSI technology, programmable DSP devices are becom­
ing increasingly available and affordable. These devices have, therefore, be­
come popular in the industry for the design of products. Consequently, a large
number of undergraduate senior projects and graduate projects are planned
and implemented using these devices. Many students attempt these projects
based on a first-level course on digital signal processing. The books that ar~
used in these classes do not, however, cover the topics from the implementa­
tion point of view. There is generally a wide gap in students' understanding of
DSP algorithms and how to use programmable DSP devices to implement
them.

This is a DSP implementation-oriented textbook that has been written
based on the authors' experience in teaching graduate and undergraduate
courses on the subject. The objective of the book is to help the reader to
understand the architecture, programming, and interfacing of commercially
available programmable DSP devices and to effectively· use them in system
implementations. The book is intended for senior undergraduate and first­
level graduate students in electrical engineering and computer science pro­
grams. The book will also be useful to engineers in industry engaged in the
design of DSP systems. The background expected from a reader is a course in
digital signal processing and a course in microprocessors, both at the under­
graduate .level.

This book contains 11 chapters and covers the architectural issues of pro­
grammable DSP devices and their relationship to the algorithmic require­
ments, architectures of commercially popular programmable devices~ and the
use of such devices for software development and system design. rfhese issues
are covered using a popular family ofDSP devices-TMS320C54xx from T.exas
Instt:uments.

Chapter 1 identifies the role of programmable devices in the implementa­
tion of DSP-based· systems. Chapter 2 reviews the DSP basics so that the
reader can correlate the remainder of the book to the theoretical requirements
of a DSP system. The aim is not to attempt to teach DSP theory, which is
abundantly covered elsewhere, but to highlight the. concepts that are relevant
from the point of view of implementations. MATLAB is used as a tool in ex­
ploring and understanding the basic DSP concepts. Chapter 3 looks at issues
that determine the computational accuracy of algorithms when implemented

xi

xii Preface

using programmable DSP devices. Although it is desirable to retain-as much
accuracy as possible when DSP algorithms are implemented in hardware, in a
practical implementation, accuracy has to be measured against thl:'speed of
operation and hardware complexity. Different number representation schemes
are introduced and their effects on precision and dynamic range are discussed.
Various sources of errors in a DSP system are described and are quantitatively
evaluated in this chapter.

One of the objectives of the book is to iive readers su'flicient exposure to
the architecture of programmable DSP devices so that they can use them ef­
fectively and optimally in designing systems. Chapter 4 explains the architec­
tural features of programmable DSP devices based on -the operations these
devices are required to perfor.\ll.. Various building blocks that constitute a
programmable digital signal processor are discussed from the point of view of
implementatiqns. Desirable features for each of these blocks are discussed in
terms of their hardware realization. Chapter 5 introduces the Texas Instru­
ments' TMS320C54xx family of fixed-point DSP processors and discusses their
architecture, software, and hardware features. These devices are used in pro­
gramming and design examples throughout the book. Chapter 6 introduces
the various' tools that are available for the development of DSP soft:wate ort
programmable devices. In particular, the use of DSK5416, a system design kit
used for program development for the TMS320C54xx, and the development
software 'called Code Composer Studio are described. The DSK5416 IS the de­
velopment board around which all the designs are implemented in subsequent
chapters. .

In Chapters 7 and 8, programming of the TMS320C54xx devices for several
basic DSP algorithms is explained. Examples are constructed to show im­
plementations of FIR filters, IIR filters, decimation filters, interpolation filters,
adaptive filters, a PID controller, two-dimensional signal processing, and ~e
FFT algorithms. ,

Chapters 9 and 10 deal with the signals of a programmable DSP device re­
quired for interfacing it to the real world. Interfacing of memory and I/O to
the DSP devices are discussed with examples. The system integration topics
su~h as DMA andinterrtipts are also covered. Programming of a CODEC de­

, vice interfaced to the DSP on the DSK5416 is covered so as to enable the
reader to use its AID and D!A converters for serial I/O.

Chapter llpresents several applications of programmable DSP devices. The
objective of _this chapter is to highlight the suitability of programmable DSP
devices for varioUs application areas and motivate readers to design. systems
around these devices.

The chapters have many end-of-chapter assignment problems and labora­
tory exercises. The lab exercises require the use of MATLAB as an analysis!
design tool and DSK5416 with Code Composer Studio as a 'hardware/software
development tool. The programs in the book are available on the web site.
The site also contains additional examples and projects and links to other re­
lated information. To access the site requires a password available from the

Preface xiii

publisher. The programs in the book can be used in many applications with
appropriate enhancements. The development tools are inexpensively avaihible
,from TI. At the end of a course with this book as the text, the student should
be comfortable in using both hardware and software for designing with pro­
grammable DSP devices.

In conclusion, there is a gap between the algorithm-based DSP courses,
generally. offered in most universities, and the implementation of these algo­
rithms using commercial devices and tools. The imple!TIentation area is be­
coming increasingly important as it leads to innovative applications for the
marketplace. Seeing. the importance, many universities have attempted.
courses in this area, generally without a textbook and mainly relying on the
company literature. In our opinion, this book tills this gap between DSP
theory and DSP desigl,1. .

A book of this nature can only be developed with help from both academia
and industry. Many of our. students at both of our institutions have been the
source of motivation for this project and have contributed to its completion.
Specifically, we would like to thank our students Ramandeep Kaul' Sahi, Ulhas
Kotha, Uldarico Muico, and H. Larios of San Jose State University, and Ab­
hishek Tandon, Vineet Jain, Kaushik Raghunath, Gaurav Verma, and Surender
Reddy of the Indian Institute of Technology, Madras. Secretarial assistance
provided by S. Sreekala and the technical assistance by Narendra S. Sihra are
gratefully acknowledged. Chris Petersen and Keith Ogboenyiya of Texas In­
struments are specially thanked for arranging a generous donation of the de­
velopment boards and the software, without which this'project could· not have
been completed. .

Avtar Singh, SJSU.
S. Srinivasan, lIT, Madras

Chapter 1
Introduction

1.1 A Digital Signal-Processing System

Digital signal processing (or DSP) is the technique of performing mathemati­
cal operations on signals represented as sequences of samples. These sequences
are obtained by' converting real-world analog signals by means of analog-to­
digital converters. After processing, the digital samples are converted back to
analog signals by means of digital-to-analog converters. Although function­
ally digital signal processing is the heart of a DSP system, the analog front end
and the analog back end are equally important, as the system has to be inter­
faced to the real-world signals, which are mostly analog.' Digital processing
of signals offers many advantages over analog processing. Some of these are:
immunity to environmental noise, predictable and reproducible behavior,
programmability, size, and cost. Examples of digital signal-processing systems
can be found in speech and audio systems, telecommunication applications
such as modems, electronic and biomedical instrumentation, image process­
ing, robotics, control applications, etc.

The block diagram of a typical DSP system is shown in Figure 1.1. It con­
sists of the DSP processor between the analog front end and the analog back
end. The analog front end consists of an anti aliasing filter, a sample and hold
circuit, and an analog-to-digital (AlI;» converter feeding into the DSP. The
back end consists of a digital-to-analog (D/A) converter to convert the digital
output to its analog value followed by a reconstruction filter. The antialiasing
filter, an analog lowpass filter, is used to band limit the input analog signal to
the required frequency range and prevent frequency components beyond this
range from appearing as aliases in the sampled spectrum of the input signaL
The sample and hold circuit presents the samples of the input signal at the
rate determined by the system design requirements to the input of the analog­
to-digital converter. It also holds these samples at constant levels irrespective
of the variations in the input signal in the interval between sampling instants.
The analog~to-digital converter maps the value of the analog input sample to
its equivalent digital representation and feeds it to the DSP.

1

2 Chapter 1 Introduction

Analoe Front End
Antialiasing Filter, Analog • Sample and Hold, Signal in

AID Converter.
I

DSP
Processor

Analoll Back End
D/A Converter,

Reconstruction Filter.
Analog

Signal out

Digital Digital

Figure 1.1 The block diagram of a DSP system

After processing, the digital outputs of the DSP are converted to their
equivalent analog values by the digital-to-analog converter. These discrete
analog values are converted 'to a SrilOOth, continuous waveformhy the recon­
struction filter at the output for use in the real world. Like the antialiasing
filter, the reconstruction filter is also an analog lowp.ass filter.

The following issues are important to be considered in designing and im­
plementing a DSP system.

Complexity of the algorithm: The arithmetic operations to be performed
and the precision required are decided by the application.

Sample rate: The rate at which input samples are received and processed

varies with the application, and this rate along with the algorithm com­

plexity determines whether a particular DSP is suitable for a given applica­

tion.

Speed: This depends on the technology. To meet specified throughput
requirement with a given sample rate, it must be possible to operate the
DSP at a particular clock rate (or speed). If this speed is not achievable in a
given technQlogy, a faste'r technology or other options must be explored.

Data representation: The format and the number of bits used for data
representation depend on the arithmetic precision and the dynamic range
required for the given application. '

1.2 Programmable Digital Signal Processors

Digital signal processors can be either application-specific or general purpose.
Application-specific chips are designed to perform one function more accu­
rately, faster, or more cost-effectively th;in their general-purpose counterparts.
Typical examples are digital filters and fast Fourier Transform chips. Some
application-specific chips are programmable, but only within the confines
of the chip'S function; the coefficients of a' filter, for example, can be pro­
grammed. '

1.3 Major Features of Progr~mable Digital Signal. Processors 3

A programmable digital signal processor, on the other hand, is cost­
effective. It can be programmed for different applications and has a short
design cycle time. Basically, it is a microprocessor whose architecture is opti­
mized to process sampled data at high rates [1]. It performs such operations
as accumulating the sum of multiple products much faster than an ordinary
microprocessor. Its architecture is designed to exploit the repetitive nature of
signal processing by pipelining the data flow and by incorporating parallelism
in its operation. These features are designed in the programmable DSP to
achieve higher speed and throughput.

For a given application, there isa large number of programmable DSPs to
choose from, based on such factors as speed, throughput, arithmetic capa­
bility, precision, size, cost, and power. consumption. As the technology grows,
there are m9re and more sud:: devices with better and better performance
characteristics that are easily incorporated in DSP systems.

1.3 	 Major Features of Programmable Digital Signal
Processors

Although there are many unique architectural features implemented in pro­
grammable DSP devices [3], following are the ones that are commonly found:

Multiply-accumulate hardware: Multiply-accumulate is the most fre­
quently used operation in digital signal processing. In order to implement
this efficiently, the DSP has a hardware multiplier, an accumulator with
an adequate number of bits to hold the sum of products and an explicit
multiply-accumulate instruction.

Harvard architecture: In Harvard memory architecture, there are two
memory spaces, typically partitioned as program memory and dat.a mem­
ory (though there are modified versions that allow some crossover between
the two). l'he processor core connects to these memory spaces by two
separate bus sets, allowing two simultanwus accesses to memory. This
arrangement doubles the processor's memory bandwidth,. and is crucial in
keeping the processor core fed with data and instructions. The Harvard
architecture is sometimes further e;x:tended with additional memory spaces
and/or bus sets to· achieve even highet memory bandwidths.

Zero-overhead looping: One common characteristic of DSP algorithms
is that most of the processing time is spent on executing instructions
contained within relatively small loops. That is why most DSP processors
include specialized hardware for zero-overhead looping. The term zero­
overhead looping means that the processor can execute loops without con­
suming cycles to test the value of the loop counter, perfo~m a conditional
branch to the top of the loop, and decrement the loop counter.

4 Chapter 1 Introduction

Specialized addressing: DSP processors often support specialized address­
ing modes that are useful for common signal-processing operations and
algorithms. Examples include modulo (circular) addressing. useful for
implementing digital-filter delay lines, and bit-reversed addressing, useful
for implementing a commonly used DSP algorithm called the Fast Fourier
Transform or FFT. .

1.4 The Scope of the Book

Due to advances in VLSI technology, programmable DSP devices are becom­
ing increasingly available and affordable. These devices have, therefore, be­
come popular in the industry for the design of products. Consequendy. a large
number of undergraduate senior projects and graduate projects are· planned
and implemented using these devic;es [2]. This book attempts to bridge the
gap between the knowledge of DSP theory and practical implementation of
systems using DSP devices. .

The scope of this book includes the following:

1. 	 Architectural issues of programmable DSP devices arid their relationship
to the algorithmic requirements

2. 	Exposure to commerCially popular architectures

3. 	Use of programmable devices for software development and system
design

These topics are covered using a popular family of DSP devices from Texas
Instruments (TI), the TMS320C54xx DSP family. similar to the one shown in,
Figure 1.2. The processGrs from this family have been used in many digital
signal-processing implementations. The processors from oili,er companies,
such as Analog Devices and Motorola, can equally be used to implement such
systems. In this book. however, we limit our discussion to the TI processors.

The book contains 11 chapters. Chapter 2 reviews the basic DSP concepts.
Chapter 3 covers the accuracy in DSP implementations. It discusses the

. sources of errors in DSP computations. Chapter 4 lists the architectural
requirements of digital signal processors for efficient implementation of algo­
rithms. Chapter 5 introduces programmable DSP devices and gIves the archi­
tectural and programming details of the TMS320C54xx family of devices.
Chaptet' 6 covers the software development tools for programmable DSP de­
vices. Chapters 7 and 8 deal with implementations of DSP algorithms on
TMS320C54xx DSP processors. Chapters 9 and 10 discuss interfacing of DSP
devices to external peripherals, both serial and parallel. Chapter 11 gives se·
lected examples of applicatiQns of programmable DSP devioes.

5 References

Figure-1.2 	 TMS320C54x DSP Microprocessor

(Courtesy of Texas Instruments Inc.)

References

1. 	 Allen, J., "Computer Architecture for Digital Signal Processing," IEEE Pro­
ceedings, Vol. 73, pp. 852~873, May 1985. .

2. 	 Special Issue on Digital Signal Processing in Undergraduate Education, IEEE
Transactions on Education, vol. 39, no. 12, May 1996.

3. 	 Lapsley, P., Bier, J., Shoham, A., and Lee, E. A., DSP Processor Fundamentals:
Architectures and Features, IEEE Press, Piscataway, NJ, 1997.

Chapter 2
Introduction- to Digital Signal Processing

2. 1 Introdudion

This chapter reviews the important basic concepts of digital signal processing
(DSP). The coverage is brief and is from the viewpoint of implementations of
DSP algorithms. The concepts are illustrated with examples using MATLAB's
capability to analyze and design algorithms. For comprehensive coverage of
DSP algorithms, the reader is advised to consult the references [1,2] at the end
of this chapter. Specifically, the following topics are covered-in this chapter:

A digital signal-processing system

. The sampling process

Discrete time sequences

Discrete Fourier transform (DFT) and fast Fourier transform (FFT)

Linear time-invariant-systems

Digital filters

Decimation and interpolation

Analysis and design tool for DSP systems: MATLAB

2.2 A Digital Signal-Processing System

A digital signal~processing (DSP) system uses a computer or a digital pro~
cessor to process signals. The real-life signals are analog and therefore must
be converted to digital signals before they can be processed with a computer.
To convert a signal from analog to digital, an analog-to-digital (AID) con­
verter is used. After processing the signal digitally, it i.s usually converted to
an analog signal using a device called a digital-to-analog (D/A) converter. The
block diagram of Figure 2.1 shows the components of a DSP scheme. This

6

2.3 The Sampling Process 7

Analog Analog
Antialiasing

Filter

Reconstruction

Filter

AID D/A

Digital Digital

Figure 2.1 A digital signal-processing sys~em

figUre contains two' additional blocks, one is theantialiasing filter for filtering
the signal before sampling and the second is the reconstruction filter placed
after the D/A converter. The antialiasingfilter ensures that the signal to be
sampled does not contain any frequency higher than half of the sampling fre­
quency. If such a filter is not used, the high-frequency contents sampled with
an inadequate sampling rate generate low-frequency aliasing noise. We will
discuss the choice of sampling frequency further in the next section. The re­
construction filter removes high-frequency noise due to the "staircase" output
of the D/A converter.

The signals that occur in a typical digital signal-processing scheme as
shown in Figure 2.2· are: continuous-time or analog signal, sampled signal
sampled-data signal, quantized or digital signal, and the DIA output signal.

An analog signal is a continuous-time, continuous-amplitude signal that
occurs in real systems. Such a signal is defined for anytime and can have any'
amplitude within a given. range. The sampling process generates a sampled
signal. A sampled signal value is held by a hold circuit to allow an AID con­
verter to change it to the corresponding digital or quantized signal. The signal
at the AID converter· input is called a sampled-data signal and at the output
is the digital signal. The processed digital signal, as obtained from the digital
signal processor (DSP), is the input to the DIA converter. The analog output
of a D/A converter' has "staircase" amplitude due to the conversion process
used in such a device. The signal, as obtained from the D/A, can be passed
through a reconstruction lowpass filter to remove its high-frequency contents
and hence smoothen it.

2.3 The Sampli'ng Process

The process of converting an analog signal to a digital signal involves sam­
pling the signal, holding it for conversion, and converting it to the corre­
sponding digital value. The sampling frequency must be high enough so as
to avoid aliasing. Aliasing is a phenomenon due to which a high-frequency
signal when sampled using a low (inadequate) sampling rate becomes a low­
frequency signal that may interfere with the signal of interest. To avoid

8 Chapter. 2 Introduction to Digital Signal Processing

(al O"~IO====~
0.1 0.1~ 0.2 0.25 0.3 0.35 0.4 0.45. 0,

0.5 iii iii i I

_.i93
(b)

0

1 0.15 0.2 .0.25 0.3 0.35 Q.4 0.45
0.5 0.

0.5

(c)

0

0.[0.15 0.2 0.2' ();, 0.35' 0.4 0.45 r
0.51 ' ~'2 'r ' , , (a) r,0-'

(e)
~r 0.:, 0;22 0.:5 0:' "',' 0:4 0:' I

0.1 0.15 0.2 0.25. 0.3 0.35 0.4 0.45 0.5

. Figure 2.2 Typical signals in a DSP scheme: (a) continuous-time signal, (b) sampl«;ld signal,
(c) sampled-data signal, (d) quantized (digital) signal, (e) digital-to-analog
converter ouput signal

aliasing, the sampling theorem states that the following requIrement must be
satisfied:

Is = liT > 2fmax. (2.1)

where

Is is the sampling frequency in Hz,

T is the sampling interval in seconds, and

fmax is the highest frequenCy contents of the analog Signal

2.4 Discrete Time Sequences 9

, For instance. if we sample a signal with its highest frequency content as
10 KHz. it must be sampled using a sampling rate of more than 20 KHz. In
order to satisfy this requirement. an antialiasing filter is used. This filter limits
the frequency contents of the signal to satisfy the sampling theorem. One has
to sacrifice (unimportant. one hopes) frequency contents to avoid violation of
the sampling theorem. or else the sampling rate must be increased. The actual
sampling frequency must be higher than this theoretical limit to avoid tight

. constraints for the implementation of the antialiasing filter.

2.4 Discrete Time Sequences

The result of sampling an analog signal is a sequence representing the signal
samples. The sequence that results depends upon the signal that is sampled.
For instance. when

x(t) = A cos 2nft

is sampled using T as the sampling interval. it yields the samples as

x(nT) = A cos 2nfnT,· where n O. 1.2•...• etc.

For simplicity. the sequence x(nT) is denoted as x(n). Thus.

x(n) A cos 2nfnT

Since the sampling frequency Is = liT. and substituting efor 2nfT. we obtain

x(n) A cos 2nfnT = A cos 2nfnlls = A cos en

The quantity. denoted bye. is called the digital frequency. Note that the units
for the digital frequency are radians. The general equation that relates the
digital frequency to analog frequet:Jq is

e = 2nfT 2nflls (2.2)

Note that the digital frequency range. for a properly sampled signal (Is >
2fmax) as obtained from Eq. 2.2, is :rom 0 to n.

The above x(n) .sequenc~ called the sinusoidal sequence. occurs frequently
in DSP systems. Another important sequence that arises in DSP schemes is the
complex exponential sequence given by

j2nnIN 1 0 1 " tp()n e , n= ... -", ... ,ec.

where N is an integer.

10 Chapter 2 Introduction to Digital Signal Processing

A sequence that repeats is called a periodic sequence. Periodic sequences
result from sampling periodic signals and satisfy the following relation:

x(n) = x(n +N), n = ... 1, 0, 1,2, ••. (2.3)

where N is called the sequence period. It is easy to .show that the sinusoidal
sequence x(n) above has a period /sIf, and the exponential sequence p(n) has
a period equal to N samples.

The frequency response associated with a time domain N-point sequence
x(n) can be determined from

_ N-l

X(e jo) = -2: x(n)e-jnO (2.41
n=O

where f) is the digital frequency, which ranges from °to 211: radians corre­
sponding to the analog frequency from °to Is Hz. Note- that the frequency
response is a complex continuous function of f) and provides both the mag­
nitude response and the phase response.

2.5 	 Discrete Fourier Transform (OFT) and Fast Fourier
Transform -(FFT)

The discrete Fourier transform, or DFT, is used to transform a time domain
x(n) sequence to a frequency domain X(k) sequence. To transform X(k) to
x(n), the inverse discrete Fourier transform, or IDFT, is used. Algorithms for
fast computation of DFT and IDFT' are known as FFT algorithms.

2.5.1 	 The OFT Pair

The two equations that relate the time domain x(n) and the frequency domain
• X(k) sequences are called the DFT pair.and are given as

N-l

X(k) = 2: x(n)e-j2ttnklN, k = 0, 1, 2, ... (N 1) (2.5)

n=O

N-l

x(n) ;=: liN 2:X(k)ej21tnkIN, n = 0,1,2, ... (N - 1) (2.6)
k=o

The first equation is called the DFT and the second is called the IDFT. The N
in the DFT pair denotes the number of elements in the x(n) or X(k) sequence.

2.5 Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT)11

2.5.2 The Relationship between OFT and Frequency Response

The frequency response of a sequence (Eq. 2.4) and its DFT (Eq. 2.5) are
related as follows:

X(k) = X(ejil)ll1=2nklN' k = 0, 1, 2•... (N - 1) (2.1)

The elements of X(k) as· obtained from this equation are spaced at a digital
frequency of 2nlN radian. The equation allows us to use DFT to compute
points on the frequency response of the x(n) sequence. The corresponding
analog frequency spacing At. between elements· of the X(k) sequence. using
Eq. 2.2. can be shown to be

At = IsIN 1INT = 1ITo (2.8)

where To is called the signal record length. From the above relation, it is easy
to conclude that the larger the signal record, the smaller (or better) is the fre­
quency spacing.

The significance of this result lies in the fact that it descnbes th~ trade­
off between the sampling rate (Is), number of sequence points (N), and the
frequency spacmg (At). To decrease the frequency spacing, N 'can be in­
creased by simply appending· zeros to the x(n) sequence before computing
X(k).

2.5.3 The· Fast Fourier Tra!1sform (FFT)

The direct computation of DFT and 10FT requires a large number of complex
multiplies. A number of algorithms have been developed to efficiently com­
pute DFT and 10FT. These algorithms use power of 2 points and exploit the
periodic nature of the complex exponential ej211nklN occurring in the DFT and
10FT equatioQs. Table 2.1 compares the complex multiplies needed to com­
pute DFT directly by using an FFT algorithm called the radix-2algorithm.
The radix-2 algorithm uses Nthat is an integer power of 2, such as 2, 4, 8, Ie).
etc.

It is possible to show that the DFT requires N 2 complex multiplies and the

radix-2 FFT algorithm requires N log2 N. This produces computational sav­
ings for larger values of N. 2

An application of FFT can be to use it to compute signal power spectral
density (PSD) or simply the signal spectrum. The FFT result X(k) can be used
to compute the spectrum as follows:

S(k) (lfN)IX(k)1 2 = (l/N)X(k)X*(k), k = O. 1.2•... N ~ 1 (2.9)

The plot of S(k) provides power density associated with various frequencies
and is used to characterize the signal in the frequency domain.

12 Chapter 2 Introduction to Digital Signal Processing

Table 2.1 Complex Multiplies for Direct OFT and FFT-based OFT Computations

Direct OFT FFT Based OFT Multiplies/FFT .
N Computation Computation Multiplies

2 4 4.0

4 16 4 4.0

16 256 32 8.0

64 4096 192 21.3

256 65536 1024 64.0

512 5122 512/2 log2 512 2 x 512 -:- log2 512

2.6 Linear Time-Invariant Systems

To represent the input/output relation of a discrete system, the block diagram
of Figure 2.3 can be used. A system to which the superposition theorem can be
applied is known as a linear system. A system that is described by the same
input/output relation at all times is called a time-invariant system. A system
that is both a linear as well as time-invariant is called linear time-invariant, or
Ll1, system.

The LTI systems can be represented in the time domain using linear con­
stant coefficient difference equations. A unit sample (or impulse) response is
used to characterize an LTl system. Time domain convolution can be used to
determine the response·of an LTI system.

In the frequency domain, the system transfer function is used to represent
such a system. We now briefly discuss these concepts.

x(n) y(n)
LTlSystem

Figure 2.3 Representation of a linear time-invariant system

2.6 Linear Time-Invariant Systems 13

.2.6.1 Convolution .

Convolution is an operation that relates the input/output of an LTI system to
its unit sample response. It is given by the equation

OCJ OCJ

y(n) = L h(n)x(n - m) = L: x(n)h(n - m) = h(n) *x(n) (2.10)
m=-OCJ m=-:>:)

where x(n) represents the input, y(n) the output, and. h(n) the unit sample
response of the system. The * in Eq. 2.10 is used to represent the convolution
operation. This result can be derived using the impulse response definition as
applied to the sampled x(n) sequence. This equatiQn is used to compute the
time-domain response of a system.to an arbitrary input sequence.

2.6.2 Z-Transform

We have seen in Section 2.4 that the frequency response associated with the N­
point sequence x(n) is given as

N-l

X(ejD) =.Lx(n)e-jnll (2.11)
n=O

Using the substitution

z = ejD (2.12)

in the above equation yields

N-l

X(z) = L x(n)z-n (2.13)
n=O

where, X(z) is called the Z-transform of x(n). Since the parameter z is re­
lated to the digital frequency, X(z) represents the frequency response in terms
ofz.

2.6.3 The System Function

The ratio of Z-transform of y(n) to that of x(n)

H(z) = Y(z)/X(z) (2.14)

http:system.to

16 Chapter 2 Introdu,ction to Digital Signal Processing

x(n-l)x(n)

Unit

Delay

os(a) 0.5----1lo{

y(n)

Figure 2.5 FIR filter in Example 2.1: (a) block diagram, (b) magnitude frequency response,
(c) phase frequency response

> Example 2.1 A FIR Filter

The equation
y(n) O.5x(n) +O.5x(n 1)

descn"bes a simple FIR filter whose output is the average of the current input
x(n) and the past input x(n ­ 1).

2.7 Digital Filters 17

The unit sample response of this filter is obtained by substituting o(n) for
x(n). Thus, we have

. hen) 0.5t5(n) + O.5o(n 1)

= [0.5 0.5] as a sequence.

The frequency response, using Eq. 2.17, is obtained as

H(e itl) = j1J120.5 + O.5e-jlJ = e- cos 012

or

H(z) 0.5 + .5z-1

The magnitude response is given as

IH(ejlJ)I = M(O)= cos 012

and the phase response is given as

LH(eJtI) = P(O) = -()/2 + Leos 0/2

The group delay, which represents the delay to various signal frequencies, can
be obtained by differentiating and negating the phase response function. For
this example case it is obtained as

Group delay = !
Figure 2.5 describes this filter with its magnitude and phase responses. Im­
plementing this filter requires a unit delay, two multiplies, and an addition.

2.7.2 Infinite Impulse Response (IIR) Filters

The general difference Eq. 2.15 for an LTI system defines an infinite impulse
response (IIR) filter. The corresponding transfer function for this filter can be
shown to be

bo + b}Z-l +bzz-z + b.3Z-3 + ... + bLz-L
H ()z = . N (2.19)

1 - alz-1 azz-z a3z-3 - .. . aNz-

Since an IIR filter has feedback in its structure, its staoility depends upon
the number and values of coefficients. In general, an IIR filter has nonlinear
phase response and does not provide constant group delay. This property
makes this filter Unsuitable for applications that cannot tolerate phase distor­
tiOI,l. The advantage of an IIR filter is its smaller number of coefficients to re­
alize a desired frequency response relative to an FIR filter. Fewer coefficients
require shorter computation time, providing capability to handle a larger
bandwidth for a signal-processing scheme.

18 Chapter 2 Introduction to Digital Signal Processing

C>. Example2.2 An IIR Filter

0.1

~(n) y(n)

(a)

Unit
y(n-l) LEelay

Magnitude Respon.se
~ 1

0.8

0.6
(b)

0.4­

0.2

0
0 0.5 1 1.5 2 2.5 3 3.5

Phase Response
0

(c) -0.5

-1

-1.5
0 	 0:5 1.5 2 2.5 3 3.5

Radians

Figure 2.6 The IIR filter in Example 2.2: (a) block diagram, (b) magnitude frequency response,
(c) phase frequency response

The difference equation
y(n) = 0.9y(n - 1) + O.lx(n)

http:Respon.se

2.7 Digital Filters 19

defines an IIR filter whose output is computed by taking 90% of past output
y(n - 1) and 10% of the. current input x(n).

The transfer function of this filter is obtained as . .

0.1 O.lz
H(z) = (1 - 0~9Z-1) = (z - 0.9)

or

jO _ O.le'°0

H(e) - (ejO _ 0.9)

Figure 2.6 describes this filter and its magnitude and phase frequency re­
sponses. The magnitude and phase frequency responses can be computed by
substituting values for the digital frequency () in the equation above and find­
.ing the absolute value for the magnitude and angle for the phase. To imple­
ment this filter requires a unit delay, two multiplies, and an addition.

2.7.3 FIR Filter Design

We have seen that a FIR filter's frequency response can be obtained from Eq.
2.17. Solving the equation forbk for a desired frequency response H(e jo) yields
the design equation for the FIR filter. The solution involves integration and is
given as .

bk = 1/211: [H(ejO)e-jkO d(} (2.20)

where k is an integer from-oo to +00. An algebraic closed-form solution of
the above equation may not be possible for an. arbitrary frequency function
H(ejo).In such a case, a computer-based solution can be obtained.

The impulse response bk as obtained by solving the above equation may
be extremely lor.g and may have to be truncated. The truncation results in a
distortion called Gibb's phenomenon that introduces ripple in the passband
of a filter's frequency response. To control the Gibb's phenomenon, special
truncation windows are used. These windows, in general, provide smooth
truncation to control the ripple in the passband of the filter. Window:-based
FIR filter design methods are covered in many DSP books, including the ref­
erences at the end of this chapter.

Parks-McClellan FIR Filter Design

This is a computer method for the design of FIR filters. It is based on the
Remez exchange algorithm and Chebyshev approximation theory and involves
minimization of the maximum error between the actual an<lthe desired

http:H(ejo).In

20 Chapter 2 Introduction to Digital Signal Processing

frequency responses. It allows arbitrary frequency response specification and
designs an equiripple FIR filte~. This technique has been implemented in
many filter· design packages and isavailal:)le ill the MATLAB program. The
technique will be used to design FIR filters for the examples in this book.

2.7.4 IIR Filter Design

Two approaches are used to design IIR filters. One is based on analog filter
design technique~ and the other. called direct design. is based on a least­
squares fit to achieve the desired frequency response.

IIR Filter Design Based on Analog Filter Design Techniques

Digital IIR filters are designed using techniques that are based on analog filter
design methods such as Butterworth filter design •. Chebyshev! filter design.
Chebyshev2 filter design, and elliptic filter design. These methods are covered
in many DSP books, including the references at the end of this chapter.

The approach consists of designing an analog filter to satisfy. the filter
specifications and then converting it to the equivalent digital filter using an
appropriate transformation. The filter specifications consist of: passband rip~.
pIe (dB). stopband attenuation (dB). and the transition width (ws - wp). For a
lowpass filter the specifications are illustrated in Figure 2.7. These design
methods· are available in the MATLAB program and are used for examples in
this book.

Magnitude

(dB)

Passband
Ripple

Stopband
Attenuation

FrequencyTransition
Width

Figure 2.7 Lowpass filter design specifications

2.9 Analysis and Design Tool for DSP Systems: MATLAB 23

I> Example 2.4 The Interpolation Proc;ess

Let x(n) = ro 3 6 9 12] be interpolated using L =:'; ~. After inserting zeros to
increase the sampling rate, we get .

w(m) = [0 0 0 3 0 0 6 0 0 9 0 0 12]

Using the lowpass filter given by .bk [1/3 2/3 1 2/3 1/3J, we get the inter­
polated sequence as

y(m) = [0 1 2 3 4 5 6 7 g 9 lO II 12J

This is an example of linear interpolation, as the filter used computes linearly
the interpolated samples from the original samples.

2.9 Analysis and Design Tool for DSP Systems:
MATLAB

A tool for DSP analysis and design must provide functions for carrying out
the following basic operations:

1. Signal data generation and presentation

2. Convolution

3. Frequency response

4. Discrete Fourier transform (DFT)

5. Filtering

6. Spectrum estimation

7. FIR filter design, and

8. IIR filter design

MATLAB [3,4J is a program that provides the above functions to process
signals in addition to many more. The program is\ based on manipulation of .
data represented as vectors. The data can be one-dimensional, such as speech,
or two-dimensional, such as an image.

Signal data input to MATLAB is by way of data files or direct keyboard
entries for matrix elements. For signal processing, program files incorporating
the DSP functions can be used. These files are called M-files. MATLABalso
provides the capability to use command mode execution. In the command
mode, the comma1lds can be entered directly to process signals.

MATLAB provides an e:nensive list of commands or statements usable
for signal-pr9cessing analysis and design. The signals can be presented and
viewed using its extensive data presentation capability, including various types
of plots.

24 Chapter 2 Introduction· to Digital Signal Processing

MATLAB is supported with Help and Demo facilities that can be used
to learn the program. It also provides an editor to create program and data
files. This is the program we use in this book todf;sign and analyze the DSP
algorithms .

.2. 1 0 Digital Signal Processing Using .MATLAB

In this section, we present MATLAB examples. to illustrate the. basic digital
signal-processing operations covered in this chapter. Each program is fol­
lowed by the results it produces when executed. The reader is advised to be­
come familiar with the commands used in the following programs by using
MATLAB's extensive Help and Demo facility. . I

C> Example 2.5 	 Convolution of Two Sequences [Figure 2.10]

%Convolution of sequence x and sequence h to generate sequence y
x [1 2 3 4];
h [3 2 1];
y conv(x

y=
3 8 14.20 11 4

Figure 2.10 Result of convolution of sequence [1 2 3 4J and sequence [3 2 1]

C> Example 2.6 Frequency Response of an FIR Filter [Figure 2.11]

% Frequency response of a digital differentiator (FIR Filter):
%yen) = x(n) - x(n - I}

% Filter definition
b :: [1
a 1;

% Frequency res.ponse computation
[h,th] freqz(b,a,32):

% Frequency response plot.
clf
figure(l}
subplot(211), plot(th,abs(h», title('Magnitude Response'),
subplot(212), plot(th,angle(h»,title('Phase Response'),
xlabel('Radians'}

2.10 Digital Signal Processing Using MATLAB 25

Magnitude Response

21 2:0000=

1

0.5

01/,
0.5 1 1.5 2 2.5 3 3.5

2
Phase Response

1.5

1

0,5

oL
0.5 1 1.5 2 2.5 3 3.5

Radians

Figure 2.,11 Frequency response of the FIR filter, y(ri) =x(n) ­ x(n ­ 1)

I> Example 2.7 Spectrum of a Noisy.Sinusoidal Sequence [Figure 2.12]

%Generate a 5 Hz signal of 1 sec duration sampled at 100 Hz.
t=O:.Ol:l;
x =sin(2*pi*5*t);
elf
figure(!)
plot(t,x), title('Original Signal'), xlabel('Time in sec.')

%Add random noise with a standard deviation of 1 to produce a noisy.
%signal y
y =X.+ 1*randn(I,101);
figure(2)
plot(t,y), title('Noisy Signal'), xlabel(ITime in sec. l

)

%Compute the DFT and power spectral density of the noisy signal y
using 128· poi nt FFT
Y= fft (y,128);
Pyy = Y. *conj(Y) /128;

Original Signal

0.8

0.6

0.4

0.2

0

I
-0.2 '

-0.4

-0.6

-0.8

. -I
0 0.1

Time in sec.

(a)

Noisy Signal
2.5

2

1.5 L i i I ill III IA
~

1\ ~
oHII, \ 1:1 I~, 11\ ~ II \ II! \I\I~

olll ~I\!I 1M"
-O.sH I \ I

-l-~ ~ Iv II ~ IiiI 11 ~

-2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time in sec.

(b)

Figure 2.12 Power spectral density of a noisy sinusoidal signal: (a) original sinusoidal signal,
noisy sinusoidal signal, (c) power spectral density of the noisy sinusoidal signal

(continued)

2.10 Digital Signal Processing Using MATLAB 27

Power Spectral Density
12rl----r----r----~--_r----~--_.----._~~----,_--_,

10

8

6

4

50
J:i'rpnllpn("\.; (Hz)

(c)

Figure 2.12 Continued

% Change the horizontal axis to represent analo~ frequency in the

frequency response plot

f = 100/128*(0:63);

figure(3) .

plot(f,Pyy(l:64)), titl e(' Power Spectral Density'),

xlabel('Frequency (Hz) ')

t> Example 2.8 FIR Filter Analysis [Figure 2.13].

9<• e 2.8: FIR Filter

% Filter definition (a 5-point averager)

b = [.2 .2 .2 .2 .2]; ,

a = [1. .0 .0 .0 .0];

% Frequency re~ponse.calculations and plot~

[h,th] = freqz(b,a,32); .
. figure(1)

plot(th,abs(h)), title('Magnitud~ Response'), xlabel ('Radians');

s

Magnitude Response

11 ""'"

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

01 I
o 	 05 15 2 L5 3 ~5

Radians

(a)

dB Magnitude Response
0 1

-5

-10

-15

-20

-25

-30

-35

0.5 	 1.5 2 2.5 3 3.5'
Radians

(b)

Figure 2.13 Analysis of a FIR filter: (a) magnitude response, (b) dB magnitude response,
phase and group delay responses, (d) impulse response, (e) pole-zero

(continued)

----- --.. ~-----

2.10 Digital Signal Processing Using MATLAB 29

Phase Response
2 r, ----.-------~--~~~----~r_----_,------~------~

o
-1

-2

-3L'_____~______~______~______L___~~____--~-------l

o 0.5 1.5 2 2.5 3 3.5

Group Delay Response

2 •r ----~~----~----~------r-~--~----~----__.

2!~--------------------------~----------

2

1.5 220 0.5 	 Radians

Cc)

ImpJ.llse Response
0.2,0000A

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0' , 'ooooeOOOoeooooeooooeovvvvvv o 	 5 10 15 20 25 30 35
Seconds

Cd)

Figure 2.13 Continued

30 Chapter 2 Introduction to Digital Signal Processing

0.8

0.6

0.4

~ 0.2
t:l.

~ 0
c

'@j
E....Q.2...

....Q.4

....Q.6

....Q.8

-\

_---------------1---------0
~...." : ""-.....

.... I

all l
/

,, ..
!

,

!
.

/ ~

: :
----------L------------------------"----~------------------------~.---.\.---------- !

1. I j: : : j, ,,
,

,
,

... , . , . , ., .
\ I
\ :, .
''0 i\ I

"""",....... i

....-- ... _...."'_":"" __ ~__

j
.... I

""'\ ~I
,,'

\

\" J

..
,.

,/
/

" / 1
nr-----'///

.------"'o

-1Q.5 o· 0.5
Real Part

(e)

Figure 2.13 Continued

figure(2)

plot(th,20*loglO(abs(h»), xlabel('Radians'), title('dB Magnitude

Response');

figure(3)

subplot(211). plot(th, angle(h», title('Phase Response')

subplot(212), plot(th. grpdelay(b,a.32», xlabel('Radians'),·

title('Groupdel ay Response');

% Impulse response calculations and plot

x = [I zeros(1.31)];

y = filter(b,a,x)i

figure(4)

stem(y), title('Impulse Response'), xlabel ('Seconds');

% Pole-Zero Plot

[z,p,k] = tf2zp(b,a);

figure(5)

zplane(z,p)

http:zeros(1.31
http:grpdelay(b,a.32

2.10 Digital Signal Processing Using MATLAB 31

l> Example 2.9 IIR Filter Analysis [Figure 2.14]

% Example 2.9: IIR Filter Analysis [Figure 2.14]

% Filler definition

b = [.0013 .0064 .0128 .0128 .0064 .0013];

a = [1.0 -2.9754 3.8060 -2.5453 0.8811 -0.1254];

% Frequency response

[h,th] =.freqz(b,a,128);

elf

figure(1)

plot(th,abs(h», title('Magnitude Response'}, xlabel ('Radians')

figure(2)

subplot{211}, plot(th,angle(h}), title('Phase Response'),

ylabel('Radians');

subplot(212). plot(th,grpdelay(b,a,128», title('Groupdelay .

Response'), xlabel ('Radians'), ylabel('Seconds'};

Magnitude Response
1;4 rl-----:--.-----,----,.----,----,-------,,----,

1.2

0.8

0.6

0;4

0.2

0.5 	 1.5 2 2.5 3 3.5

Radians

(a)

Figure 2.14 Analysis of an IIR filter: (a) magnitude response, (b) phase and group delay
responses, (c) impulse response, (d) pole-zero plot . . (continued)

Phase Response
4

2

'"
~ 0
~

-2

-4

0 	 0.5 1.5 2 2.5 3 3.5

Group Delay Response
10

8

.:g 6
==
~ 4

VJ

2

0
0 	 0.5 1.5 2 2.5 3 3.5

Radians

(b)

Impulse Response
0.25

i

O't j
0.15

H01

0.05 .

olllll~
~.~~
-0.1 .

0 20 40 60 80 100 120 140
n

(c)

Figure 2.14 Continued

2.10 Digital Signal Processing Using MATLAB 33

0.8

0.6
o

x
0.4

o X·'g 0.2
Q.

~. L .g 0 1- - . -8 - - '- - - :~ ­
.~

.§ -0.2 xo
-0.4

x
o--0.6

--0.8

-1 ~ ~. ­

-1.5 -1 --0.5 0 0.5
Real Part

(d)

Figure 2.14 Continued

% Impulse Response

x = [i zeros(1,127)];

y = filter(b,a,x);

figure(3)

stem(y), title('Impulse Response'), xlabel('n')

% Pole-Zero Plot
[z,p,k] = tf2zp(b,a);
figure(4)
zplane(z,p)

l> Example 2.10' Butterworth Lowpass IIR Filter Design [Figure 2.15}

% Filter specifications
N = 5; % Filter order
fs = 200; % Sampling frequency
fc = 30; % Cut~off frequency

..
% Filter design
[b,a] = butter(N. 2+fc/fs)

34 Chapter 2 Introduction to Digital Signal Processing

b=
0.0069 0.0347 0.0693 0.0693 0.0347 0.0069

a=
1.0000 -1.9759 2.0135 -1.1026 0.3276 -0.0407

(a)

Magnitude Response
1.4 r, ---,----.----.----~--~--~----~---.----~--,

1.2

0.8

0.6

0.4

0.2

OJ 	 I~

o 	 10 20 30 40 50 60 70 80 90
Hz

(b)

Figure 2.15 	 Lowpass IIR filter design using the Butterworth technique: (a) designed filter
coefficients, (b) designed filter magnitude response, (c) designed filter phase and
group delay responses . (continued)

%Designed filter frequency response

[h.th] = freqz{b,a~128);

f = (th/pi)*(fs/2);

clf

figure(1)

plot(f ,abs(h», title('Magnitude Response'),xlabel ('Hz')

figure(2)

subplot(211), plot(f,angle(h», title('Phase Response'),

yl abel (' Hertz')

2.10 Digital Signal Processing Using MATLAB 35

4
Phase Response

2

'" fa:a 0
~

-2

-4
0 10 20 30 40 50 . 60 70 80 90 100

Groupdelay Response
8

6

'""0

~ 4

'" 2

0
0 10 20 30 40 50 60 70 80 90 . 100

Hz

(c)

Figl.,lJe 2.15 Continued

subplot(212), plot (f ,grpde 1ay(b,a.128)}. titl e(' Groupdelay
Response'), xlabel('Hz'). ylabel('Seconds')

!> Example 2.11 Yulewalk IIR Filter Design [Figure 2.16]

% Filter specifications (Bandpass filter)
f = [0 .1 .2.3 .4 .6 .7 .8 .9 1];
m = [0 0 1 1 1 1 0 0 0 0];

% Fil ter des ign

N= 10; % Filter order

[b,a] =yulewalk(N,f,m)

%Designed filter frequency response
[h,th] = freqz(b,a,128);

% Specifled(sol id curve) and designed(x curve)filter frequ~ncy
responses comparison

36 Chapter 2 Introduction to Digital Signal P~ocessing

b=
Columns 1 through 7

0.1467 0.1368 -0.1699 -0.3064 0.0072 0.2344 0.0883
Columns 8 through 11

-0.1106 -0.0771 0.0366 0.0664

a=
Columns 1 through 7

1.0000 -0.9551 1.2125 -1.5030 1.6430 -0.9850 0.8491
Columns 8 through 11

-0.5510 0.2769 -0.0668 0.0462

(a)

Specified (solid curve) VS. Designed (x curve) Filter Frequency Response
1.4

1

0.1

I I, ,----­

1.2

0.8

0.6

0.4

0.2

0.3. 0.4 0.5 0.8 0.9
NormalIzed frequency, fs /2=.1

(b)

Figure 2.16 Bandpass IIR filter design using the Yulewalk technique: (a) designed filter,
(b) designed vs. specified filter magnitude response

fi gure(I)

plot(f,m.th/pi .abs(h). 'x'). title('Specified (solid curve) vs

Designed (x curve)Filter Frequency Response'). xlabel('Normalized

frequency. fs/2 = I'}

2.10 Digital Signal Processing Using MATLAB 37

I> Example 2.12 	 Parks-McClellen FIR Filter Design [Figure 2.17]

% Filter specifications
f = [0 .1 .2 .3 .4.6 .7 .8 .9 1J;
m = [0 0 1 1 1 1 0 0 0 OJ;

% Filter design.

N = 20;% Filter order;

b = remez(N.f.m)

b=
Columns 1 through 7

0.0520 0.0101 -0.0001 0.0398 -0.0339 -0.0822 0.0000·
Columns 8 through 14

-0.1181 -0.2571 0.1348 0.5000 0.1348 -0.2571 -0.1181
Columns 15 through 21

0.0000 -0.0822 -0.0339 0.0398 -0.0001 0..0101 0.0520

(a)

Specified (solid curve) VS. Designed (x curve) Filter

1.2

1

0.8

0.6

0.4

0.2

Normalized Frequency, fs I 2 =·1

(b)

Figure 2.17 Filter design using theParks-McCulien technique: (a) designed filter,
designed vs. specified filter magnitude response

38 	 Chapter 2 Introduction to Digital Signal Processing

% Frequency response

[h,th] =freqz(b,1,128);

% Speci fi ed vs des igned frequency· response

figure(l)

plot(f.m.th/pi,abs(h),'x')

title('Specified (solid curve) vs Designed (x curve) Filter'),

xlabel 'Normalized Frequency, fs/2 = l'

.2.11 Summary

This chapter is a brief review of digital signal-processing fundamentals. The
basic DSP concepts· are discussed from the implementation point of view. The
topics that are covered consist of: a digital signal-processing system, sam­
pling process and the sampling theorem, digital' signal sequences, DFT and
FFT, linear time-invariant systems, the convolution theorem, digital filters,
FIR and IIR filters, and filter design techniques. Thus most of the basic tech­
niques of DSP analysis and design have been introduced. The techniques are
illustrated with MATLAB examples.

References

1. 	 Strum, R. D., and Kirk, D. E., First Principles of Discrete Systems and Digital
Signal Processing, Addison-Wesley, 1988.

2. 	 Ifeacho, E. C., and Jervis, B. W., Digital Signal Processing: A Practical
Approach, Addison-Wesley, 1993.

3.. Mitra, S. K., Digital Signal Processing Laboratory using MATLAB, McGraw­
Hill,1999.

4. 	 The Math Works, Student Edition of MATLAB and various Toolboxes, http://
www.mathworks.comlproductsleducationl. 2003.

Assignments

2.1 	 A signal whose spectrum' is shown in Figure P2.1 is to be sampled so that no
aliasing results. Determine the minimum sampling rate that can be used to

. sample the signal. If the' sampling rate must be 8 KHz, determine the type and
the cutoff frequency of the antialiasing filter.

www.mathworks.comlproductsleducationl

Assignments . 39

Magnitude, dB

o

-100

o 5 Frequency,
KHz

Figure P2.1 Magnitude spectrum for the signal in Problem 2.1

2.2 	 Redraw the frequency spectrum for the signal in 2.1 using the digital fre­
quency as the horizontal axis. Let the sampling frequency be 8 KHz. Deter­
mine the analog frequencies for the digital frequencies 0, nl4, n/2, 3n14, and n
radian.

2.3 	 Determine the periods for the periodic sequences: (a) e-jnnI8, (bj e-jn3n/8.

2.4 	 The signal in 2.1 is filtered and sampled using the sampling rate of 8 KHz. If
512 samples of this signal are used to compute the Fourier transform X(k),
determine the frequency spacing between adjacent X(k) elements. What is the
analog frequency corresponding to k = 64, 128, and 200. Repeat this problem
using 1024 samples and an 8 KHz sampling rate.

2.5 	 Assuming X(k) as a complex sequence, determine the number of complex and
real multiplies for computing IDFT using direct and radix-2 FFT algorithms.

2.6 	 For the FIR filter

y(n) (x(n) + x(n - 1) + x(n - 2»/3

determine the (a) system function, (b) magnitude response fun~tiDn, (c) phase
response function, (d) impulse response, (e) step response, and (f) poles. and
zeros.

2.7 	 For the IIR filter

H(z) (z - 1)
(z - 0.25){z - 0.5)

determine the (a) magnitude response function, (b) phase response function,
(c) impulse response, (d) step response, and (e) poles and zeros.

2.8 	 Determine the lowpass filter cutoff frequency that must be used to decimate to
reduce the sampling rate from 8 KHz to 4 KHz.

40 Chapter 2 Introduction to Digital Signal Processing

2.9 	 The signal sequence x(n) = [0 2 46 8] is interpolated using the interpola­
tion filter sequence bk [.5 1 .5] and the interpolation factor is 2. Determine
the interpolated sequence y(m).

La~oratory Assignment

Use the MATLAB program to do the following laboratory- assignments:

L2.1 Generate and plot each of the following sequences:

a. 	x(n) [3 2 -2 °7], n = 0, 1, 2, 3, 4

b. a ramp of length 64 with minimum value °and maximum value 1

c. 	 a triangular. waveform of length 64, period 16, minimum value 0, and
maximum value 1 .

d. x(n) = 1.5 sin(nnllO + nI4), n = 0, 1, ... ,63.

L2.2 Generate x(n) = 2 sin(O.lnn + 0.1) + w(n), n = 0, 1, ... , 255, where w(n) is
Gaussian noise with zero mean and unit variance.

L2.3 Given the sequences

xm(n) = sin 2nn1100, n = 0, 1, ... , 255

and

xc(n) = sin 2nn11O, n = 0, 1, ... , 255

use the given sequences to generate the following sequences:

a. 	xam(n) = [1 + .7xm(n)]xc(n), n = 0, 1, ~ .. , 255

b. xsc(n) = xm(n)xc(n), n = 0, 1; ... , 255

L2.4 For the 12-point sequence

x(n) = 1, n = 0, 1, ... , 5

= 0, n = 6, 1, ... , 11

use 64-point FFT to compute the following sequences:

a. 	 IX(k)l, k = 0, 1, ... , 63

b. 	LX(k), k 0, 1, ... , 63

c. 	 Real(X(k», k = 0, 1, .. ;, 63

d. Imag(X(k», k = 0, 1, ... , 63

Also plot·all the above sequences. Determine the frequency resolution of the
FFT. How can the resolution be improyed and at what cost?

L2.S Given the sequences

xl(n) = [3 4.2 11 °7 -1 °2], n = 0, ... , 7

x2(n) = [1.2 3 ° -.52], n = 0, ... ,4

Laboratory Assignment 41

compute and plot the sequence x1(n) *x2(n). Determine the length o.f the
computed sequence.

L2.6 	 For the sequence in Problem 12.5, find the sequences, Xl(k) and X2(k) using
8-point FFT. Next, multiply the two sequences· to generate the sequence
Y(k) = Xl(k).X2(k). Now use 8-point IFFT to comput~ yen). Repeat using 16­
point FFT and IFFT. Compare these results to the one obtained in Problem
12.5 and explain any discrepancy in the two approaches.

l2.7 	 Find and plot the (a) impulse, (b) unit step, (c) magnitude, (d) phase, and (e)
group delay responses for the system with transfer function

H(z) (z -1)
(z - 0.25)(z - 0.5)

L2.S 	 Given a three-tap averaging filter

yen) 	 "[(x(n) +x(n 1) + x(n - 2)]/3

obtain and plot the (a) magnitude, (b) dB magnitude, (c) phase, and (d) group
delay· frequency response fo.r the filter. Comment on the lowpass filtering
nature ofthe filter. .

L2.9 	 Repeat Problem L2.8 for the filter

. yen) = [-3x(n) + 12x(n - 1) + 17x(ri 2) + 12x(n -3) - 3x(n 4)]/35

L2.10 	 Design a 31-tap bandpass FIR filter with cutoff frequencies oE2S and 75 Hz
and sampling frequency of 200 Hz. Calculate the passband ripple and the
stopband attenuation for the designed filter.

Use this filter to filferthe noisy signal

. x(t) = 2 sin(lOOnt) + wet)

where wet) is a uniformly distributed noise with amplitl,lde range from -.2S to
+.25. Evaluate the performance using FFT. .

L2.11 	 For the filter of Problem L2.1O, determine the transition widths, when gain
drops from 90% to 10%, around the cutoff frequencies. How will you reduce
the transition to obtain a sharper response? Demonstrate with an example.

L2.12 	 Design a second-order Bptterworth IIR lowpass· filter with a cutoff frequency
of 50 Hz for a signal sampled at 250 Hz. Determine its dc gain, poles, and
zeros.

L2.13 Design an elliptic IIR lowpass filter with cutoff frequency of 50 Hz for a signal
. sampled at 250 Hz. The filter order should be such that the passband ripple is
less than .2 dB and the stopband attenu~tion is more than 20 dB.

<;:hapter 3 "
Computational Accuracy in DSP
Imple"mentations

3. 1 Introduction

In this chapter, we shall study the issues related to. computational accuracy of
algorithms when implemented using programmable digital signal processors.
We shall first study the various formats of number representation and their
effect on the dynamic range and precision of signals represented using these
formats. We shall also study the various sources of errors in the implementa­
tion cif DSP algorithms and how to control these errors while designing DSP
systems. Specifically, we discuss the following topics in this chapter:

Number formats for signals and coefficients in DSP systems

Dynamic range and precision

So~ces of error in DSP implementations

AID conversion errors

DSP computational errors

D/A conversion errors

3.2 .Number Formats for Signals and Coefficients in
DSP Systems

In a digital signal processor, as in any other digital system, signals are repre­
sented as. numbers right from the input, through different stages ofprooess­
ing, to the output. The DSP structures, such as filters, also require numbers to
specify coefficients [1]. There are various ways of representing these numbers
[4], depending on the range and precision of signals and coefficients to be
represented, hardware complexity, and speed requirements. In this section, we
look at the typical formats used for numbers to represent signals and co­
efficients in DSP systems. "

42

3.2 Number Formats for Signals and Coefficients in DSP Systems 43

3.2.1 Fixed-Point Format

The simplest scheme of number representation is the format in which the
number is represented as an integer or fraction using a fixed number of bits.
An n-bit fixed-point signed in~eger shown in Figure 3.I(a) specifies the value x
given as·

x = _s,2 ft - 1 + bn_ 2.2 n- 2 + bn_ 3,2n- 3 + .. , + b1.2 1 + bo.2° (3.1)
•

where s represents the sign of the number:s = 0 for positive numbers and
s = -1 for negative numbers. The range of signed integer values that can be

1represented with this format is _2 n- 1 to +(2n- - 1),·
Similarly. a fraction can also be represented using a fixed nUmber of bits

with an implied binary point after the most significant sign bit. An n-bit fixed­
point signed fraction representation shown in Figure 3.1(b) specifies the value
given as

20 b 2-1 + b 2-2 . + b 2-(n-2) + b 2·-(n-l). x -so + -1' -2· + .. , -(n-2)' -(n-l). (3.2)

. The range of signed fractions that can be represented with this format is -I to
_ 2-(n-I».

n-ln-2 210

I ~ lb.] Ib21 bll bol
\

Implied
binary
point

(a)

Figure 3.1(a) Fixed-point format to represent signed integers

n-l n-2 2 1 o

Isib_I I Ib_('_3)lb_('~2)lb_(·_')1
7' .

Implied

binary point

(b)

Figure 3.1(b) Fixed-point format to represent signed fractions

44 Chapter 3 Computational Accuracy in DSP Implementations

I> Example 3.1 What is the range of numbers that can be represented in a fixed-point for­
mat using 16 bits if the numbers are treated as (a) signed integers, (b) signed
fractions?

Solution a. Using 16 'bits, the range of integers that can be represented is determined
by substituting n' 16 i.rr Eq. 3.1 and is given as

_2 15 to +215 - 1

i.e., -92,768 to +32;767.

b. The range of fractions, al!deterIl1ined from Eq. 3.2 using n = 16, is given as

-1 to +(1- T 15)

i.e., ..,.1 to +.999969482.

In DSP implementations, multiplication of integers produces numbers that
may require more bits to represent, and in the event of a fixed number of
available bits, it may create wraparound. The wraparound generates the most
negative number after the most positive number, and vice versa. The prob­
lem can be tackled by using fractional representation. When, two fractions are
multiplied, the result is still a fraction. The resulting fraction may use the same
number of bits as the original fractions by discarding the less significant bits.

3.2.2 Double-Precision Fixed-Point Format

To increase the range of numbers that can be represented ih fixed-point
format, one obvious approach is to increase its size. If the size is doubled,
the range of numbers increases substantially. Simply doubling the size and
still using the fixed-point format creates what is known as the double-precision
fixed-point format. However, one should remember that such a format re­
quires double the storage for the same data and may need double the number
of accesses for the same size of data bus of the DSP device.

3.2.3 Floating-Point Format

For DSP applications, if an algorithm involves summation of a large number
ofproducts, it requires a large number of bits to represent the signal to allow
for adequate signal growth over the summation. However. since a processor
architecture will not allow for an unlimited number of bits, some processors
choose a floating-point format for signal-processing computations. A iloating­
point number is made up of a mantissa Mx and an exponent Ex such that its
value x is represented as

x = Mx2Ex (3.~)

3.2 Number Formats for Signals ane!. Coefficients in DSP Systems 45

23

1 8 ~ ~

~ ~r_______________~________~

D
~ i 	 . iII;nplied

I- bmary

point
Sig Exponent Mantissa

S E F

figure 3.2IEEE-754 format for floating-point numbers

If two floating-point numbers x and y are multiplied, the product xy is given
by . .

xy MxMy2Ex+EY 	 (3.4)

Implementation of a floating-point multiplier must contain a multiplier for
the mantissa and an adder for the eJq'onent. An addition of floating-point
numbers requires normalization of the numbers to be added so that they have
the same eJq'onents.

A commonly used single-precision floating-point representation (IEEE-754
format) is shown in Figure 3.2.

The value represented by the data: format in Figure 3.2 is given as

x = (-Os X 2~E-bias) X I.F 	 (3.5)

F represents the magnitude fraction of the mantissa, and the eJq'onent E is an
integer. Further, in determining the mantissa, an implied 1 is placed immedi­
ately before the binary point of the fraction. The sign bit provides the sign of
the fractional part of the number. That is to say, with n bits for F, the range
of fractional numbers that can be represented in the mantissa is -(2 - 2-n)

to +(2 - 2-n). The bias depends upon the bits reserved for the exponent. If!.
Figure 3.2, the bias is 127, the largest positive number represented by 8 bits.
The value of E can be from D to 255. In double-precision representation, the
eJq'Onent uses 11 bitS, making the bias value as 1023. . ­

!>Example 3.2 	 Find the decimal equivalent of the floating-point binary number
1011000011100. Assume a format similar to IEEE-754 in which the MSB is the
sign bit followed by 4 exponent bits followed by 8 bits for the fractional part.

Solution The number is negative, as the sign bit is 1.

F = 2-4 +T 5 + T6 .109375

E = 21 + 22= 6

46 Chapter 3 Computational Accuracy in DSP Implementations

Thus the value of the number is

x -1.109375 x 2(6-7) = -0.5546875.

I> Example 3.3 Using 16 bits for the mantissa and 8 bits for the exponent, what is the range
of numbers that can be represented using the floating-point format similar to
IEEE-754?

Solution The most negative number will have as its mantissa -2 +2-16 and as its
exponent (255 - 127) 128. The most negative number is; therefore,

-1.999984741 x 2128

Similarly, the most positive number is

+1.999984741 x 2128

Floating-point format, used to increase the range. of numbers that can
be represented, suffers from the problem of speed reduction for DSP compu­
tation. More steps are required to complete a floating-point computation
compared to a fixed-point computati<?n. For instance, a floating..,point multi­
plication requires addition of exponents in addition to the multiplication of
mantissas. Floating-point additions, on the other hand, require the exponents
to be normalized before the addition of the mantissas. For these reasons, a
floating-point processor requires a more. complex hardware compared to a
fixed;point processor and requires more time to do computations.

3.2.4 Block Floating-Point Format

An approach to increase the range and precision of the fixed-point format is
. to use the block floating-point format [3]. In this approach, a group or block of
fixed-point numbers are represented as though they were floating-point num­
bers with the same exp~:ment value and' different mantissa values. Mantissas
;:).re stored and handled similar to fixed-point numbers. The common expo­
nent of the block is stored separately and is used to multiply the numbers as
they are read off the memory. The exponent is decided by the smallest number
of leading zeros in the fixed~point representation of the given block of num- .
bers. The numbers are then shifted by this value to accommodate the maxi­
mum number of nonzero bits using the given fixed-point format.

The block floating-point format increases the range and precision of a
given fixed-point format by retaining as many lower-order bits as is possible.
The scheme does not require any additional hardware resources except an
extra memory location to store the block exponent. However, programming
overhead is needed to find the block exponent and to normalize. and de­
normalize the given numbers using this exponent.

3.3 Dynamic Range and Precision 47

[:> Example 3..4 The following 12~bit binary fractions are to be stored in an 8~bit memory.
Show how they can be represented in block fioating~point format so as to i,m­
prove accuracy.

. 000001110011

000011110000

000000111111

000010101010

Solution If these fractions are represented using an 8-bit fixed-point format, they will
be represented as

00000111

00001111

00000011

00001010

The last 4 bits of the numbers would have been discarded, thereby losing the
precision corresponding to those "4 bits.

However, since all four numbers ha~e at least four leading zeros, they can be
rewritten as

01110011 X 2-4

"11110000 X Z-4

00111111 X 2-4

10101010 X 2-4

Eight bits of each number can be stored without discarding any bit. The block
exponent is -4 and will have to be stored separately. When the numbers are
read from the memory for any computation, they have to be shifted by four
bit positions to the right to bring them to their original values.

Similar operation can also be performed on a block of integers if there are
zeros to the right. . .

-3.3 Dynamic Ran~e and Precision

The dynamic range of a signal is the ratio of the maximum value to the mini­
mum value that the signal can take in the given number representation
scheme. The dynamic range of a signal is proportional to the number of bits
used to represent it and increases by 6 dB for every additional bit used for the

48 Chapt~r 3 Computational Accuracy in DSP Implementations

representation. The number of bits used to represent a signal also determines
. the resolution or· the precision with which the signal can be represented.
However, the time taken for certain operations such as the AID conversion

. increases with the h-tcrease in the number of bits.
Resolution is the minimum value that can be represented using a number

representation format. For instance, if N bits are used to represent a number
from 0 to 1, the smallest value it can take is the resolution and is given as

. Resolution 1/2N forlarge N 	 (3.5)

Resolution of a number representation format is normally expressed as
number of bits used in the representation. At times, it is also expressed as a
percentage.

Precision isan issue related to the speed of DSP implementation. In gen­
eral, techniques to improve the precision of an implementation reduce its
speed. Larger word size improves the precision but may pose a problem with
the speed of the processor, especially if its bus width is limited. For example,
if the 32-bit product of a 16 x 16 multiplication has to be preserved without
loss ofprecision, two ,memory accesses are required to store and recall this
product using a 1fi-bit bus., Another example is the rounding off, I).S against
the truncation, used to' limit the word size in th'e fixed-point representation of
numbers. The former is slightly more accurate than the latter, but requires
more time to carry out computations.

When the floating-point number representation is used, the exponent de­
termines the dynamic range. Since the exponent in the floating-point repre­
sentation is a power, the dynamic range of a floating-point number is very
large. The resolution or precision of a floating-point number is determined by
its mantissa .. Since the mantissa uses fewer bits compared to fixed-point rep­
resentation, the precision of floating-point number representation is smaller
than a comparable fixed-point representation. .

It is important to be aware of the speed implications when adopting
schemes to improve precision or the dynamic range' and not just choose
~gh:er . precision or larger dynamiC range than what is required for a given
application.

t> Example 3.5 	 Calculate the dynamic range and precision of each of the following number
representation formats.

a. 24-bit, single-precision, fixed-point format

b. 48-bit, double-precisiQn, fixed-poi!tt format

c. a floating-point format with a 16-bit mantissa and an 8-bit exponent

Solution a. 	 Since each bit gives a dynamic range of 6 dB, the total dynamic range is
24 x 6 = 144 dB. Percentage resolution. is (l/224) x 100 6 X 10-6• .

b. Since each bit gives a dynamic range'of 6 dB, the total dynamic range is
48 x 6 = 288 dB. Percentage resolution is (11248

) x 100 = 4 X 10-13 •

3.5 AID Conversion Errors 49

c. 	 For floating-point representation, the dynamic range is determined by the
number ofbits in the exponent. Since there are 8 exponent bits, the dy­
namic range is (28 -1) X 6 = 255 x 6 1530 dB.

The percentage resolution depends on the number of bits in the mantissa.
Since there are 16 bits in the mantissa, the resolution is.

(i/2 16
) X 100 1.5 x 10-3%

These results are summarized in Table 3.1.

, 	 Table 3.1 Dynamic Range and Precision for Various Number Representations

Percentage
Format of Number of Dynamic Resolution
Representation Bits Used Range (Precision)

Fixed-point 24 bits 144 dB 6 x 10-6

Double-precision 48 bits 288 dB 4 x 10-13

Floating-point 24 bits (16-bit mantissa, 1530 dB 1.5 x 10-3

8-bit exponent)

3.4 Sources of Error in DSP Implementations

A nsp system consists of an AID converter, a nsp device, and a D/A con­
verter. The accuracy of a DSP implementation depends upon a numl;er of
factors, contributed by the AID and D/Aconversions and how the calculations

. are performed in the DSP device. The error in the AID and DIA in the repre­
sentation of analog signals by a limited number of bits is called the quantiza­
tion error [2]. The quantization error decreases with the increase in the num­
ber ofbits used to represent signals in AID and D/A converters.

The errors in the DSP calculations are due to the limited word length used.
These errors depend upon how the algorithm is implemented in a given DSP
architecture. This error can be reduced by using a larger word length for data
and by using rounding, instead of truncation, in calculations .

. In the following sections, we consider the quantization and rounding errors
in AID converters, DSP computations, and D/A converters.'

3.5 AID Conversion Errors

Consider an AID converter, shown in Figure 3.3(a), with b bits used to
represent an unsigned signal value. Its di~ital representation is of the form

50 Chapter 3 Computational Accuracy in DSP Implementations

x 	 o[lox,MD

(a)

8=Xq -X-9.x 	 + '

Xq

(b)

e

o A 2A-2A -A
I< k K K -"X

A == 2-bfor xqrepresented by b

fraCtional bits

(c)

Figure: 3.3 	 (a) An AID converter with b bits for signal representation, (b) quantization
model fOr the AID converter, (c) quantization error in truncation AID converter,
(d) quantization error in rounding AID converter, (e) probability density function
for truncation error, (f) probability density function for rounding error

(continued)

.XXX ••• x, where there are b bits after the assumed binary point. In this kind
of binary representation, the value of the least significant bit is given by

l1 = 2-b 	 (3.6)

The maximum error due to quantization depends on b. The quantization
error for a given conversion as shown in the model of Figure 3.3(b) is given by

e=xq-x 	 (3.7)

35 AID Conversion Errors 51

e

1!J2

x

(d)

pre) pee)

..------1111A

-A o
(e)

E

-Al2·

ItA

o·
(f)

E

+M2

Figure 3.3 Continued

where x is the input· and Xq is the quantized output. This' error is called the
truncation error if the signal value above the largest integral multiple of A is
simply dropped. It is called the rounding error if the value is rounded to the
nearest integral multiple of A. This way the rounding limits the error. to ±Al2.
Figures 3.3(c) and (d) show these two types of errors. The statistical inter­
pretation of these errors can be used to evaluate their effect on PSP imple­
mentations. Assuming that the truncation and rounding errors in . the AID
converter are uniformly distributed,. their' probability density _ functions are
given in Figures 3.3(e) and (f), respectively. Analysis of Figure 3.3(e) for the
mean and the variance of the error yields

me = -Al2 _2(-b-l) (3.8)

O'e 2= fO (e _ (_Al2»2p(e) deLA

o .

=J. (e+Al2)211Ade
_ -A

= -A2/12 = r 2b/12 (3.9)

52 Chapter 3 Computational Accuracy in DSP Implementations

Similarly, the analysis of Figure 3.3(f) yields

me =0· (3.10)

ae
2 = T 2bl12 (3.11)

That is, the variance of error is the same in both cases; the mean is zero in
rounding and nonzero in truncation. The signal-to-noise ratio (SNR) is a
measure that is used to evaluate the performance of the AID converter. It can
be calculated from

.. SNR = 1010g(a/la/) (3.12)

where ax2 is the signal power and ae
2 is the noise variance.

The SNR cannot be calculated unless an assumption about the input signal
amplitude is made. Practically spea.kirtg, too little a signal amplitude will result

. in a poor SNR, yet assuming the maximum signal amplitude in Eq: 3.12 will
show only the best SNR. For the signal representation considered here (value
from 0 to 1). it is customary to assume the root mean square (rms) value .of
the signal (ax) as 114 for SNR calculations. This leaves enough bits for the
maximum possible value of the signal, yet it yields a more realistic SNR for
evaluation of an AID converter. With this assumption and substituting for a/'
and ae

2 in Eq. 3.12, we get .

.SNR :::; 10 log(1I16)/(r2b/12) = 1010g«3/4)(22b» (3.13)

It is clear from Eq. 3.13that using an AID converter with a larger word length
"gives a larger SNR. As an example. if b = 14, the SNR is given as

,~NR = 10 log«3/4)(22X14»= 83.04 dB.

3.6 DSP Computational Errors

The DSP computations involve using .the digitized signal values and DSP
structures. represented by coefficients. These numbers are typica:Uy repre­
sented in the signed fractional 2's complement form. The computations
almost always· involve multiplications or multiply and accumulate (MAC) op­
erations. In this section, we discuss the error in the multiplication carried out
using the fixed wor:d length arithmetic logic unit. Gonsider a specific DSP
device that provides a 16 x 16 multiplier with a 32-bit result interlaced to a
16-bit AID lmd a l l6-bit D/A converter. The error in the computation will be
due to discarding the 16 least significant bits of the 32-bit multiplicati'bn
product. Assuming that the signal and the coefficients use s.xxx .•. x format

3.6 DSP Computational Errors 53

representation for signed numbers, and the. flmltiplier used is also a signed
binary multiplier, the multiplier result will be of the form ss.xx. ... x. Before
truncating (or rounding), this result can be shifted left by 1 bit (to discard the'
extra sign bit) to generate s.b_ I b_2 ... b_300 and then the 16 least significant
bits can be dropped. The error in this computation is then given by

e = 0 +r 3O.b_3O +r 29.b_29 +r 28 .b_28 +.. , + r I6.b_16• (3.14)

14aximum error occurs when all the discarded bits are Is. That is,

(riSemaxA = r 30 + r29 +... +2-16 == - 2-30).

and the minimum error is when all the discarded bits are Os. That is,

eminA = 0

Assuming that e is uniformly distributed, we can compute mean as

(rlsme = -A/2 = - r 30)/2= (r16 - r 31) ~ Z-16 (3.15)

and the variance' as

as 2 = A2/12 = (T 15 T30)2/12 ~ Z-30112 (3.16)

Using the argument ofthe last section, we can assume that the multiplier re­
sult has the rms value ax of 1/4. Using this assumption leads to the following
SNR:

SNR'=,10 log(a}lae
2)

10 log(I/16)/(Z-30112)

= 10 log«3/4)(230»
89.06 dB (3.17)

In a multiply and accumulate process using a fractional signed multiplier and
a 32-bit accumulator, assuming no overflow condition, the SNR will be even
better due to the averaging effect of the accumulator. It can be shown that in
such a: case the error variance is given as

a/ = (l/N)(r30112) (3.18)

for N accumulations. As is obvious, ,in most cases an individual DSP operation
. !

is not the dominant factor in error calculations. The overall calculation error
depends upon the DSP algorithm that is being implemented.

54 Chapter 3 Computational Accuracy in DSP Implementations

Another type of computational error in DSP implementations is the over­
ftowerror .

.Ifthe result-of a computation cannot be held in the accumulator register,
an overftow condition occurs. If nothing is done to avoid or correct the over~
ftow condition, the arithmeticwraparoun~ occurs, in which case after the
most positive number an overftow generates the most negative number, and
vice versa. In a signal. it amounts to presence of a glitch With serious con­
sequences.

A solution to the overftow problem is to provide extra bits called guard bits
in the accumulator to accommodate the overftow bits. For instance, a provi­
sion of 4 extra bits ensures that there will not be any overftow for up to 16
accumulations.

If enough guard bits cannot be provided, there is need to implement satu­
ration logic to at least keep the overftow under control and. not let it produce
a glitch in the signal. This is done by replacing the overftowed result with the
most positive number, in the case of overftow from the most positive number
t.O a negative number. For the case where the wraparound occurs from the
most negative to a positive number, the result is replaced with the most neg­
ative number. This implementation ensures a glitchcft:ee signal, although it
still has calculation error, the amount of which depends upon the amount of
the overftow.

3.7 D/A Conversion Errors

A source of error jn a DJA converter is due to the fa~t that, typically, aD/A
converter uses fewer bits in conversion than the number of bits required by
the computed result, produced by the DSP device. This is equivalent to the
truncation or the rounding off error in the AID converter and can be handled
in the same way as the computational error described in the previous section.

Another and more serious error occursin the DJA converter due to the fact
that the D/A converter output is not ideally reconstructed. Typically, the out­
put samples from the DSP are applied to the input ofa reconstruction filter
through a zero-order hold, which maintains the input to the filter constant
during the periods between successive samples. This is equivalent to saying
that the input to the reconstruction filter is the convolution of the DSP output
samples with a unit pulse of width equal to the sampling interval. The effect of·
this convolution is a reduction in the amplitude of 'the analog output. A com­
pensating filter can compensate. for this reduction in the amplitude. The fre­
quency response of the compensating filter should be the inverse of the
frequency response of.the convolving pulse.

The source of error explained above can be illustrated by means of Figure
3.4. Consider the sequence of output samples of a DSP as shown in Figure
3.4(a). These samples are passed through a D/A converter with a zero-order

3.7 D/A Conversion Errors 55

x(n)

1

1_ _,"lin

-1

To
, po

(a)

xzoh

1

o

-1

(b)

h(t)

I Io T 	 .t

(c)

h(!)

1

-liTo--4--1'"0 liTo 't'" ~": _':':s:" f

Figure 3.4 	 An example showing the D/A converter error due to the zero-order hold at its
output: (a) DSP output, (b) D/A output, (c) the convolving pulse that generates (b)
from (a), (d) frequency contents of the convolving pulse in (c)

56 Chapter 3 Computational Accuracy in DSP Implementations

hold at its output. The output of the DIA converter is shown in Figure 3.4(b).
Figure 3.4(c) shows the shape of the convolving pulse that generates the out­
put of Figure 3.4(b) from the DSP output of Figure 3.4(a). Figure 3.4(d) shows
the frequency contents of the convolving pulse as well as the degradation
(amplitude error) of the output of the reconstruction filter from an ideal out­
put. The compensating filter to restore the required output of the reconstruc­
tion filter should have a frequency response, which is the inverse of Figure
3.4(d).

[:> Example 3.6 lIind the degradation in amplitude gain when a sine wave of unit amplitude
and 50 Hz frequency, sampled at 400 Hz, is reconstructed using a zero-order
hold.

Solution The amplitude of the sine wave at a sampling instant is given by

x(n) sin 2nfnlls (3.18)

where! is the frequency of the- sine wave and Is is the sampling frequency. In
this example, ! = 50 Hz and Is = 400 Hz. Substituting these values in Eq. 3.18
yields

x(n) = sin 2nn/B (3.19)

The values of the amplitude computed using Eq. 3.19 are valid only for the
ideal case. In order to compute the degradation in the amplitude due to the
zero-order hold, these values have to be modified by the frequency response
of the convolution pulse shown in Figure 3.4(d). In the frequency domain, the
amplitude or the gain is a sine function and is given by

Gain = H(!) (sin n!IIs)/(n!/Is) (3.20)

Table 3.2 gives the values of the gain given by Eq. 3.20 for different frequencies
expressed as a fraction of Is. The gain at 50 Hz (fs/B) is 0.9745 instead of 1.

Table 3.2 Amplitude Degradation of DIA Output Due to the Zero-Order Hold.

Frequency Gain 1/Gain

0

f s/32 0.9984 1.0016

fsfl6 0.9936 '1.0064

f./8 0.9745 1.0261

fs/4 0.9003 1.1101'

f./3 0.8270 1.2092

f.12.5 0.7568 1.3213

fo12 0.6366 1.5708

3.7 D/A C6nversionErrors 57

3.7.1 Compensating Filter

I>
I

Example 3.7

One can design a filter with a frequency response, which is the inverse of the
gain H(!) as shown in Table 3.2, and place it at the output of the D/A con­
verter to compensate for the amplitude degradation of the DIA output due
to the zero-order hold. Such a filter can be an IIR filter that can be designed
using the techniques discussed in Chapter 2.

Design a first-order IIR compensating filter having the frequency response
depicted in Table 3.2.

Solution A first-order IIR filter can be designed using the program in Figure 3.5(a).
Notice that the program uses the direct design method called the Yulewalk
techniq.JIe.· As shown in Figure 3.5(b), the design produces the following co­
efficients for the filter:

b = [1.1752 0.0110]

a = [1.0000 0.1495]

which corresponds to the difference equation

y(n) = ~0.1495y(n - 1) + 1.1752x(n) +O.OllOx(n ­ 1) (3.21)

%Compensati~g filter specifications
f = [0 1/32 1/16 1/8 1/4 1/3 1/2.5 1/2]*2;
m = [1 1.0016 1.0064 1.055 1.1107 i.2092 1.3213 1.5708];

.% Filter design
[b.a] = yulewalk(l.f.m)

%Designed filter frequency response
[h.th] = freqz(b.a.128);
plot(th/pi;abs(h». title('Designed Compensating Filter Frequency
Response'). xlabel('f*2/fs'). ylabel('Magnitude')

(a)

b=
1.1752 0.0110

a=
1.0 0.149~

(b)

Figure 3.5 Design of the compensating filter of Example 3.7: (a) a MATLAB program,
(b) designed filter coefficients, (c) designed filter frequency response

(continued)

58 Chapter 3 Computational Accuracy in DSP Implementations

Designed Compensating Filter Frequency Response

l.l

1.05

lL-, !. I. , ,.I I "' I

o 0.1. 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f*2/fs

(c)

Figure 3.5 CQntinued

The transfer function of the filter in the z-domain is given by

H(z) = (l.i752 + O.OllOZ-l)
(3.22)

(1 + 0.1495z-1)

The frequency response of this compensating filter is shown in Figure 3.5(c).
Since ~e compensating filter is a digital filter, itcan be merged with the DSP
calculations. That is, the input to the D/A converter is first passed through the
filter before it is applied to the D/ A cohverter, thus eliminating the need for a
filter to be placed after the D/A converter.· In general, making the compensat­
ing filter a part of the DSP eliminates additional computations, since the filter
computations can be merged with the DSP computations.

The analysis presented above can be extended to correct degradation more.
accurately. However, it should be noted that the compensating fUter in such a
case Will be more complex and will be of orders higher than 2.

Assignments 59

3.8 Summary

In this chapter, we studied various number formats for representing signals

. and coefficients, consisting of the fixed-point format, floating-point format,

double-precision format, and block floating~point format. We also studied the

dynamic range and precision of signals represented by each of these formats.

We identified the sources of errors in PSP implementations, such as AID

conversion errors, DSP computational errors, and DIA conversion errors. For

. each category, we have estimated the errors and have suggested ways to min­
imizethem in the implementation of DSP systems. .

References

1. 	 Ifeacho,. E. C., and Jervis, B. W., Digital Signal Processing: A Practical
Approach, Redding, MA, Addison-Wesley, 1993.

2. 	 Bateman, A., and Ya~es, W. Digital SignalPrl)cessing Design, Los Alamitos, CA,
Computer Science- Press, 1989.

3. 	 Higgin, R. J. Digital Signal Processing in VLSI, Englewood Cliffs, Prentice Hall,
1990.

4. 	 Lapsley, P., Bier, T., Shoham, A., and Lee, E. A. DSP Processor Fundamentals:
Architectures and Features, Piscataway, NT, IEEE Press, 1997..

Assignments

3.1 	 Determine (a) the most positive, (b) the least positive, (c) least negiltive, and
(d) the most negative values for the following number representation formats.

a. 32-bit 2's complement integer format

b. 32-bit floating-point format given as:

s eee ... e fIf.... f

1 8 23 (bits)
s exp frac

(unsigned) (unsigned)

where the value of the number is computed as l.frac x 2exp if s = 0, and
-1.frac x 2 exp if s 1.

3.2 	 Determine the maximum truncation error for both positive and' negative
numbers for the two formats in Problem 3.1.

60 Chapter 3 Computational Accuracy in DSPlmplementations

3.3 	 Show that the dynamic range of a signal increases by 6 dB for each additional
bit used to represent its value.

3.4 	 Compute the dynamic range and percentage resolution of a ~ignal that uses

a. 16-point fixed-point format

b~ .32-point floating-point format with 24 bits for the mantissa and 8 bits
for the exponent.

3.5 	 Compute the dynamic range and the percentage resolution for a block
floating-point format with a 4-bit exponent used in a 16-bit fixed-point pro­
cessor.

3.6 	 For the DSP system shown in the block diagram of Figure P3.6, the analog
input is a 50 Hz sinusoidal signal with 2 V peak value. Both the AID and D/A
converters are 0-5 V devices. Determine (a) the SNR of AID, (b) the SNR of
DSP, and (c) the peak ()utput of the D/A converter. Assume a sampling rate of
400 samples/sec. State other assumptions that are needed for calculations.

l~bit fixed-point processor with it
16x16 2's complement multiplier

,J

Analog in

SBit
DIA

Converter Analog out

16

Memory
16-bit coefficients

Figure P3.6 A DSP system block diagam

3.7 	 One can use the filter of Eq. 3.22 to compensate for the DfA converter error
in Problem 3.6. This filter, however, does not compensate the DfA error com­
pletely. There remains some error at different frequencies. Prepare a table to
show the error that remains uncompensated. .

3.8 	 Determine the frequency response for the filtet

H(z _ 1.125
) - + 0.1807z-1)

Compare its frequency response to the one in Table 3.2 and discuss its suit­
ability as a zer,? order hold DIA compensating filter. ,

Chapter 4
Architectures for Programmabl~ Digital
Signal-Processing Devices

4.1 Introduction

In this chapter, architectural features of programmable DSP devices are de­
scribed based on the DSP operations these devices are generally required to
perform. The features are examined from the points of view of functional
needs, programmability, speed,and interfacing requirements of these devices.
Commonly used hardware implementations are also described for various
functional units. Following are the topics covered in this chapter:

Basic architectural features

PSP computational building blocks

Bus architecture and memory

Data addressing capabilities

Address generation unit

programmability and program execution

Speed issues .

Features forextt:rnal interfacing

4.2 Basic Architectural Features

A programmable DSP device should provide instru~tions similar to a micro­
processor. These instructions can then be used to design programs for im­
plementing DSP algorithms. The basic computational capabilities provided by
way of instructions should include the following [1-3, 11]:

• Arithmetic.operations such as add, subtract, and multiply.

.• Logic operations such as AND, OR, XOR, and NOT.

61

62 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices­

• 	 MultiplY'and accumulate (MAC) operation.

• 	 Signal scaling.operations for scaling'the signal before and/or after digital
signal prQCessing.

. . It is important that dedicated high-speed hardware be provided· to carry
out these operations. For instance, multiply operation can be done much
faster on a hardware multiplier than on a microcoded m~tiplier realized
using the shift and add technique, as is often done in microprocessors.

In addition to the computational units, support archit~cture should include
the following hardware features [10]:

• 	 On-chip registers for storage of intermediate results.

• 	 On-chip memories for signal samples (RAM).

• 	 On-chip program memory for programs and fixed data such as filter
coefficients (ROM).' .

I> Example 4.1 	 Investigate the basic features that should be provided in the DSP architecture
to be used to implement the following Nth-order FIR filter:

N-l

y(n) = L h(i)x(n -i); n == 0, 1,2, ... (4.1)
i=O

where x(n) denotes the input sample; y(n), the output sample; and h(i), the ith
filter coefficient. x(n - i) is the input sample i samples earlier than x(n).

Solution The FIR filter requires the following basic features for implementing Eq. 4.1:

1. 	 Memory for storage of signal samples x(n), x(ti -:- 1), ... , etc. (RAM)..

2. 	 Memory for storage offilter coefficients: h(O), h(I); .•. , etc. (ROM).

3. 	A hardware multiplier and an adder to carry out the multiply and accu­
mulate (MAC) operation.

4. 	 A register to ke~p track of accumulation (accumulator).

5. 	 A register to point to the current signal sample being used (signalpoin,ter).

6. 	 A register to point to the current filter toefficient being used (coeffic'ient
pointer).

7. 	 A register to keep count of the MAC operations that remain to be done
(counter).

8. 	Capability to scale the signal value x(n) as itis read from the memory and
the computed signal y(n) as it is stored in the memory (shifters at input
and output).

Computational units such as the multiplier, the arithmetic logic unit (ALU),
shifters, etc. will be described in the next section. Subsequent sections will
examine the other functional units such as, the memory, the addressing unit
and the program execution unit.

4.3 DSP Computational Building Blocks 63

4.3 DSP Computational Building Blocks

I,n this section, we learn about the hardware building blocks that carry out the ,
basic DSP computations.'.While choosing these computational building blocks,
we keep in mind the requirements of speed and accuracy, which are the two
key issues iIi the design of DSP systems. At the same time, we should ensure
that such -building blocks 'could be configured to implement many different
applications. That is, while each building block should b~ optimized for func­
tionality and speed, the design should be sufficiently general so that it can be
easily integrated with other blocks to implement overall DS1> systems.

Following are-the basic building blocks that are essential to carry out DSP
computations [5-9]: '

• Multiplier

• Shifter

• Multiply and accumulate (MAC) unit

• Arithmetic logic unit

In the following subsections, we shall discuss each of these blocks in detail.

4.3.1 Multiplier

The advent of single-chip multipliers and their integration into the micro­
processor architecture are the most important reasons for the availability of
commercial VLSI chips capable of implementing DSP functions. These multi- .
pliers, called parallel or array multipliers, implement complete multiplication,
of two binary numbers, to generate the product in a single processor cycle.
Earlier multiplication schemes relied either on software such as the shift and
add algorithm or on microcoded controllers, which implement the same al­
gorithm in hardware. Both these options require several processor cycles tp
complete the multiplication. The advances~Me in VLSI technology, both m
.terms of speed and size, have made possible the hardware Implemturation of
parallel multipliers.
. From earlier chapters, it is apparent that multiplication is one of the key
operations in implementing DSP functions. HoweVer, before we design' an
actual multiplier, we should be dear about its specifications sJlch as speed,
accuracy, and dynamic range. The number of bits used to represent the
multiplication operands and whether they are represented in fixed-point or
floating-point format decide the accuracy and dynamic range of the multi­
plier. The speed, on the other hand, is decided by the architecture employed.
For ,a given technology, there are several architectures for parallel multipliers,
which trade off speed for reductions in circuit complexity and power dissipa­
tion. The choice of the architecture depends on the application.

64 Chapter4 Architectures for Programmable Digital Signal-Proce~ing Devices

A3 A2 A, Ao
B3 B2 B1 Bo

A3 BO· A2 BO A,Bo AoBo
A3B, A2B, A,B, AoB,

A3 B2 A2B2 A,B2 AoB2
A3B3 A2B3 A,B3 AoB3

P7' P6 Ps P4 P3 P2 ,. P, Po

(a)

Figure 4.1(a) The 4 x 4 binary multiplication

Parallel Multiplier

Let us consider the multiplication of two unsigned nwnbers A and B. Let the
nwnber A be represented using m bits (Am- 1Am- 2 ... Ao) and the nwnber B,
using n bits (Bn- 1Bn- 2.•. Bo). The multiplicand A, the multiplier B, and the
product P are given bY [4-6]

m-l
A= LAi2i (4.2)

;=0

n-l

B = LBj2 j (4.3)·
j=O

"-1 [m-l 1P = ~ ~AiBj2i+j (4.4J

and can have a maximwn of (m + n) bits. Each bit of the product P is
obtained by a summation of bits AiBj using an array of single-bit adders.
The bits A;Bj, where the index i takes on values from 0 to m - 1, and the
index j from 0 to n:"- 1, are formed using AND gates. Figure 4.1(a) shows the
multiplication operation using 4 bits for both A and B (A = A3A2AIAo and
B = B3B2BIBo). Figure 4.1(b) shows the hardware structure of the multiplier
for this eXample. The structure is regular and requires twelve 3 input, 2 output
adders. It can be shown that for an n x n multiplier, the number of adders
required is n(n - 1).

Multiplier for Signed Numbers

The multiplier shown in Figure 4.1(b) is known as Braun multiplier [7] and is
the basis for most of today'scommercial implementations. Several improve­

4.~ DSP Computational Building Blocks 65

A3Bo A2Bo A]BO

o I 0

r
P7 P6 Ps P4 P3 P2 PI

Figure 4.1(b) The structwe of a 4 ~ 4 Braun multiplier

ments on this basic structure are possible and have been used to increase the
speed and reduce the hardware complexity and power dissipation. We will not
be dealing with. these variations here. However, we will consider one modifi­

. cation of the Braun structure, which is essential to carry out multiplication of
signed numbers.

Braun's multiplier does not take into account the signs of the numbers that
are being muitiplied. Additional hardware is required before and after the
multiplication when signed numbers, represented in 2's complement form, are
used. It would be desirable to have a structure that can directly operate on 2's
complement numbers.

Consider two numbers A and B represented in 2's complement format. Let
A have m bits and B, n bits. A andB can be written as follows:

m-2

A -Am_ 12
m- 1 +LAi2i (4.5)

i=O

n-2 .

B -Bn_ 12
n

-
1 + LSj2 j (4.6)

j=O

66 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices

The product P Pm+n-I ... PIPo can be written as

m-2 n-2 m-2'

P Am- 1Bn-12 m+n-2 + 2: 2: AiBj2 i+j - 2: AiBn-I.2n-I+i
i=O j=O i=O

n-22: A - I Bj2m-1+j (4.7)m

'j=O

The two subtractions in Eq. 4.7 can be expressed as additions of 2's comple­
ment numbers. In doing so, Eq. 4.7 gets modified to an expressioI). with only
additions and no subtractions and can then be implemented through a struc­
ture similar to the Braun multiplier rising only adders. The modified structure
for handling signed numbers is called the Baugh-Wooley multiplier [8J.

Speed
The shift and add technique of multiplication normally used in micropro­
cessors requires n processor cycles to carry out an n x n multiplication. The
cycle time is the time to access the operands, perform add and shift, and store
the result in the product register. The parallel multiplier, on the other hand.
is a fully combinational implementation, and once the operands are made
available to the multiplier, the multiplication time is only the longest path
delay time through the gates and adders. .

Normally, one would want to achieve the highest possible speed of opera­
tion for a given DSP function. This would mean a multiplication time com­
parable to the processing times of other computational units as well as the
access times of memories holrung the program and data. As memory tech­
nologyadvances, lower and lower access times are achieved. In order to make
the best use of such speeds in a DSP' implementation. it w0uld be highly
desjrable to design mUltipliers operating at the highest possible speeds. This is
possible only with a fully parallel implementation.

Bus Widths

Consid~r a multiplier with inputs X and Y and the product Z. If X and Yare
represented with n bits each, Z can have a maximum of 2n bits. Let us assume
that both X and Y ·are in the memory and the product Z has also to be written
back to the memory. A single-cycle execution of the multiplication will then
require two buses of width n bits each (for X and Y) and a third bus of wil;ith
2n bits (for' Z). This type of bus architecture is expensive to implement. A
number of practical considerations, however, make it possible to realize ili:e
multiplication with a less extensive bus architecture. First, the program bus
can be used to transfer one of the operands (say. Y) after the· multiplication
instiuction has been fetched from the progtam memory. This does not cause

-._- ..._--- -- - ------------- ­

4.3 DSP Computational Building Blocks '67

an additional overhead when repeated multiplications are carried out, as is
generally the case with many DSP algorithms. This is because, the instruction,
once fetched, usually resides in an on~chip cache. Second, it separate bus for
the product Z can be dispensed with, since one of the buses (say, that of X)
can be used to transfer the product to the memory as the operand X would
have been latched long before the product Z is made available. To handle the
2n bits of Z, there are two available alternatives:

a. 	 Use the X bus (n bits) and save Z at two successive memory locations
using two memory accesses.

b. Discard the lower n bits of Z and save only the higher n bits. This is the
option most often used since one of the two operands X and Y (usually
Y) is normalized to one before multiplication so that the n bits dis­
carded from Z are the less significant fractional bits. However, if the
product· Z is to be further processed (e.g., added to the previous result
as is the case in a multiply and accumulate operation), all 2n bits of
the product Z are retained and passed on to the next stage to retain the
accuracy of the product. The decision on discarding lower-order bits
or saving the entire word is made. after the accumulation process is
completed.

For applications in which speed is not the main issue, buffers and latches
may be provided at inputs and the output, as shown in Figure 4.2. A single bus
cari then be used to preload the operands in the input latches before the mul­
tiplication and transfer the result from the output latches/buffers to the
memory or the next stage, if necessary in two cycles after the multiplication.

Data bus .

~7n

I
rtn1 X

7:;­ y

/ n

....

Multiplier ~ Z ~
.... •

X, Y, Z are latel est buffers

Figure 4.2 A multiplier with input and output latcheslbuffers

68 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices

4.3.2 Shifter

Shifter is an essential component of any DSP architecture. Shifters are re­
quired to scale, down or scale up operands and results to avoid errors resulting
from overflows and underflows during computations. Let us consideJ the fol­
lowing cases:

a. 	 It is required to compute the sum of N numbers, each represented by n
bits. As the accumulated sum grows, the number of bits required repre­
senting it increase~. The maximum number of bits to which the sum can
grow is (n + logz N) bits. However, if each of the N numbers is scaled
down by logz N bits prior to the addition, the loss of the result due to
.overflow can be avoided. The accumulator will then hold the sum scaled
down, by logz N bits. Although the accuracy of the sum is reduced be­
cause of the loss of logz N lower-order bits, the summation would be
completed without the occurrence of the overflow error. The actual sum
can be obtained' by scaling up the result by logz N bits, when required.

b. When two 	 numbers, each represented by n bits, are multiplied, the
product can have a maximum of 2nbits. When this product is saved in
memory, which is also n bits wide, the lower-order n bits are generally
discarded, resulting in 16ss' of accuracy. However, in the case of multi­
plication of two signed numbers, the accuracy can be slightly improved
by shifting the product by one bit position to the left before saving the n
higher-order bits. This is because the 2n-bit product will have two sign
bits, .and even after discarding one of them (by a single-bit left shift), the
sign of the product is still pres~rved. The accuracy improves because,
instead of discarding all th~ n lower-order bits, we now discard only
(n 1) bits.

c. 	 When carrying out floating-point additions, the operands shouid be
normalized to have the same exponent. This is accomplished by shifting
one of the operands by the required number of bit positions so that it
has the same exponent as the other operand.

The cases illustrated above are examples of situations that require shifting
of data while implementing DSP operations.

[> Example 4.2 	 It is required to find the sum of 64 numberseach represented by 16 bits. How
many bits should the accumul.~tor have so that the sum can be computed
without the occurrence of overflow error or loss of accuracy?

Solution 	 When 64 numbers are added, the sum can grow by a maximum of logz 64 =
6 bits. To avoid overflow, the total number of bits the, accumulator should
have is 16 + 6 = 22.

4.3 nsp Computational Building Blocks 69

. l> Example 4.3

Solution

If, for the problem of Example 4.2, it is decided to have an accumulator with
only 16 bits but shift the numbers before the addition t6 prevent overfl6w, by
how many bits sh!Juld each number be shifted?

Since the sum can grow by 6 bits, in order to prevent overflow, each number
should be shifted by 6 bits to the right before the addition.

l> Example 4.4 If all the numbers in the problem of Example 4.3 are fixed-point integers, what
is the actual sum of the numbers?

Solution Since each number has been shifted to the right by 6 bits, the sum should be
shifted left by 6 positions to get the actual value.

The actual sum = (content of the accumulator) x 26

l> Example 4.5 What is the error in the computation of the sum in the problem of Example
4.4?

Solution Since the six lowest significant bits have been lost in tl1e process of summa­
tion, the sum could be off by as much as 26 - 1 63.

Barrel Shifter

In conventional microprocessors shifting is normally implemented by an op­
eration similar to the one performed in a shift register. The operation takes
one clock cycle for every single bit shift. Such Ii scheme requires unduly large
amounts of time to implement multibit shifts, which are generally required
in DSP computations, In DSPs, on the other hand, in order to preserve the
computational speed of single-cycle instruction execution, shifts by several
bits should be accomplished in a single cycle. This is possible by a combina­
tional circuit known as the barrel shifter. The barrel shifter connects the input
lines representing a word to a group' of output lines with the required shift
determined by its control inputs, as shown in Figure 4.3(a). Control input also
determines the direction of the shift (left or right). If the input word has n
bits, and shifts from 0 to n 1 bit positions to the right or left are to be im­
plemented, the control input requires log2n lines to determine the number of
bits to be shifted. Further, an additional line is also required for the control
input to indicate the direction of Ithe shift. In practice, however, the direction
of shift is usually fixed, with the result that only log2 n lines are required for
the control input. Bits shifted out of the input word are discarded and the new
bit 'positions are filled with zeros in the case of left shift. In the case of right
shift, the new bit positions are replicated with the most significant bit to
maintain the sign of the shifted result.

Figure 4.3(b) shows animplerrientation of a barrel shifter with four input
bits, (A3A2AIAo) and four output bits (B3B2BIBo). Using this shifter, it is

70 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices

Figure 4.3(a}

n OutputInput n
/

"7 "7
/

SHIFfER

uR It t Number of bit positions for
1\ the shift1
Control Inputs

Block diagram of a barrel shifter

Input
Bits

•Ao

So

Al

SI

A2

S2

A3
 ,

S3
Output
Bits --. B3 Bz BI Bo

So

• , •

SI> S2. S3 S2. S:i

Input
A3A.2AIAo
A3A2AIAo
A3AzAIAo
A3 A2AIAo

Shift (Switch)
o(So)
1 (SI)
2 (Sz)
3 (S3)·

Output (B3B2BIBo)
~3~2AIAo
A3A3A2AI
A3A3A3A Z

A3A3A3A3

Figure4.3(bl Implementation of a 4-bit, shift-right barrel shifter

~ .. -!.- .

4.3 DSP Computational Building Blocks 71

possible to realize right shift by 0, I, 2, or 3 bit positions by setting the control
inputs (So, S1> S2, or S3) high, respectiv~ly. Only one of the control inputs can
be high at any time and this input closes all the switches controlled by it and
enables the appropriate paths between the inputs and the outputs.

Since the circuit for a barrel shifter is a combinational logic circuit, the time
taken to implement the shift is the total combinational delay involved in de­
coding the, control lines and setting up the path from the input lines to the .

. output lines. This delay is only a fraction of a clock cyde. In fact, in practical
DSPs, shifting is combined with data transfer. Both operations are executed in
a single clock cyde. '

I> Example 4.6 A barrel shifter is to be designed with 16 inputs for left shifts from 0 to 15 bits.
How ma,ny control lines are required to implement the shifter?

Solution The number of control lines required is four, since 4 bits are needed to code
any number between 0 and 15, the. range over which the shift is required to be
accomplil>hed.

4.3.3 Multiply and Accumulate (MAC) Unit

Most DSP applications such as filtets require the accumulation of the products
of a series of successive multiplications. In order to implement this accumu­
lation; we need an add/subtract unit' and an additional register called the
accumulator at the output of the multiplier. The configuration of such a mul­
tiply and accumulate unit, commonly known as the MAC unit, is shown in
Figure 4.4..

The MAC unit consists of a multiplier that multiplies two n-bit numbers X
and Y and gives a product 2n bits wide. This is added to or subtracted from
the contents of the accumulator in the add/sub unit. The result is saved in the
accumulator. The MAC unit can thus be used'to implement functions of the
type A +Be. If the accumulator is cleared at the start of a series of multi­
plications, it will contain the accumulated sum of the products on completion
of all the multiplications.

Although multiplication and accumulation are two distinct operations, each
normally requiring a separate instruction execution cycle, the two can work in
parallel. At a time when the multiplier is computing a product, the accumula­
tor accumulates the product of the previous multiplication. If N products are
to be accumulated, N - 1 multiplies can overlap with accumulations. During
the very first multiply, the accumulator is idle since there is nothing to accu­
mulate. Likewise, during the very last accumulation, the multiplier is idle since
all the N products have been computed. Thus it takes a total of N + 1 in­
struction execution cycles to compute the sum of products of N multiplica­
tions. If N is large, this works out to a speed of nearly one multiply and
accumulate (MAC) operation per instruction execution cycle .. This pipelined

72 Chapter 4 An::hhectures for Programmable Digital Signal-Processing Devices

x y
n In

Multiplier

Product Register

2n

Figure 4.4 A MAC unit

operation of a multiplier and .an accumulator working in parallel to effectively
execute a MAC operation per cycle is a standard feature of ma~y commercial
DSP devices.

t> Example 4.7

Solution

If a sum of 256 products is to be computed using a pipelined MAC unit, and if
the MAC execution time of the unit is 100 nsec, what will be the total time
required to complete the operation?

To carry: out 256 MAC operations, 257 execution cycles are required.

The total time required = 257 x 100 x 10-9 sec = 25.7 Ilsec.

Overflow and Underflow

When designing a MAC unit, one has to pay attention to the word sizes en­
countered at the input of the multiplier and the sizes of the addlsubtractunit
and the accumulator, as overflow and underflow conditions may be encoun­

4.3 DSP Computational Building Blocks 73

tered otherwise. Provision of barrel shifters at the inputs and the output of the
MAC unit, provision of guard bits in the accumulator, and provision of satu­
ration logic are ~e frequently used techniques to prevent overflow and 00-"
derflow conditions from occurring in the MAC unit. Now let us consider each
of these provisions in detail. '

Shifters

Shifters are normally providedat the inputs and the output of the MAC unit.

The input shifters help to normalize data samples andlor filter coefficients as

, they are fed into the multiplier, to avoid overflow of the accumulated result at

the output. Likewise, the shifter at the output is used to denormalize the result

after the sum of products computation,'before being saved in the memory. In

. addition, the outpUt shifter may also be u~ed to discard the redundant sign bit
in 2's complement product or to shift the output by the required number of
positions before saving to preserve th~ maximum possible accuracy. This is
done when the number to be saved is preceded by several leading Os or Is.
As shifters provided in the MAC unit are typically barrel shifters, they do not
require additional clock cycles to implement the shifts.

Guard Bits

Sometimes, in order to preserve accuracy, the inputs to the multiplier are not
normalized. In such a case, when repetitive MAC, operations are performed,
the accumulated sum grows with each' MAC operation. This increases' the
number of bits required to represent the result without loss of accuracy. One
way to handle this growth is to provide extra bits in the accumulator. These
extra bits, called guard bits or extension bits, allow for the growth of the ac­
cumulated sum as more and more product terms are added, up. When the
computation of the required sum of products is completed, the extension bits
may be saved as a separate word, if required. Alternatively, the sum along with
the guard bits may be shifted by the required amount and saved as a single
word. When guard bits are provided in the accumulator, the size oft;he add!
subtract uQit also, increases correspondingly.

I> Example 4.8 	 Consider a MAC units whose inputs are 16-bit numbers. 1£256 products are to
be summed up in this MAC. how many guard bits should be provided for the
accumulator to prevent overflowcondition'from occurring?

Solution 	 In general, the product of a 16 x 16 multiplication has 32 bits. Since 256 such
products are ·to be summed, the sum can grow by a maximum of log2 256
6 bits. Therefore, the number of guard bits required to prevent the occurrence
of overflow is 8.

74 Chapter4 Architectures for Programmable Digital Signal-Processing Devices

x y

16 16

Multiplier

32

40

Figure 4.5 A MAC unit with accumulator guard bits

Figure 4.5 shows a block diagram of the MAC unit with guard bits for this
example.

Saturation Logic

With or without guard bits, an,overflow condition occurs when the accumu­
lated result becomes larger than the largest number it can hold. Likewise,
when handling a negative number, an underflow will occur if the contents of
the accumulator become smaller than the smallest number it can hold. Iii.
such situations, it may be better to limit the accumulator contents to the most
positive (or the most negative) value to avoid an error known as the wrap­
around error.

Limiting the accumulator contents to its saturation limits is achieved with
a simple logic circuit called the saturation logic. The circuit, shown in Figure
4.6, detects the overflow and underflow condition and accordingly loads the
accumulator with the most positive or the most negative value, overriding the
value computed by the MAC unit. The overfloW/underflow condition is de­
tected by monitoring the carry into the MSB and the carry out of the MSB. If
carry-in is not equal to carry-out, the overflow/underflow condition occurs.
The selection between the most negative and the most positive numbers 'is
made based on the sign bit of the number.

4.3 DSP Computational Building Blocks 75

Least negative
value Load

Most positive
value

Sign
(MSB)

Overflow!
Underflow

Multiplexer

Accumulator

Ci .:: Carry into the MSB
Co = Carry out frQm the MSB

Figure 4.6 A schematic diagram of the saturation

4.3.4 Arithmetic and Logic Unit

In addition to shift, multiply, and multiply.and-accumulate (MAC) opera­
tions, a DSP'is required to carry out several arithmetic and logic operations.
These are the operations, such as· add, subtract, increment, decrement, negate,
AND,OR, NOT, EXOR, and· compare, that are also implemented in a conven­
tional microprocessor. This means that the ALU of a DSP is similar to the

.. ALU of a microprocessor butwith additional features such as shift and mul­
tiplydiscussed in the earlier sections. Figure 4.7 shows the block. diagram of
the ALUof a typical DSP device.

Apart from providing arithmetic, and logic' functions, the design of an
ALU for a DSP incorporates several other features borrowed from,a general­
purpose microprocessor. Three of these features are discussed next

Status Flags

It is important to know the status of the accumulator after arithmetic or. a
logic operation. This information is used for program sequencing and scaling.
The ALU irlcludes circuitry to generate status flags after arithmetic and logic
operations. These flags include sign, zero, carry, and overflow. For instance, if
the execution of an instruction results in overflow, the overflow flag is set;
otherwise it is reset.

Overflow Management

Features similar to those explained in the previous section on MAC are also,
r~quired in the ALU for overflow management .. These features are generally

76 Chapter,4 Architectures for Programmable Digital Signal-Processing Devices

Data Bus

Accumulator

Status

. Data Bus

Figure 4.7 Block diagram of an arithmetic logic unit

combined with the status fl.ags. For example, depending on the status of the
overfl.ow and the sign fl.ags, the saturation logic can come into effect to limit
the accumulator contents to its most positive or the most negative value.

Reg ister ,file

A feature tlnll improves the efficiency of an ALU is the implementation of a
large generaJ.~p~rpose· register file. Instead of moving data in and out of the
ALU to memory during the course of an arithmetic computation, it may be
faster to have intermediate results of arithmetic computations stored in the
ALU until the computation is complete and the result is ready to be saved.
This is possible by providing a file of general-purpose registers in addition to
the accumulator as part of the ALU architecture..

http:overfl.ow

4.4 Bus Architecture and Memory 77

4.4 Bus Architecture and Memory

In conventional microprocessors, the von Neumann architecture is used,
wherein the program and the data reside in the same memory and a single bus
(Address + Data) is used to access both, as is shown in Figure 4.8(a). This
slows down the program execution considerably as the processor has to wait
for the data even after the instruction is made available to it. In order to avoid
this waiting and to speed up the program execution, it is desirable to have the
program and data reside in two separate memories and have two buses for
the processor to access the two memories. This modification, which is called

Address
"­
.­

Processor Memory

-" "­

" Data
-"

(a)

Figure 4.8(a) The bus structure of von Neumann architecture

Address
~

Program
Memory

" Data

Processor

Address -
"

Data
-­ -"

Memory

" Data
-'­

(b)

Figure 4.8(b) The bus structure of Harvard architecture

78 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices

Address
-"
'" Program

Memory
/'

" Data

Address
"­

Data'"Processor Memory
L -""
"'­ '" Data

Address
-"" ,

Data
MemoryL -""

"-	 /'

Data

(c)

Figure 4.8(c) 	 The bus structure for the archite.cture with one program memory and two data
memories

the Harvar.d architecture, is shown in Figure 4.8(b). In fact, even this may not·
solve the problem completely. For example, the m.ultiplication op~ration °re­

. quires two operands to be fetched from the memory; one may be a qata.sam­
pIe and the other, a coefficient. Even with separate memori.es fOl'.the'program
and data, it is not possible to fetch the two operands required f9r th. multi­
plication along with the program instruction, and the processor has to 'wait for
the second operand. It would therefore be required to provide dual data
memories (for data and filter coefficients, for example) in addition to' program
memory and provide each with a separate bus for the processor to access
them simultaneously. Figure 4.8(c) shows a possible bus structure of this type.
As we can see, this will require a lot of hardware and interconnections to im­
plement, thereby increasing'the cost; Therefore,'a compromise solution needs
to be found to strike a balance between the hardware complexity and speed
requirement of the multiplication operation, which, is the most critical DSP
operation in terms of the overall speed of algorithm implementation:

http:memori.es

4.4 Bus Architecture and Memo.ry 79

4.4. 1 On~Chip Memory

A co.mpro.mise between having multiple memo.ries with individual buses fo.r
each and having fewer memo.ries and buses is to. provide. some o.f the memo.­
ries alo.ng with their buses o.n~chip. Even tho.ugh the pro.cessor has to. make
simultaneo.us accesses to all the memo.ries, o.nly so.me o.fthese are to. the mem­
o.ries external to the DSP, thereby reducing the interco.nnectio.n requirements
to' external devices. '

On-chip. memo.ries help in running DSP algo.rithms faster than when the
memo.ries' are lo.cated o.ff-chip. This is because o.n-chip memo.ries can have
dedicated address and data buses unlike o.ff-chip memo.ries, who.se buses
are o.ften multiplexed to. reduce the pin count o.n the DSP. There are several
issues related to. the design o.f o.n-chip memo.ries; two o.f these are co.nsidered
next.

Speed

The o.n-chip memo.ries sho.uld match the speeds, o.f the ALU o.peratio.ns in
o.rder to. maintain the single-cycle instructio.n executio.n requirement o.f the
DSP. Ho.wever, this is no.t a serio.us co.nstraint because executio.n times o.f
co.mplex arithmetic o.peratio.ns such as multiplicatio.n are generally Io.nger
than memo.ry access times. In fact, very o.ften, mo.re memo.ry accesses than
o.ne are po.ssible within a single instructio.n cycle, as will be explained later.

Size

Size is a majo.r co.nstraint fo.r on-chip memo.ries. In a given area o.f a DSP chip
as many DSP functio.ns as' po.ssible must be packed in o.rder to. get the best
Po.ssible perfo.rmance. On the o.ther hand, the mo.re area occupied by the o.n- .
chip memo.ry. the less will be the area available fo.r ~e o.ther func:tio.ns.The
sizes o.f the o.n-chip memo.ries are bptimized taking into. acco.unt the speed
advantage, but witho.ut co.mpro.mising any essential features required o.n the
DSP.

4.4.2 Organization of the On~Chip Memory

Ideally, the entire memo.ryrequired to. implement a DSP algo.rithm sho.uld re­
side o.n-chip. This means, that the o.n-chip memo.ry sho.uld be partitio.ned into.
pro.gram and data spaces. If necessary, the data memo.ry should be further
divided into. separate areas for sto.ring data samples, co.efficients, and results.
This way, an instructio.n with two. o.perands can be fetched and executed and
the result saved all in a single cycle. Writing the pro.gram and data intothe
o.n-chip memo.ries is done befo.re'the program executio.n.. Likewise, the results

http:witho.ut
http:functio.ns
http:o.peratio.ns
http:serio.us
http:o.peratio.ns
http:simultaneo.us

80 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices

are read off the on-chip memory after the program execution is completed.
However, . this scheme is not practical because the different memory blocks
and their buses take an enormous amount of chip area, thereby limiting the
scope of other functions that are to be provided on the chip. There are several
other ways in which the on-chip memory can be organized efficiently and ina
cost-effective manner.

1. 	Many DSP algorithms require repeated executions of a single instruction
such as the multiply and accumulate or a loop consisting of a few in­
structions. The result is normally saved only after the repetitions are
completed. It is, therefore, sufficient to provide only two blocks of on­
chip memories to hold the operands required for the execution of the
instructions. The instruction or instructions required to carry out the
repetitive calculations can reside in the external memory and, once
fetched, can be repetitively used by keeping them in an . instruction
cache. Since the result is to be saved less frequently, there is no need to
provide a separate memory for this purpose.

2. 	On-chip memories can be designed such that they can be accessed
more than once in an instruction cycle. This way, fewer memory blocks
can serve to hold the program, the operands, and results. This means
that their access times should be sufficiently small to match the tim­
ing requirements of single-cycle instruction execution. Considering the
advances made·in memory design technology, it is possible to integrate
dual-access on-chip memories on today's commercial DSPs. For exam­
ple, let us assume that there are two on-chip memories and two buses in
a DSP device. If each of these memories is fast enough to be accessed
twice in each instruction cycle, execution of a multiply instruction that
includes an instruction fetch, two operand fetches, and a memory access
to save the result can be completed in one clock cycle.

3. 	On-chip memories can be configured for different uses at different times
. 	 dependiI1.g on the requirements. For example, if a DSP has t\vo blocks of

on-chip memory, ordinarily one of them will be configured ~ program
memory and the other as the data memory. However, for exe~ution of
instructions, which requires two operands to be fetched simultaneously,
they can both be configured as data memories. The instruction itself
can be fetched from an external memory or it can reside' in an on-chip
cache. .

In addition to program memory and data memories, DSP architecture
should provide for a separate stack that can be directly accessed by the pro­

.. gram counter. This provision can considerably reduce the overhea:ds during
, the subroutine an~ interrupt calls and returns. If the cost becomes an issue in

the I:hoice of access times required for memories in a multiple memory sys­
tem, it is preferable to provide faster memories for those segments that are
more frequently accessed than the others.

4.5 Data Addressing Capabilities 81

4.5 Data Addressing Capabilities

The"data processed by a digital signal-processing scheme typically consist of
signal samples and filter coefficients. An efficient way of accessing data while
performing computations can go a long way in the overall performance of an
implementation. The provision of flexibility in accessing data helps in writing
efficient programs for various applications. The data addressing capability -of a
programmable DSP device is provided by means of its addressing modes. The
addressing modes that can enhance DSP implementations consist of immedi­
ate,register, direct, and indirect addressing modes. We now discuss each of
these modes. These modes are summarized in Table 4.1.

Table 4.1 Summary of DSP Addressing Modes

Addressing Sample
Mode Operand Format Operation

Immediate Immediate value ADD#imm #imm+A A

Register Register contents ADD reg reg + A A

Direct Me.mory address contents ADDmem mem+A A

Indirect Memory contents with ADD *addrreg *addrreg+A A
address in the register

Notations used in describing the operation in the table:

#imm = value represented by imm,

reg = contents of register reg.

mem contents of memory location with address mem, and

*addrreg = contents of memory location whose address is the contepts of address

register addrreg,

..... represents the transfer from left to right.

4.5.1 Immediate Addressing Mode

The capability to include data as part of the instruction is provided by the
immediate addressing mode. For example; a DSP processor may allow the
programmer to write the instruction

ADD #imm

to ,add the value represented by imm to the accumulator register, A. In other
words, the operation

#imm+A -7 A

is implemented. In such' an addressing mode data has to be a fixed number
known at the time of writing instructions. Filter coefficients are examples of
this kind of data.

82 .Chapter 4 Architectures for Programmable Digital Signal~Processing Devices

4.5.2 Register Addressing Mode'

In the register addressing mode a processor register provides the operand.
Using this addressing mode the DSP processor may provide an instruction

ADD reg

to implement

reg+A -+ A

4.5.3 . Direct Addressing Mode

In the direct addressing mode a memory operand is specified by providing its
memory address. For instance a DSP processor may allow an instructio~

,ADD mem

to implement

mem +'A -+ A

A signal sample stored in a memory location can be accessed using direct
addressing mode. This mode. however. requires an explicit knoWledg~ of the
memory address. memo .

4.5.4 Indirect Addressing Mode

In the indirect addressing mode an operand is accessed usin~ a pointer. A
pointer is typically a z:egister that holds the address of.the location where the
operand resides. For example. to add to the accumulator. A. the content of the
memory location whose address is held in addrreg.the following'Instruction is
implemented:

ADD *addrreg

which means

*addrreg +A -+A

In order to use this. addressing mode; addrreg needs to be loaded before the
use. Any memory location can be accessed by simply changing the register
contents.

. The indirect addressing mode caD. be enhanced by providing an automatic
capability to manipulate the pointer register just before (pre) or just· after
(post) the use. The pointer register may be incremented or decremented. It

-.--~-.---

4.5 Data Addressing Capabilities 83

may also be possible to add or subtract the contents ofanother register (offset
register) provided in the architecture. This leads to the following enhanced
indirect addressing modes:

PosCincrement addressing mode,

PosCdecrement addressing mode,

Pre_increment addressing mode,

Pre_decrement addressing mode,

PosCoffseCadd addressing mode,

PosCoffsecsubtract addressing mode,

Pre_offsecadd addressing mode, and

Pre_offsecsubtract addressing mode.

These enhanced indirect addressing modes, !!r~ ~~~m~rized in Table 4.2.

Table 4.~ Enhancements to Indirect Addressing Mode

Addressing Mode Sample Format Operation

PosUncrement ADD *addrreg+

PosCdecrement ADD *addrreg-,

: Pre_increment ADD +*addrreg

Pre_decrement ADD *addrreg

Poscadd_offset ADD *addrreg, offsetreg+

A+­

A +*addrreg,

addrreg+­

addrreg+ 1

A+-·

A +*addrreg,

addrreg+- .

addrreg- 1

addrreg+­

addrreg+ 1,

A+­

A +*addrreg

addrreg+­

addrreg- i,

A+­

A+ *addrreg

. A+­

A + *addrreg,

addrreg +- addrreg + offsetreg

(continued)

84 Chapter 4 . Architectures for Programmable Digital Signal-Processing Devices

Table 4.2 Ccmtinued

Addressing Mode Sample Format 	 Operation

PoscsubtracCoffset ADD *addrreg, ojJsetreg- A<­

A + *addrreg,

addrreg <-.

addrreg - offsetreg

Pre_add_ojJset ADD offsetreg+, *addrreg 	 addrreg+­

addrreg + offsetreg,

A<­

A +*addrreg

Pre,-sJbtraccojJset ADD ojJsetreg-, *addrreg addrreg<­

addrreg offsetreg,

A<­

A +*addrieg

In order to realize the indirect addressing mode and its enhanced versions
in a DSP architecture, additional hardware operating in conjunction with its
addressing unit is required. For example to provide pre_offsecadd addressing
mode, an a3der· and· another register to hold the offset are ne.eded. It also
means extra time for operand accessing or, alternatively, the need for com­
puting the operand address using a dedicated address arithmetic unit working
in parallel with the main arithmetic unit.

I> Example 4.9 What are the memory addresses of the operands in each of the following
cases of indirect addressing modes? In each case, what will be the content of
the addrreg after the memory access? Assume that the initial contents of the
addrreg and the·0ffsetreg are 0200h and OOlOh, respectively ..

a. ADD *addrreg-.

b. ADD+ *addrreg

Table 4.3 Solution fol' Example 4.9

lnstruction
Addressing
Mode Operand Address

Contents of addrreg
after the Memory
Access

a PosCdecrement 0200h 0200h- Ih =OlFFh

b Pre...:.increment 0200h + Ih = 0201h 0201h

d Pre_add_offset 0200h + lOh 0210h 0210h

d PosCsubtracCoffset 0200h 0200h ­ lOh = OlFOh

4.5 Data Addressing Capabilities 85

c. ADD offsetreg+, *addrreg

d. ADD *addrreg, offsetreg-

Solution The sohltion is given in Table 4.3.

4.5.5 Special Addressing Modes

In addition to the addressing modes mentioned earlier, special addressing
modes are provided in the architecture of a DSP to implement real-time signal
processing and to compute DFT using FFT algorithms. Real-time signal proc­
essing is enhanced by the provision ofa circular buffer and the addressing
mode that goes with it. The FFT implementation requires data to be accessed
,in a nonsequential, yet regular, manner. The data for FFT is accessed by what
is called as bit-reversed index. A bit-reversed addr~ssing mode is generally
provided in the architecture to support FFT implementations. Similarly, to
proce!;stwo-dimensional data, it will be .advantageous to provide a special
addressing mode that can help access data· organized in a matrix form. Now
we consider two of these special addressing modes.

Circular Addressing Mode

The provision of a circular buffer allows one to handle a continuous' stream of
incoming data samples. In acircular buffer, successive data samples are stored
in sequential buffer locations until the end of the buffer is reached. After
reaching the end we start all over from the beginning, of the buffer. This pro­
cess can go on forever as long as the data samples get processed in a timely

. manner at a rate faster than the incoming data. To access a data sample from a
circular buffer, a circular addressing mode is of great help. The implementation
of such an addressing mode in hardware requires three registers: a pointer reg­
ister (PNTR) to keep track of current address, a start, address register (SAR) to
hold the start address of the buffer, and an end address register (EAR) to hold
the end address of the buffer. The pointer register should have the capability of
getting incr~mented/decremented. Different forms of the indirect addressing
mode for the pointer register are required in order to update the pointer for
different applications. The pointer~updating algorithm is given in Figure 4.9.

The different cases that are encountered during the updating process of the
pointer are shown in Figure 4.10. These cases are:

1. SAR < EAR, and updated PNTR > EAR

2. SAR < EAR, and updated PNTR < SAR

3. SAR > EAR, and updated PNTR > SAR

4. SAR > EAR, and updated PNTR < EAR

The buffer size in the first two cases = (EAR - SAR + 1) and in the last two it
is = (SAR - EAR + 1).

86 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices

; Pointer Updating 	Algorithm for the Circular Addressing Mode

Updated PNTR +- PNTR ± increment
If SAR < EAR

and .if Updated PNTR > .EAR, then
New PNTR +- Updated PNTR - Buffer size

and if Updated PNTR < SAR, then
New PNTR +- UpdatedPNTR,+ Buffer size

If SAR > EAR
and if Updated PNTR'> SAR. then

NewPNTR +-UpdatedPNTR - ·Buffer size
and if ,Updated PNTR < EAR, then

, New PNTR +- UpdatedPNTR + Buffer si ze
Else

New PNTR +-Updated PNTR

Figure 4.9 	 Register pointer updating algorithm for circular buffer addressing mode.
SAR = start address register contents, EAR = end address register contents,
PNTR = pointer' , '

[> Example 4.10 	 A DSP has a circular buffer with the start and the end addresses as 0200h and
020Fh, respectively. What woUld be the new values of the address pointer of
the buffer if, in the course of address computation, it gets updated to (a)
'0212h, (b) OlFCh?

Solution

The bUffer length = 020Fh - 0200h + 1 = 10h

, ,a. The new value of the pointer is updated value - buffer length, i.e.,
0212h-0010h 0202h.

b. The 	 new value of the pointer is updated value + buffer length, i.e"
OlFCh + 0010h .-:- 020Ch.

[> Example 4.11

"Solution

Repeat the pr~blem of Example 4.10 if the start and end addresses of the cir­
cular buffer are 0210h and 0201h, respectively. .

a. 	The new value of the pointer is the updated value - buffer length, i.e.,
0212h - 0010h = 0202h.

b. The new value of the ,pointer is the updated value + buffer length, i.e.,
OlFCh + OOloh = 020Ch.

Note that these values are the same as those in the previous example. This
shows th'at in a '-circular buffer, the address pointer wraps around to point to
an address inside the buffer, irrespective of whether the buffer start address is
hi~er or the end address is higher.

-----~.~-.--

4.5 bata Addressing C~pabilities 87

Low address

SAR .. ,

NewPNTR ... 1 J"Equal
EAR ...1 -1/

Updated PNTR ..'nnnmj}
High address

Case 1: SAR < EAR, and Updated PNTR > EAR

Low address

High-address

Case. 2: _SAR < EAR, and Updated PNTR < SAR

Figure 4.10 	 Different cases that arise in updating the pointer in circular buffer addressing
mode (continued)

Bit-Reversed Addressing Mode

Special data access capability is needed in the FFT algorithm implementation.
In the algorithm called decimation in time (DIT) FFT, the natnrally ordered
data needs to be accessed according to the indices, as shown in Table 4.4 for

88 Chapter 4 Architectures forProgrammal;>le Digital Signal-Processing Devices

EAR

NewPNTR

SAR

Updated PNTR

Low address

"I :}".. '
Equal

... I .
I } /

..

High address

Case 3: SAR > EAR, and Updated PNTR > SAR

LoW address

Updated PNTR "---------, }
EAR " Equal...

NewPNTR .. I 1··/
}

SAR ..
Hi~address

Case 4: SAR > EAR, and Updated PNTR < EAR

. figure 4.10 Contin'ued

an 8-point FFT. That is. in the case of an 8-point FFT. the input data x{O).
x(I).x(2),x(3). x(4). x(S), x(6). and x(7) need to be accessed in the order x(O),
x(4),x(2), x(6). x(l), xes). x(S), and x(7). The interesting point is that the
indices describing the order of data. access can be obtained as follows: start

4.5 Data Addressing Capabilities 89

Table 4.4 Index Computation Using Bit-Reversed Addressing Mode for an 8-point FFT

Input Index Output Index
(natural order) (bit-reversed order)

000=0 	 000= 0

001 = 1 	 100 4

010 2 	 010 = 2

011 = 3 	 110=6

100= 4 	 001

101 = 5 101 = 5

110 = 6 011 3

III 7 111 = 7

with index 0, obtain each current index by adding (in a special way) half the
size of the FFT to th~ corresponding previous index, i.e.,

Current ,index = previous index + B(l/2(FFT size» (4.8)

The addition J;towever, is different in the sense that during addition the carry
must propagate from the most significant to the least significant bit.

The reverse-carry-add operation can be provided in: the architecture to
implement this special addressing mode. The architecture will require a regis­
ter to keep track of the index at any time in addition to the capability to
propagate the carry in the reverse direction during the add operation in order
to generate the next index to be used to access data. To provide this capability
in parallel with the instruction execution, a special address generation unit is
employed.

t>Example 4.12 	 Compute the sequence in which .the input data should be ordered for a 16­
point DIT FFT.

Solution 	 Assuming that the first sample .is located at address O,the next sample should
be located at address 0+ B(length of FFT/2) = 0 +8 = 8. This address can be
arrived at by carrying out binary addition with reverse carry propagation as
follows:.

Initial address in binary = 0000

Half the length of the 'FFT in binary = 1000

Next address (add with reverse carry propagation) = 1000

To compute the address of the third sample, repeat the operation.

Initial address in. binary 1000

90 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices

Half the length of the FFT in binary = 1000

Next address '(add with :reverse carry propagation) 0100

The process is repeated until the addresses of all the 16 samples are computed.
Table 4.5 gives the results.

Table 4.5 Solution for Example 4.12

Sample Binary Hexa-decimal

Number Address Address

0000 0

2 1000 8

3 0100 4

4 1100 C

5 0010 2

6 1010 A

7 0119 6

8 1110 E

9 0001

10 1001 9

11 0101 5

12 1101 D

13 ()Oll 3

14 1011 B

15 0111 7

16 1111 F

4.6 Address Generation Unit

The function of the address generation unit is to provide the addresses of the
operands required. to carry out the DSP operations. Since many instructions,
such as the mUltiply instruction, require more than one operand for their ex­
ecution, the address generation unit should work fast enough to provide the
addresses within the time constraints imposed by the instruction execution
requirements. _ _

Further, in a DSP implementation, the address generation unit may be
required to perform some computation of its own in order to arrive at the
operand addresses. This is because of the need for the various enhancements

4.7 Programmability and Program Execution . 91

to the indirect addressing mode as well as some special addressing modes;
such as the circular addressing mode and the bit-reversed addressing mode.
These special f.eatures were discussed in Section 4.5. In order to carry out the
computations required for the specialized addressing modes the address gen­
eration unit in a DSP implementation is provided with a separate arithmetic
unit of its own. This way, address computation overhead is removed from the
main ALU, thereby allowing ino perform more efficiently.

Address generation typically involves one of the following operations:

l. 	Getting a new value from an immediate operand, a register, or a mem­
ory location.

2. 	 Incrementing or decrementing the current address.

3. 	Adding or subtracting an offset to the current address.

4. 	Addmg or subtracting ail offset to the current address, comparing the
new address with the limits defined for a circular addressing mode, and
generating a new address as per the circular addressing mode algorithm.

5. 	 Generating a new address from the current address by applying the bit­
reversed addressing mode algorithm.

The hardware necessary to carry out the various operations listed above
may consist of the following: an ALU; registers to store the current value, the
offset, and the new value; registers to store the limits of the circular buffer;
logic to implement the circular addressing mode; and the logic to implement
the bit-reversed addressing mode. The block diagram of a typical addressing
unit is shown in Figure 4.11. ,

4.7 Programmability and Program Execution

A programmable DSP device needs to provide programming capability similar
to that of a microprocessor. It should be possible to write programs involving
branching, loops, and subroutines. The branching capability is needed in
order to alter conditionally or unconditionally the normal execution sequence.
The looping operation. is desirable in order to repeat a'section of the program
the desired number of times. The subroutine handling instructions provide
the capability to develop'structured software.

The imple~entation of repeat capability should be hardware based so that
it can be programmed with minimal or zero overhead. For instance, a counter
is needed to keep track of the number of times the execution of a block of
iDstructions remains to be repeated. A dedicated register for this purpose can
enhance the performance. Repeat is an operation that is needed in the imple­
mentation of many PSP algorithms, and hence its hardware implementation
has a direct bearing on the overall performance of aDSP scheme.

92 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices·

Circular Buffer

Length
Offset

1

FFr
Length

Mux

Add/Sub

Next Address .Reg

Next Address

Figure 4~11 Block diagram of an address generation unit

The subroutine implementation requires saving the return address in the
stack. ln a general-purpose microprocessor, a part of the m~ory is used to
implement the stack. This means that to save the return address as well as
to restore it on return, the processor requires to carry out memory read and
write operations using the system data bus. These operations add to the
overhead and make the overall program execution slow, thereby lowering the
performance. For a DSP device, it is desirable that a last-in-fitst-out (LIFO)

. buffer directly interfaces to the program counter (instruction pointer) to save
the re~rn address. This approach avoids th~ use of the system bus for ac­
cessing the stack and thus speeds up the subroutine. branching as well as its
retUrn. .

4.7 Programmability and Program Execution. 93

4.7.1 Program Control

Like microproces$ors, a DSP requires a control unit, which provides the nec­
essary control and timing signals for proper execution of instructions. In
microprocessors, the control unit is generally implemented by means. of a
microcoded sequencer. Each instruction of the microprocessor is broken
down into several microinstructions and stored in a microstore as a micro­
code. Whenever one of the instructions is to be executed, the corresponding
microcode is called from the mi!::rostore and executed, in a manner very sim­
ilar to the execution of subroutines in a program. This type of control unit is
easy to design and implement and uses less hardware. However, it is not very
fast since execution of each instruction requires several accesses to the mi­
crostore. For a DSP, on the other hand, the speed of execution of instructions
is a critical issue. For this reason the design of various building blocks is
optimized for speed. In a DSP, the microcoded control unit is replaced by a
hardwired design. In a hardwired design, the control unit is designed as a
single, comprehensive, hardware unit taking into account the complete in­
struction set of the DSP. Although the hardware complexity is high and the
design· is not easy to change to incorporate additional features, this works
much faster compared to the microcoded design and reduces the overhead for
the instruction execution time.

4.7.2 Program Sequencer

The program sequencer, which is a part of the control unit, generates instruc­
tion addresses in the sequence needed to access instructions. Normally, in­
structions are executed in the. orde.r in which they are stored in the memory.
However, there are several exceptions to this normal flow. Examples are sub­
routines, loops, and branching. The program sequencer hardware computes

. the instruction address under various conditions.
After fetching each instruction from the program memory, the sequencer

generates the address from which the. next instruction is to be fetched. The
next address is from one of the following sources:

1. 	The program counter, which is incremented after each instruction fetch.

2. 	The· instruction register, which holds the address of the instruction in
·branching, looping, and· subroutine calls.

3. 	The interrupt vector table, in the case of interrupt service routines.

4. 	The stack, which holds the return addresses in the case of return from
subroutines, return from interrupt service routines, and end of loops.

Figure 4.12 shows the block diagram ·of a program sequencer. The program
sequencer, in effect, acts as a multiplexer, which selects the address ofthe next

94 Chapter -'I Architectures for Programmable Digital Signal-Processing Devices

Address. . RET ------II>­

Stack
IRET ------II>­

AddressInterrupt
Interrupt Vector- Table

AddressJMP ,------II>­
Instruction '

CALL ------II>­

PC IAddress
~Increment~I

"

Multiplexer

,

Next Address

Figure 4.12 A conceptual diagram of a program sequencer

instruction to be obtained from one of the sources listed above. In order to
carry out this task, several hardware ,features are incorporated in the program
sequencer. The program counter has to be updated after every fetch. Circuitry
is provided for this purpose. Counters are provided to hold the counts in the
case of loop and repeat instructions. Stacks push: the return addresses for
subroutines and interrupt service routines and while executing loops and re­
peat instructions. The program sequencer also requires a logic block to test
conditions under which jump and loop instructions are executed as well as to

4.8 Speed Issues 95

determine when· to terminate loop and repeat instructions. This logic, called
the condition logic, tests variQusarithmetic conditions by means of staWs flags
to decide if conditional jump and loop instructio.n& are to be executed: This
logic also monitors repeat and loop counters to determine when these have to
be terminated to return to the normal program flow.

4.8 Speed Issues

Fast execution of algorithms is an essential requirement of Ii digital signal­
processing architecture. In order to meet this requirement, DSP architecture
must include features that facilitate high speed of operation and large through­
puts. Many of these features are possible due to advances in VLSI technology
arid design innovations. In this section, we will discuss some of these features

. and see how they can increase the eXecution speed of the DSP architecture.
We shall 'also discuss certain trade-offs between speed and performance in
relation to some of these features.

4:8.1 Hardware Architecture

Functions such as multiplication, scaling, loops . and repeats, and special
addressing modes are essential for signal-processing algorithms. The archi­
tectures designed 'tor the signal-processing applications should implement
these functions in the quickest possible time. This is achieved by hardware
units, which are specially designed to implement these functions. For example,
conventional microprocessors implement' the multiplication by means of a
microprogram (microcode) using the well-known shift and add algorithm.
This approach takes a large number of clock cycles to implement. In order
to increase the speed of the operations considerably, parallel multipliers have
been used to carry out the entire multiplication in a single clock cycle. Thanks

. to breakthroughs. in VLSI technology, this is possible today. Similar hardware
. solutions have also been found to implement the other functions mentioned

eatlier to reduce overheads and to increase the speed. Such methods typically
replace the slow microprogrammed solutions used in conventional micro­
processors.

Harvard architecture, which separates the ptogramand data memories with
separate buses for each, increases the speed of execution of programs consid~
erably. Dual data memories with individual buses for each help in accessing
dual operands simultaneously:

Multiple external memories require multiple buses external to the DSP. In
addition to being expensive, external buses are slow for program access and
execution. By providing oncchip memories and an instruction cache,program

96 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices

execution is speeded up considerably. Further, these on-chip memories can
also be accessed twice in a clock cycle, thereby reducing the number of sepa­
rate memories and buses required in a device.

In addition to the hardware issues mentioried earlier, there are many tech­
niques used in nsp architectures tei increase their spee4 of operation. We shall
consider two of these techniques: parallelism and pipelining.

4.8.2 Parallelism

A very major requirement to achieve high speed of operation fu DSP archi­
tecture is the provision of parallelism. Parallelism may mean. several things.
One is the provision of functional urrits, which may operate in parallel and
increase the throughput. For example, instead of the same arithmetic unit
being used to do computations on data and address, a separate address arith­
metic unit can be pz:ovided to take care of address computations. This frees
up the main arithmetic unit to concentrate on data computations alone and
thereby increases the throughput. Another example, whichw.as discussed ear:­
lier; is the provision of multiple memories and multiple buses. to fetch an
instruction and operands simultaneously. In short, there are many functional
blocks 6perating simultaneously for each of the most commonly used DSP
operations, , such as add, multiply, shift, etc. This way, algorithms can perform
more than one operation at the'same time, such as adding while carrying out a
multiply, shifting:while reading data, from memory, etc. .

Availability of multiple functional units can increase the speed of the DSP
architectures. They should be exploited to their full potential by structuring
the instructions to carry out the required operations in parallel. This requires
complex hardware to control these units, and the cqntroller is hardwired
rather .than microprogrammed in order to ensure high speed. The architecture
should be such that instructions and data required for a computation are
fetched from the memory simultaneously.

An ideal parallelism in the DSP architecture with regard to ihe multiply
and acclUllulate operation, which is the most used operation in DSP im­
plementations, should be able to accomplish the following operations in a
single clock cycle:

• 	 Fetch instructions and multiple data required for the computation

• 	 Shift data as they are fetched in order to accomplish scaling

• 	 Carry out a multiplication operation on the fetched data

• 	 Add the product to the previously computed result in the accumulator

• 	 Save the accumulator contents in the memory storage, if required, and

• 	 Compute new addresses for' the instruction and data required for the '
next operation

http:whichw.as

4.8 Speed Issues 97

4.8.3 Pipelining

An architectural feature to increase the speed of the DSP algorithm is pipe­
lining. In a pipelined architecture, an instruction to be executed is 'broken into
a number of steps. A separate unit of the architecture performs each of these
steps. When the first of these units performs the first step on the current in­
struction, the second unit will be performing the second step on the previous
instruction, the third unit will be performing the third step on the instruction
prior to that, etc. If p steps were required to complete the execution of each
instruction, it would take p units of time for the complete execution of each
instruction. However, since all the units will work all the time, one output will
flow out of the architecture at the end of each time unit, and the throughput
can be maintained as one instruction per unit time. A problem with this
approach is dividing each instruction into steps taking equal amounts of time
trr perform and designing the architectural units accordingly. In practice,
however, this may not be entirely possible and the slowest unit decides the
throughput. A second problem is the extra time required at the start of algo­
rithm execution, as the pipeline has to be filled before the result of the first
instruction can start to flow out. This initial delay in units of time, called the
pipeline latency, is related to the number of units in the pipeline. Likewise,
when there is a change in the instruction sequence, as in the case of a branch
or a loop, the pipeline needs to be c1e,aredbefore the steps of the new instruc­
tion can be loaded into the pipeline, thereby causing a delay. This condition
can, however, be avoided, at the cost of additional hardware to anticipate the
branch instruction ahead of time and not filling, the pipeline beyond the
branch instruction. As an example, let us assume that the execution of an in­
struction can be broken into five steps: instruction fetch, instruction decode,
operand fetch, execute, and save the result. Figure 4.13 shows how a pipelined

Time Slot Step 1 Step 2 Step 3 Step 4 Step 5 Result

to . Insf1

t1 Inst 2 Inst 1

t2 Inst 3 Inst 2 Inst 1

t3 Inst4 Inst 3 Inst 2 Inst 1

. t4 Inst 5 Inst 4 Inst 3 Inst 2 Inst 1 Inst 1 complete

ts Inst 6 Inst 5 Inst 4 Inst 3 Inst 2 Inst 2 complete

• • • • • • •

Figure 4.13 Pipelining for speeding up the execution of an instruction

98 Chapter4 Architectures for Programmable Digital Signal-Processing Devices

processor will handle this. For the sake of simplidtywe will assume that all
the steps take equal amounts of time.

As we can· see from the figure, the output corresponding to the first in­
struction is available after 5 units of time. However, once the resUlt starts to
come out, we get an output after each unit of time. In other words, the steady­
state throughput of the system is one instruction per unit time.

4.8.4 System Level Paralielisman,dPipelining

The panillelism and·pipelining concepts explained in the last two subsections
can be extended to the implementation .of DSP . algorithms. Consider the ex-.
ample of an 8-tap (8 coefficic:nts) FIR ,filter given by

1

y(n) L h(i)x(n - i) (4.9)
1=0

The filter can be implemented in many ways depending on the number of
multipliers and· accumUlators available~ Let us look a1 some of these im­
plementations.

Implementation Using a Single MAC Unit

If only one multiplier and accumulator· is available, it must be used 8 times to .
compute the eight product terms in Eq. 4.9 and find thdr sum. Figure 4.14(a)
shows such an implementation. Each input sample is delayed from the previ­
ous sample by 8T, where T is the time taken by the multiplier and accumula­
tor to compute one product term and add it to the previC!usly accumulated
sum in the accumulator. Input samples and the filter coefficients are fed to the
multiplier through multiplexers, which are controlled such that the correct
combination of a sample and the corresponding filter coefficient are fed to th_e
multiplier at a given time. As each product term is generated, it is added to
the previously accumulated sum in the MAC unit After·alI the eight product
terms are accumulated, the MAC contents are available as the output. Output
y(n) is available 8T units of time after x(n) is made available to the filter.
At this time, a new sample x(n + 1) is applied to the filter. The filter then
uses eight samples, namely, x(n+ 1), x(n), x(n 1), ... , x('n - 6) to compute
y(n + 1) after another 8T units of time. Thus, this implementation can take in

. a fresh input sample once every 8 T units of time and generate an output
sample at thesarne rate. In other words, the maximum sampling rate that
this filter implementation can handle is lI8T.

x(n)

Multiplexer

1------,---.... y(n)

Multiplexer

h(O) h(l) h(2)h(3)h(4)h(5)hl6) 1J.(7)

(a)

Figure 4.14(a) . Single MAC implementation of an 8-tap FIR filter

MAC
(b)

. Figure 4.14(b) Pipelinedimplementation of an 8-tap FIR filter using eight MACs

100 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices

h(O}. h(l) h(2) h(3)

Multiplexer..

Multiplexer

Multiplexer

Multiplexer

. h(7) h(6) h(5) h(4)

(e)

I---..~y(n)

Figure 4.14(c) Parallel implementation of an 8-tapFIR filter using two MAC units

4.8 Speed Issues 101

Pipelined Implementation Using Eight Multipliers and Eight
Accumulators

The implementation of the FIR filter of Eq. 4.9 can be speeded up if more
multipliers and accumulators are available. Let us assume that there are eight.
multipliers and eight accumulators connected in a pipelined structure, as
shown in Figure 4.14(b). Each multiplier computes one product term and
passes it on to the corresponding accumulator, which in turn adds it to the
summation passed on from the previous accumulator. Since all the multipliers
and accumulators work all the time, a new output sample is generated once
every T units of time. This is the time required by the multiplier and accu­
mulator to compute one product term and add it to the sum passed on from
the previous stage of the pipeline;This implementation can take in a new in­
put sample once every T units of time and generate an output sample at the
same rate. In other words, this filter implementation works S times faster than

. the simple one MAC implementation.

Parallel Implementation Using Two MAC Units

A third implementation of the FIR filter of Eq. 4.9 is shown in Figure 4.14(c).
This implementation uses two MAC units and an adder at the output. Each
MAC computes four of the eight product terms in Eq. 4.9. Input samples and
the filter coefficients are fed to the MAGs using multiplexers that are con­
trolled such that correct combinations of samples and the corresponding filter
cqefficients are fed to the two MACs at any given time. If T tin1e units are
required to compute one pair of products and add them to the previously
accumulated sum in the MAC units, it will require 4T units of time to generate
the final output by adding the outputs of the two MACs. At this time, a new
input sample can be applied to the filter for computation o(the next out­
put sample: The speed of thi~ implementation is 2 times that of one MAC·
implementation of Figure 4.14(a) and one fourth of that of the pipelined eight­
multiplier. eight-accumulator implementation of Figure 4.l4(b). The maxi~
mum rate at which input samples can be applied to this filter implementation
is 2 times that of the first implementation and one fourth that of the second.

Table 4.6 Performance Summary of Different Implementations of an 8 -tap FIR Filter

Type of Maximum
Implementation Sample Rilte Maximum Throughput

One MAC lI8T One sample in· 8T units of time

Pipelined (8 Multipliers liT One sample in T units of time
and 8 Adders) .

Two MAC 1I4T One sample in 4T units of time

T MAC time

102 Chapter 4 ~Architectures for Programmable Digital Signal-Processing Devices

Table 4.6 summarizes the performance of the three implementations de~
scribed above. The example shows that it is possible to achieve higher-speed
implementation by the use of parallelism andlor pipelining. This, however,
incteases the hardware complexity.

4.9 Features for External Interfacing

It is important for a DSP device to be able to communicate with the outside
world. The outside world provides the signal to be processed and receives the
processed signal. Therefore, most of the peripherals used with conventional
microprocessors are also needed in a DSP system. These peripherals include
interfaces for interrupts, direct memory access, serial I/O, and parallel I/O. In
addition, since DSP is a digital device that is expected to process analog sig­
nals, conversions from analog-to-digital and digital-to-analog representations
need to be carried out outside the device. From signal interfacing viewpoint, a
DSP device should be capable of handling commonly available serial and par­
allel signal converters. All these features require the availability of appropriate
address, data, and control signals to set up interfaces with the peripherals. The
inclusion of a timer in the architecture is also very desirable to implement
events at regular intervals, such as periodically initiating an AID converter to
start the conversion. A timer should be able to interrupt the processor to get
its attention when needed so that the data acquisition can go on in the back­
ground simultaneously with the execution of the signal-processing program.

4. 1 0 Summary

In this chapter, architectural features of programmable DSP devices have been
examined based on the most frequently used DSP operations. Computational
building blocks and other functional units have been described along with
examples of i11;lplementations. Bus architecture and memory organization are
explained to show how they help in realizing fast implementations of DSP
algorithms. Trade-off' between complexity and speed has also been discussed
to show how the architectural features of programmable DSP devices can be
optimized fot efficient implementations. ,

In summary, the following is a list of architectural features of a program­
mable DSP device that should be evaluated before implementing an algorithm:

• 	 Data representation format: fixed-point, floating-point formats and data
word length for accuracy and dynamic range.

• 	 Computational capability: an ALU with. a hardware multiplier and
shifters for scaling.

References 103

• 	 Harvard architecture: provision of separate D;lemories for program arid
data to fetch instructions and data simultaneously. .

• 	 On-chip memories: provision of on-chip program and data memories to
avoid bus contention and to speed up program execution.

• 	 Addressing modes: data addressing capabilities including indirect, in­
dexed, circular buffer, and bit-reversed addressing modes.

• 	 Programmability: programming capabilities including subroutines,
branching, loops and repeats.

• 	 Hardwired control: fast implementation of sequencing and control for
single-cycle instruction execution.

• 	 Parallelism: multiple functional units for parallel implementation of
different functions such as simultaneous execution of an arithmetic
operation and an address computation.

• 	 Pipelining: simultaneous operation of different stages of an instruction
execution by splitting it into steps handled by individually designed
units.

• 	 Interfacing: provision to interface serial devices such as AID and D/ A
converters; parallel I/O, interrupt, and direct memory access.

References

1. 	 Allen, J. "Computer Architecture for Digital Signal Processing," IEEE Pro­
ceedings, Vol. 73, pp. 852-873, May 1985. .

2. 	 Lee, E. A. "Programmable DSP Architectures: Part I," IEEE ASSP Magazine,
pp. 4-19, October 1988.

3. 	 Lee, E. A. "Programmable DSP Architectures: Part II," IEEE ASSP Magazine,
pp. 4-14, October 1989.

4. 	 Kung, S. Y. VLSI Array Processors, Englewood Cliffs, NJ, Prentice Hall, 1988.

5. 	 Higgin, R. J. Digital Signal Processing in VLSI, Englewood Cliffs, NJ, Prentice
Hall, 1990.

6. 	 Kung, S. Y., whitehouse, H. T., and Kailath, T. VLSI and Modern Signal Pro­
cessing, Englewood Cliffs, NJ, Prentice Hall, 1985;

7. 	 Braun, E. 1. Digital Computer Design, New York, Academic Press, 1963.

8. 	 Baugh, C. R., and Wooley, B. A. "A 2's Complement Parallel, Array Multipli­
cation Algorithm," IEEE Trans. Computers, Vol. C-22, pp. 1045-1047, Decem­
ber 1973. .

9. 	 Lapsley, P., Bier, J., Shoham, A., and Lee, E. A. DSP Processor Fundamentals:
Architectures and Features, Piscataway, NJ, IEEE Press, 1997.

104 	 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices

10. 	 Eyre, J., and Bier, J. "DSP Processors Hit the Mainstream," Computer, pp. 51­
59, August 1998. .

11. 	 Bates, A., and Paterson-Stephens, I. The DSP Handbook: Algorithms, Applica­
tions and Design Techniques, Englewood Cliffs, NJ, Prentice Hall, 2002.

Assignments

4.1 	 What distinguishes a digit'al signal processor from a general-purpose micro­
processor with regard to basic capabilities?

4.2 	 Specify the basic architecture required to implement the following operations
so that they ~an be executed in the least possible time:

a. 	 (Xl + jYl)(X2 + jY2)

b. 	(0.5Xl + 4x2)/256

4.3 	 Draw a structure similar to that of Figure 4.1(b) for an 8 x 8 unsigned binary
multiplier.

4.4 	 How will you implement an 8 x 8 multiplier using 4 x 4 multipliers as the
building blocks?

4.5 	 Suggest a scheme to implement a multiplier to multiply two complex numbers
using the multiplier shown in Figure 4.1(b) as the building block.

4.6 	 Draw a structure based on Eq. 4.7 to' multiply two 4-bit signed numbers, A
and B.

4.7 	 a. Assuming the availability of a single 16-bit data bus, how many memory .
accesses will be required to access two 16-bit operands from the mem­
ory, multiply them, and save the 32-bit product back in the memory!

b. Suggest. a 	suitable hardware scheme to implement the multiplication
specified in part (a).

4.8 	. Figure 4.3(b) shows the structure of a 4-bit barrel shifter. The switches shown
connect each input bit ~o one ofthe output lines, depending on the number of
bits to be shifted. Suggest a suitable hardware scheme for the switches and
redraw Figure 4.3(b) by replacing the switches with its hardware. Also show
how the control inputs control the switches to achieve the desired shift.

4.9 	 What should be the minimum width of the accumulator in a DSP device that
receives lO-bit AID samples and is required to add 64 of them without causing
an overflow?

4.10 	 a. What is meant by -overflow in an arithmetic computation? How is an
overflow condition detected in an ALU?

b. 	By means of numerical examples using 8-bit, 2's complement numbers,
illustrate the conditions of (i) no overflow, (ii)' overflow, (iii) no under­
flow, and (iv) underflow resulting from arithmetic operations in an ALV.
In each case; verify if the circuit of Figure 4.6 can detect the condition.

Assignments 105

4.11 	 Suggest the memory architecture reqUired for a DSP device to implement each
of the following algorithms:

a. N-tap FIR filter
b. 2M_point FFT

c. autocorrelation of a segment ofN samples

d. crosscorrelation of two sequenc~s of N samples each.

4.12 	 Figure 4.8(c) allows for an instruction and two operands to be fetched simul­
taneou$ly from the memory to. the DSP to execute a multiply instruction in a
single cycle. However, to save the result in memory, one mere memory access
is required. Can you specify an architecture that allows the result to be written

. back to the memory in the same cycle?' .
. .

4.13 	 Identify the addressing modes of the opermds in each of the following in­
structions (AR stands for address register): .

ADD#1234h

. ADD 1234h.

ADD*AR+

. ADD offsetaddr-,*AR

4.14 	 What is the bit-reversed sequence of32 samples Xu, Xl> X2, ••• , X31 as obtained
by sampling a signal? . .

4.15 	 Table 4.4 shows how bit reversing is done for 8 points. A similar algorithm
can be used for any 2n pomtS. Specify using a block diagram how it can be
implemented in hardware.

4.16 	 How will you organize samplis and Iilter coefficients using a circular buffer
addressing scheme to implement a 32 'l.p FIR filter given by

31

y(n) = 2.: bkx(n - k)
k=O

4.17 	 When a two-dimensional array of data such as a matrix is organized in a
memory with linear (or one-dimensional) addressing, it is usually arranged in

. a row-ordered format. That is, all the elements of the first row are placed first
in successive memory locations, starting with the very first location. This is
followed by the elements of the second row, and so on,' until all the elements
of all the rows are arranged. Wri~e a pseudocode to compute the address of
any given element of this matrix, say, the element (i, j), assuming that there
are N rows and M columns in the matrix. .

4; 18 	 Suggest a hardware architecture for the addressing unit that computes the
two-dimensional address described in Problem 4.17 without the overhead re­
quired for computing it in software.

4.19 	 Given below is the pseudocode of a software lOOp normally used in a general­
. purpose microprocessor for repetitive execution of an arithmetic operation.

106 Chapter 4 Architectures for Programmable Digital Signal-Processing Devices

Modify the code for a DSP with zero-overhead looping hardware:

Load count register

Back: 	 Get operands; Compute; Update pointers

Decrement Count

If Count is not zero then jump Back

Proceed

14.20 	 Explain the difference between a single-instruction, zero-overhead hardware
looping and multiple-instruction, zero-overhead hardware looping in terms of
architectural requ4'ements and the performance. . .

4.21 	 What is the difference between a microcoded program control and a hard­
wired program control? Why is the latter preferred for DSP implementations?

4.22 	 List the major architecturat features used in a digital signal processor to
achieve high speed of program execution.

4.23 	 What architectural features are required in a DSP device to implement an FIR
filter with N taps so that a steady-state throughput of one output sample per
cycle is achieved?

4.24 	 List the essential peripherals required to implement the fonowing DSP sys­
tems:

A speech processing system

A biomedical instrumentation system

An image processing system

Chapter 5 .~

Programmable Digital Signal· Processors

5. 1 Introduction

. In Chapter 4, we learned about the architectural requirements of digital signal
processors. In this chapter, we first examine the basic architectures of three
commonly' used commercial DSP families and s~e how they incorporate the
various features discussed in Chapter 4. We then study in detail, the Texas
Instruments' TMS320C54xx processors, which, while retaining all the features
of the basic architecture, provide a number of additional features for im­
proved speed and performance. These devices will be used in the later chap­
ters of this book to illustrate programming and interfacing con,cepts. The
topics covered in this chapter are as follows:

Commercial digital signal-processing devices

The architecture of TMS320C54xx digital signal processors

Data addressing modes of TMS320C54xx processors

Memory space of TMS320C54xx processors

Program co~trol in TMS320C54xx processors

. TMS320C54xx instructions and programming

On-chip peripherals of TMS320C54xx processors

Interrupts of TMS320C54xx processors

Pipeline operation of TMS320C54xx processors

5.2 Commercial Digital Signal-Processing Devices

There are several families of commercial DSP devices. Right from the early
eighties, when these devices began to appear in the market, they have been
used in numerous applications, such as communication, control, computers,

107

108 Chapter 5 Programmable Digital Signal Processors.

instrumentation, and consumer electronics. The architectural features and the
processing power of these devices have been constantly upgraded bllsed, on
the advances in technology and the application needs. However, in their basic
versions, most lof them have Harvard architecture, a.single-cycle hardware
multiplier, an address generation unit with dedicated address registers, special
addressing modes, on-chip memories with off-chip expansion capability, hard­
ware support for loops, and on-chip peripheral interfaces.

Of the various families of programmable DSP devices that are commercially
available, the three most popular ones are those from Texas Instruments, Moto­
rola, and Analog Devices. Texas Instruments was one of tlle first to come out
with a commercial programmable DSP with the introduction of its TMS32010
in 1982. This was followed in 1984 by TMS32020, which liad many additional
features compared to TMS32010, and in 1985 by TMS320C25 [1] with a speed
improvement. by a factor of 2 when compared to the TMS32020. Since then,
TMS320C25 has been used widely in many communication, control, and instru­
mentation applications. Likewise, around the same time, Motorola introduced
DSP 56000 [2], and Analog Devices, ADSP 2100 [3]. Both of these devices have
features, speed, and performance comparable to those of TMS320C25 and have
also been used in many similar applications as the Texas Instruments' device.

Over the years, each of these families has evolved into several devices to fit
different application needs and constant demands for improved performance
and speed. Although these improvements have been brought about by an in­
crease in the number of features With better performance, there have been no
major changes in. the basic architectures of these DSP devices. Therefore. we·
consider the architectures of TMS320C25. DSP 56000. and ADSP 2100 in order
to get an insight into how the various features discussed in Chapter "* are in­
corporated in typical commercial DSP devices. Figures 5.1-5.3 show the basic
architectures of the three processors respectively. Table 5.1 summarizes these
features for the three processors. Architectures and features of these devices
will form the basis for exploring the more advanced architecture of the
TMS320C54xx processors in the sub,sequent sections of this chapter.

5.3 	 Data Addressing Modes of TMS320C54xx Dig,ital
Signal Processors

TMS320C54xx processors retain the basic Harvard architecture of their pre­
decessor, TMS320C25, but have several additional features. which improve
their performance over it. Figure 5.4 shows afunctio~al .block diagram of
TMS320C54xx processors. They have one program and\three data memory
spaces with separate buses, which provide simultaneous accesses to a program
instruction and two data operands and enables writing oIa result at the same
time. Part of the memory is implemented on-chip and consists of a combina­
tion of ROM, dual-access RAM, and single-access RAM. Transfers between the
memory spaces are also possible.

5.3 The Architecture of TMS320C54xx Digital Signal Processors 109

KR
R
{
,KJ{
X

S

RE,

HOLD
H

=::
:::::
=::
=::
=::

tJ
lJ
'0
i!
8

~-s.... !5
U~~ 16blUd

",:FC(l6)r'-.,MID< J6

. 16 ,T­
16 16

1MCS(16)J-++-' PC(16)

Program Bus

16 'l16

QIR(16)

IR(J6)
STO(16)
ST1(16)

RPTC(16)
IFR(16)

DI
CI
FS

',1 p­
,12 ~ 16 16

.+
.--+ D~I CIAddress Stack 16 ~FS

16 163 Program (8X 16) RSR(16)

16 ROM! XSR(16)

~
E~ROM);4.. DRR(16)

f-+
(4096 X 16) ~ DXR(16)

Instruction ~ TIM(16)

16 7"+ PRD(16)
I

16 ~ IMR(16) ,
16 GREG(16)

~ ~ 16 ~

IN

Data Bus
.,

Program Bus

16
16 16

16 ~:: l3f16 9 r--­3
ARO(J6) TLSB

AR1(16)
fromIR MUX

3I ARP(3) AR2(16) I DPe!) I 16
Multiplier

AR3(16)
IShifter(0-16)

AR4(16) 9
3

ARS(16)
V-­ 4 PR(32)

AR6(16) 32 ,
AR7(16) 16'I ARB(3) 1 I Shifter(- 6,0, 1,4)1

..t t t 16~. ¥'163 ARAU(16)

16 16
32,

MUX

16

I] DATAfPROG ·1RAM (256 x 16)
BlockBO

#t~ 16

~ Data Bus

T
BiockB2
(32x 16)

Data RAM
BiockB1
(256 X 16)

32 ~ALU(32)r-;
!32

I c I ACCH(16) I ACCL(16)I

132

f
1 Shifter(0-7) 1

16 ! 16
....

~igure 5.1 Architecture of the Texas Instruments' TMS320C25 signal processoJ

(Courtesy of Texas Instruments Inc.)

110 Chapter 5 Programmable Digital Signal Processors

i

~rIl
~25
I'l.I'l.

EXPANSION
AREA

PERJPHElwJ PROGRAM X MEMORY YMEMORY ,
MODULES RAMlROM RAMlROM RAMlROM

EXPANSION EXPANSION EXPANSION

t
YAB 1---+ADDRESS r-­ - XAB -

GENERATION r-­ - PAB I:::: EXTERNAL -,...
24-Bit 56K UNIT I-­ ADDRESS

Module BUS
SWITCH

BUS
CONTROL +­

- YDB... - - -­
INTERNAL XDB

DATA .. - - -­ -......... EXTERNAL

BUS PDB f - DS~":J,S ~.... -SWITCH
GDB - ­ --

.---- ­
PLL ~

f--- ­ PROGRAM PROGRAM PROGRAM DATAALU·
INTERRUPT DECODE ADDRESS 24X24+ 56--+ 56-BIT MAC OnCEThI f+-­CLOCK CONTROLL CONTROLLE GENERATOR

rENERAro~ TWO 56-BIT ACCUMULATORS
~+~

I

!
rIl

~

;::
~

-«
~
~

'- ­

L-- RESET

Figure 5.2 Architecture of Motorola's DSP 56000 signal processor

. (Courtesy of Motorola Inc.)

The central processing unit (CPU) of TMS320C54xx processors consists
of a 40-bit arithmetic logic unit (ALU), two 40~bit accumulators, a barrel
shifter, a 17 x 17 multiplier; a 40-bit adder, data address generation logic
(DAGEN) with its own arithmetic unit, and a program address generation
logic (PAGEN). These major functional units are supported by a number of
registers and logic in .the architecture.

5.3 The ArchHecture of TMS320C54x:x Digital Signal Proces~prs 111

/

DATA ADDRESS
MEMORY FLAGS

GENERATORS PROGRAM
IPROGRAM II DATA ·1

(ADSP-2111)

IDAGl II DAG21
SEQUENCER MEMORY MEMORY

~

"*
p. p.

*
T p. EXTERN

(

'"ADORE
I PROGRAM·MEMORY ADDRESS 1 BUS I

,
I DATA MEMORY ADDRESS V

I PROGRAM MEMORY DATA

~ DATA MEMORY DATA

1 t t tVilITERN
I

ARITHMETIC UNITS SERIAL PORTS . TIMER HOST

IALUIIMACII SHIFlFiI ISPORT 0 II SPORT 1 I INTERFACE
PORT

(ADSP-2111)
)

ADSP·2100 CORE ~

AL

I

L
DATA

BUS

figure 5.3 Architecture of the Analog Devices' ADSP 2100 signal processor

(Courtesy of Analog Devices Inc)

A powerful instruction set with a hardware-supported. single-instruction
repeat and block repeat operations. block memory move instructions. instruc­
tions that pack two or three simultaneous reads, and arithmetic instructions
with parallel store and load make these devices veryefficient for running high­
speed DSP algorithms.

Several peripherals. such as a dock generator. a hardware timer, a wait
state generator. parallel 110 ports, and serial I/O ports. are also provided on­
chip. These peripherals make it convenient to interface the signal processors
to the outside world.

In· the following sections, we examine in detail the various architectural
features of the TMS320C54x:x family of processors [4.5].

5.3. 1 BusStructure

The performance of a processor gets enhanced with the provision of multiple
buses to provide simultaneous access to ,various parts of memory or periph­
erals. The '54xx architecture is built around four pairs of 16-bit buses with
each pair consisting of a., address bus and a data bus. As shown in Figure 5.4,

11.2 Chapter 5 Programmable Digital Signal Processors

Table 5.1 Summary of the Architectural Features of Three Fixed-Point DSPs

Architectural Feature TMS320C25 DSP 56000 ADSP 2100

Data representation format 16-bit fixed point 24-bit fixed point 16-bit fixed point

Hardware multiplier 16 x 16 24 x 24 16 x 16

ALU 32 bits 56 bits 40 bits

Internal buses 16-bit program bus 24-bit program bus 24-bit program bus

16-bit data bus 2 x 24-bit data buses 16-bit data bus

24-bit global data bus 16-bit result bus

External buses 16-bit program/data bus 24-bit program/data bus 24-bit program bus

16-bit data bus

On-chip memory 544 words RAM 512 words PROM

4Kwords ROM 2 x 256 words data RAM

2 x 256 words data ROM

Off-chip memory 64K words program . 64K words program 16Kwords program

64K words data 2 x 64K words data 16K words data

Cache memory 16 words program

Instruction cycle time 100 nsec. 97.5 nsec. 125 nsec.

Special addressing modes Bit.reversed Modulo Modulo.

Bit reversed Bit reversed

Data addrE;ssgenerators 2 2

Interfacing features Synchronous serial I/O Synchronous and DMA
DMA asynchronous serial

lIO DMA

these are the program bus pair (PAB, PB), which carries the instruction code
from the program memory, and three data bus pairs (CAB, CB; DAB, DB; and
EAB, EB), which intetconnect the various units within the CPU. In addition,
the pairs CAB, CB and DAB, DB are used to read from the data memory, while
the pair EAB, EB carries the data to be written to the memory. The 'S4xx can
generate up to two data"memory addresses per cycle using the two auxiliary
register arithmetic units (ARAUO and ARAUl) in the DAGEN block. This en­
ables accessing two operands simultaneously .

. 5.3.2 Central Processing Unit (CPU)

The 'S4xx CPU is common to all the 'S4xx devices. The 'S4xx CPU contains
a 40-bit arithmetic logic unit (ALU); two 40-bit accumulators (A and B); a

53 The Architecture of TMS320C54xx Digital Signal Processors 113

Program address generation
logic (FAGEN)

Data address generation
logIc (DAGEN)

ARAUO, ARAUl
ARO-AR7

A:RP~K.,1)P, SP
i I I i I

CAB pti.;;t;,,'7·"·:<""··'·::1 . ··':;F;~;f:'~I:·'I"··:·::··:··:~" ;'·1':' VI ·1· ..

CB lo.:,.:.,.:,:~.",,:,"h·, "1" ::'.' +. :1"::;"1': t"~~?y;;.,,,, ... ' ,,';1"';'1::::1,:1'· . ,:" ·1;~~:I;hi;;~';'ir:';:~'}',;~1;":'·~;:0J"'\<"f""" >"'i ':", >" .' ,,,, ' '! ""'. . i

DAB b";,::~.,:;,,,,":.§":": ,I.·:ll',,,, :.:p",I·· ..I,··"",,···,·· . ":..':..,.. :1:.;4.",1.,, I··.· I :.

Memory
and

external
interface

Peripheral
interface

Figure 5.4 Functional architecture for TMS320C54xx processors

(CoultesYQf Texaslns~ruments).

114 Chapter 5 Programmable Digital Signal Processors

T

Shifter output (4.0)
40 r

SXM SXM

40

MAC
output

OVM
C16
C
OVAlOVB
ZAlZB

r TC

Figure 5.5 Functional diagram of the central processing unit of the TMS320C54xx processors

(CourteSy of Texas Instruments Inc.)

barrel shifter; a 11.x 11",bit multiplier; a 40-bit adder; a compare, select and
store unit (CSSU); an exponent encoder (EXP); a data address generation unit
(DAGEN); and a program address generation unit (PAGEN).

The ALU performs· 2's complement arithmetic operations and· bit-level
Boolean operations on 16-, 32-, and 4O-bit words. It can also function as two
separate 16-bit ALUs and perform two 16-bit operations simultaneously. Fig­
ure 5.5 shoWs the functional diagram of the ALU of the TMS320C54:xx family
of devices.

Accumulators A and B store the output from the ALU or the multiplierl .
adder block. and provide a second input to the ALU. Each accumulator is
c:Uvided: into three parts: guard bits (bits 39-32), high-order word (bits 31­

SXM

5.3 The Architecture of TMS320C54x:x Digital Signal Processors 115

A ,;40
16

B ---------,;~-----i

40

T: 16 through 31 range
Barrel shifter TC (test bit) • I ASM(4-0): -16 through 15 range(-16m31)

Instruction register immediate: - 16
through 15 or 0 thr()ugh 15 range

ALU.. •
40

MSWILSWCSSU ~I
Write select

l.e!ien4:;;::;; i>')
Ai Ac¢Ut!lulator",.•

A¢c\llll,Ulatorll .
CCBdahibus .,
':Dl>BilatabuS. ..

.~::"j}~y,:~~..

Figure 5.6 Functional dia~ram of the barrel shifter of the TMS320C54xx processors

.(Courtesy of Texas Instruments inc.)

16), and low-order word (bits 15-0), which can be stored and retrieved indi­
. vidually.

The barrel shifter provides the capability to scale the data during an oper­
and read.or write.NooverJt<!ad is required to implement the shift needed for
the scaling operations. The '54xxbarrel shifter can produce a left shift of 0 to
31 bits or a right shift of 0 to 16 bits on the input data. The shift requirements
are defined in the shift.count field of the instruction, the shift. count field of
status register ST!, or in the temporary register T. Figure 5.6 shows the func­
tional diagram of the' barrel shifter of TMS320C54xx processors.

The barrel shifter and the exponent encoder normalize the values in an .
accumulator in a single cycle. The LSBs of the output are filled with Os, and··

17

PI AI DI C

116 ChapterS Programmable Digital Signal Processors

40,1 From accumulator A

4<} .From accumulator B

XM

o

FRCT

Adder (40) OVM

Zero detect Rouud SAT
OVAlOVB

ZAlZB

40/ ... To accumulator AlB

Figure 5.7 Functional diagram of the multiplier/adder unit of TMS320C54xx processors

(Courtesy of Texas Instruments Inc.).

, the MSSs can be either zero filled or sign extended, depending on the state of
the sign-extension made bit in the status register STl. Additional shift capa­
bilities enable the processor to perform numerical scaling, bit extraction, ex~
tended arithmetic, arid overfiow prevention operations.

The kernel of the DSP device architecture is its multiplier/adder unit.
The multiplierladder unit of TMS320C54xx devices performs 17 X 11 2's­
complement multiplication with a 4O-bitaddition effectively in a single instruc­
tion cycle. In addition to the multiplier and adder, the unit consists of control

5.4 Data Addressing Modes ofTMS320C54xx Processors 117

logic for integer and fractional c~mputations and a 16-bit temporary storage
register, T. Figure 5.7 shows the functional diagram of the multiplier/adder
unit of TMS320C54xx processors~

The compare, select, and store unit (CSSU) is a hardware unit specifically
incorporated to accelerate the add/compare/select operation. This operation is
essential to implement the Viterbi algorithm used in many signal-processing
applications. . .

The 'eXponent encoder unit supports the EXP instruction, which stores in
the T register the number of leading redundant bits of the accumulator con­
tent. This information is useful while shifting the accumulator content for the
. purpose of scaling~ , .

5.3.3 Internal Memory and Memory-Mapped Registers

The amount and the types of memory of a processor have direct relevance
to the efficiency and the performance. obtainable hi implementations with the
processor. The '54xx memory is organized into three individually selectable
spaces: program, data, and I/O spac~s. All '54xx devices contain both RAM
and ROM. RAM can be either dual-access type (DARAM) or single-access type
(SARAM). The on-chip RAM for these processors is organized in pages having
128 word locations on each page. .

The '54xx processors have a number of CPU registers to support operand
addressing and computations. The CPU registers and peripheral registers are
all located on page 0 of the data meplory. Figures 5.8(a) and (b) show the in­
ternal CPU registers and peripheral registers with their addresses. Figure 5.8(c)
shows the processor mode status (PMST) register that is used to configure the
processor. It is a memory-mapped register loc~ted at address lOh on page 0 of
the RAM; The peripheral registers are covered in subsequent chapters.

A part of on-chip ROM may contain a bootloader and look-up tables for
functions such as sine, cosine, Jl-law, and A-law. Details of the memory space
of TMS320C54xx processors are discussed in Section 55.

5.4 	Data Addressing Modes of TMS320C54xx
Processors

Data addressing modes provide various ways to access operands to execute
instructions and place. results in the memory or the registers. The '54xx devices
offer seven basic addressing modes: immediate addressing, absolute address­
ing, accumulator addressing, direct addressing, indirect addressing, memory­
mapped register addressing, and' stack addressing.

118 Chapter 5 Programmable Digital Signal Processors

ADDRESS

NAME' DEC HEX DESCRIPTION

IMR 	 0 0 Interrupt mask register
IFR 1 1 Interrupt flag register

2-5 2-5 Reserved for testing
STO 6 6 Status register 0
sn 7 7 Status register 1
AL 8 8 Accumulator A low word (15"-0)
AH 9 9 Accumulator A high word (31-16)
AG 10 A Aq:umulator A guard bits (39-32)
BL 11 B Accumulator B low word (15-0)
BH 12 C AccumulatorB bigh word'(31 ~16)
BG 13 D Accumulator B guar~ (39-32)
TREG 14 E Temporary regist~r
TRN 15 F . Transition register
ARO 16 10 Auxiliary register 0
AR1 17 11 Auxiliary register 1
AR2 18 12 Auxiliary register 2
AR3 19 13 Auxiliary register 3
AR4 20 14 Auxiiiary register 4
AR5 21 15 AuxiUary register 5
AR6 22 16 Auxiliary register 6
ARt 23 17 Auxiliary register 7
SP 24 18 Stack pointer register
BK 25 19 . Circular buffer size register
BRC 26 1A Block repeat counter
RSA 27 1B Block repeat start address'
REA 28 1C Block repeat end address
PMST 29 10 Processor mode status (PMST) register
XPC 30 1E Extended program page register

31 1F Reserved

(a)

Figure 5.8(a) 	 InternaLmemory-mapped registers of TMS320C54xx signal processors

(Courtesy of Texas Instruments Inc.)

5.4,1 Immediate Address1ng

.In this mode, the instruction contains the specific value ofthe operand. The
. operand can be short (3, 5, 8, or 9 bits in length) or long (16 bits in length),

The instruction syntax for short operands. occupies one memory location,

5.4 Data Addressing Modes of TMS3Z0C54xx Processors 119

ADDRESS

NAME DEC HEX DESCRIPTION

DRR20 32 20 McBSP 0 Data Receive Register 2
DRR10 33 21 McBSP 0 Data Receive Register 1
DXR20 34 22 McBSP 0 Data Transmit Register 2

DXR10. 35 23 McBSP 0 Data Transmit Register 1

TIM 36 24 Timer Register

PRD 37 25 Timer Period Register

TCR 38 26 Timer Control Register

3.9 27 Reserved

SWWSR 40 28 Software Watt-State Register

BSCR 41 29 Bank-Switching Control Register

42 2A Reserved

SWCR 43 2B Software Watt-StateContr¢ Register

HPIC 44 2C HPI Control Register (H~ODE = C} only) .

45-47 2D-2F Res~rved .
DRR22 48 30 McBSP 2 Data Receive Register 2

DRR12 49 31 McBSP 2 Data Receive Register 1

DXR22 50 32 McBSP 2 Data Transmit Register 2

DXR12 51 33 McBSP 2 Data Transmit Register 1

SPSA2 52 34 McBSP 2 Subbank Address Register

SPSD2 53 35 McBSP 2 Subbank Data Register

54-55 36-37 Reserved

SPSAO 56 38 McBSP 0 Subbank Address Register

SPSDO 57 39 McBSP 0 Subbank Data Register

58-59 3A-3B Reserved

GPIOCR 60 3C General"Purpose 1/0 Control Register

GPIOSR 61 3D General-Purpose I/O Status Register

CSIDR 62 3E Device ID Register

63 3F Reserved

DRR21. 64 40 McBSP 1 Data Receive Register 2

DRR11 65 41 . McBSP 1 Data Receive Register 1

DXR21 66 42 McBSP 1 Data Transmit Register 2

DXR11 67 43 McBSP 1 Data Transmit Register 1

68-71 447"47 Reserved

SPSA1 72 48 McBSP 1 Subbank Address Register

SPSDl 73 49 McBSP 1 Subbank Data Register

74-83 4A-53 Reserved

DMpREC 84 54 DMA Priority and Enable Control Register

DMSA 85 55 DMA Subbank Address Register

FigureS.8{b) Peripheral registers for the TMS320C5416 processor
(contin:Jed)(Courtesy of Texas Instruments Inc.)

120 Chapter 5 Programmable Digital Signal Processors

DMSDI 86 56 DMA Subbank Data Register with Autoincrementt

DMSON· 87 57 ·DMA Subbank Data Register
CLKMD 88 58 Clock Mode Register (CLKMD) (.

89-95 59-5F Reserved

(b)

Figure S.8(b) Continued

15-7 '6 5 4 3 2 o
IPTR

tThese bits are only supported on C54x devices with revision A or

(c)

Figure S.8(c) Processor mode status (PMSn register ofTMS320C54xxprocessors

(Courtesy of Texas Instruments Inc.) ,

whereas that for long operands occupies two ,memory locations. This address­
ing mode can be used to initialize registers and memory locations. Examples
of instructions using this addressing mode are

LO #20, DP This accomplishes #20 ~ DP
RPT #OFFFFh This accomplishes #FFFFh ~ RC

5.4.2· Absolute Addressing

In this mode, the instruction contains a specific address. The ~pecified address
may be for a data memory location (dmad addressing), a program memory
location (pmad addressing), a port address (PA addressing), or a location in
the data space specified directly (*(lk) addressing). Examples of instructions
using. this ,mode of addressing are

*AR5 1000h ~ AR5 addressi

MVPO IOOOh, *AR7 1000h ~ *AR7 (pmad addressi

PORTR 05h, *AR3 05h ~*AR3 (PA addressing)

LD *(lOOOh). A *(IOOOh) ~ A (*(lk) addressing)

5.4.3 Accumulator Addressing

This mode uses the accumulator contents as the address and is used to move
data between a program memory location and a data memory location. Ex­

5.4 Data Addressing Modes of TMS320C54X:x Processors 121

amples of iQstructions in this mode ~e READA andWRITA. READA trans­
fers'a. word from a program-memory location specified by accumulator A to.a
data-memory location. WRITA transfers a word from a data-memory location
to a program-memory location specified by accumulator A.

. Here is an example:.

RfADA *'AR2 ; This accomplishes *A -ii- *AR2

5.4.4 DirectAddressing

In the direct addressing mQde. the 16-bit address of the' data-memory location
is formed by combining the lower 7 bits of the data-memory address con­
tained in the instruction with a base address given by the data-page pointer
(DP) or the stack pointer (SP). Figure 5.9 shows the operation of the direct
addressing mode of TMS320C54xx processors. .

Using this form of addressing, one can access a page of 128 contiguous
locations without changing the DP or theSP. The compiler mode bit (CPL),
located in the! status register ST1, is used to select between the two pointers

DP(9)

CPLI CPL
DAGEN

DatabUsDB(16)

Data bus EB(l6)

o EA =DP: offset(IR)
1 EA""SP+offset(IR)

7 LSBs from IR (dma)

DAB(16) (read)

EAB(16) (write)
or

CAB(16)
(32-bit read)

Legend: EA Effective address
IR Instruction register

Figure 5.9 Block diagram of the direct addressing mode for TMS320C54xx processors

(Courtesy of Texas Instruments inc.),

122 Chapter 5 Programmable Digital Signal Processors

used to generate the address. CPL 0 selectsDP and CPL = 1 selects SP. For
example, when CPL 0,· to add the contents of the memory location 0 on
page 4 in the data memory to accumulator B, we can use the instruction
sequence:

LD #4, DP DP = 4 = upper 9 bi ts of address
ADD=O. B Lower 7 bi ts of the address·

With this exap1ple the contents of the first locations on data page 4 (memory
address 0200h) are added to accumulator B.

It should be remembered that when SP is used instead of DP, the effective
address is computed by adding the 7-bit offset to SP.

5.4.S Indirect Addressing

In indirect addressing, any location in the data space can be accessed by
means of an address contained in an auxiliary register. The '54xx devices have
eight 16-bit 'auxiliary registers (ARO-AR7). Indirect addressing is used when

DAB(16)
(read)

EAB(16)
(write) or
CAB(16)
(32-bit read)

Figure 5.10 Block diagram for the indirect addressing mode of TMS320C54xx processors

(Courtesy of Texas Instruments Inc,)

5.4 Data Addressing Modes ofTMS320C54xx Processors 123

there is a need to step through a sequence of locations in the memory in fixed­
sized steps.

Two auxiliary register arithrrietic units (ARAUO and ARAUl) are used to
modify the contents of the auxiliary registers for the indirect addressing mode.
They perform unsigned, l6-bit arithmetic operations. The auxiliary registers
can be loaded with an immediate value, loaded via the data bus, and modified
by the indirect addressing field of any instruction that supports indirect
addressing or by the modify auxiliary register (MAR) instruction and used as
loop counters.

Figure 5.10 shows how ARAUs are used to generate an address in the indi­
rect addressing mode using a single data-memory operand. An address can be
modified before or after accessing the location or can be left unchanged.
Modification can be by incrementing or decrementing the addresli by 1, add­
ing a 16-bit offset, or indexing with the value in ARO. Each of these mod­
ifications may be carried out either before or after accessing the memory
location. Table 5.2 gives the operand syntax and the correspondin~ ARAU
operations for the single operand indirect addressing mode.

I> Example 5.1 Assuming the current contents of AR3 to be 200h, what will be its contents
after each of the following TMS320C54xx addressing modes is used? Assume
that the contents of ARO are 20b.

a. *AR3 + 0

b. *AR3-0

c. *AR3+

d. *AR3­

e. *AR3

f. *+A:R3(40h)

g. *+AR3(-40h)

Solution a. AR3 +- AR3 + ARO;
AR3 = ~OOh + 20h = 220h.

b. AR3 +- AR3 ­ ARO;
AR3 200h - 20h = lEOh.

c. AR3 +- AR3 + 1;
AR3 = 200h + 1 = 20lh.·

d. AR3 +- AR3 ­
AR3 = 200h ­

I;
1 = IFFh.

e. AR3 is not modified.
AR3 = 200.

f. AR3 +- AR3 + 40h;
AR3 = 200h + 40h 240h.

g. AR3 +- AR3 40h;
AR3 = 200h - 40h = lCOh.

124 Chapter 5 Programmable Digital Signal Processors

Table 5.2 	 Indirect Addressing Options with a Single Data-Memory Operand

Operand Syntax Operation

*ARx addr +- ARx

*ARx+ addr +- ARx

ARx+- ARx+ 1

*ARx- addr +- ARx

ARx+- ARx-l

*+ARx ARx+- ARx+ 1

addr +- ARx

. *ARx+O addr +-"ARx

ARx +- ARx + ARO

*ARx 0 addr +- ARx

ARx +- ARx ARO

*ARx+OB addr +- ARx

ARx +- B(ARx + ARO)

*ARx-OB addr +- ARx

ARx +- B(ARx - ARO)

*ARx+% addr +- ARx

ARx+- circ(ARx + 1)

*ARx-% addr +- ARx

ARx +- circ(ARx - 1)

*ARx+O% addr +- ARx

ARx +- circ(ARx + ARO)

*ARO-O% addr +- ARx

ARx +- circ(ARx - ARO)

*(lk) addr +-lk

*ARx(lk) addr +- ARx + lk

*+ARx(lk) ARx ARx+lk

addr +- ARx

*+ARx(lk)% ARx <- circ(ARx + lk)

addr <- ARx

Circular Addressin9

Many fast real-time algorithms, such as convolution,. correlation, and FIR fil­
ters,require the implementation of a circular buffer in memory. A circular

5.4 Data Addressing Modes of TMS320C54xx: Processors 125

buffer is a sliding window containing the most recent data ..As new data come
in, the buffer overwrites the oldest data. An indirect addressing mode with
circular address modification allows implementation of circular buffers.

The circular-buffer size register (BK) specifies the size ofthe circular buffer.
A circular buffer must start on an N-bit boundary; that is, the N LSBs of the
base address of the circular buffer must be o. For example, a 31-word circular
buffer must start at an address whose five LSBs are 0 and the value 30 must be
loaded into BK. Similarly, a 48-word circular buffer must start· at an address
whose six LSBs are 0 and the value 47 must be loaded into BK.

The algorithm for circular addressing works as follows:

If 0 ~ index + step <BK: index = index + step;
else if index + step ~ BK: index = index + step - BK;
else if index + step < 0: index = index + step + BK.

First I at location N - I

~
15 N N-l o 15 N N-l ()

I H ... H I L ... L I I 0 ... 0 I BL ... BL J
t

,. 0

EOB + 11 H ... H I BL .,. BL J
15 N N-l r 0

Index I 0 ... 0 I L ... L I

15+ N N-l

•Circular
addressing 15.t N N-I 0

algorithm EFBI H ... H I 0 ... o J
logic

Base (low address)

::XI 0 ... 0 1 L' ... •L' I Legend: EFB Effective base address
H High-order bits I
L Low-order bits

15 r N N-l 0 L' New low-order bits 1 , ,_T 'II 1 ~. L'" •New " er
ARx I H ... H I L' ... L'

Size register

(a)

Figure 5.11(a) Block diagram of the circlilar addressing mode for TMS320C54xx processors

(Courtesy of Texas Instruments Inc.)

126 Chapter 5 Programmable Digital Signal Processors

Address

15 N N-l o
Effective o 01-+bise

ARK.

N N-l 0

-+

15

I H

N N -1

H I LSBs BK

(b)

0

I -+

Data

Top of circular buffer

Element 0

Element 1

Element (n LSB

Last element

Last element +1

Figure 5.11{b) Circular addressing mode implementation in TMS320C54xx processors

(Courtesy of Texas Instruments Inc.)

Figure 5.11(a) illustrates the relationships between BK) the auxiliary register
ARx (the pointer), the bottom of the circular buffer, the top or the circular
'buffer, and the index into the circular buffer. Figure 5.11 (b) shows how the
circular buffet is implemented and illustrates the relationship between the
generated values and the elements in the circular buffer.

I> Example 5.2 	 Assume that the register AR3 with contents 1020h is selected as the pointer
for the circular buffer. Let BK 40h to specify the circular buffer size as 41h.
Determine the start and the end ,addresses for the buffer. What will be the
contents of register AR3 after the execution of the instruction LD -*AR3 + 00/0,
A, if the contents of register ARO are 002Sh?

Solution 	 AR3 1020h means that currently it poihts to location 1020h. Making the
lower 6 bits zeros gives the startaddress of the buffer as HiOOh. .Replacing the
same bits with the BK gives the end address as 1040h.

The instruction

LD *AR3 +0%, A

modifies AR3 by adding ARO to it and applying the circular modification. It
yields

AR3 = circ(1020h + 002Sh) = circ(l04Sh) = 104Sh - 40h = 100sh.

Thus the location 100sh is the one pointed to by AR3.

5.4 Data Addressing Modes of TMS3ioC54xx Processors 127

Bit-Reversed Addressing

Bit-reversed addressing is used in FFT algorithms. In this addressing mode,
ARO specifies one half of the size of the FFT. An auxiliary register points to the
physical location 6f a data value. The address of the next location is generated
by adding, in a bit-reversed manner, ARO and the other specified auxiliary
register. In the bit-reversed addition, the carry bit propagates from left to
right, instead of right to left as in the regular add.

l> Example 5.3 Assuming the current contents of AR3 to be 200h, what will be its contents
after each of the following TMS320C54xx addres~ing modes is used? Assume
that the. contents of ARO are 20h.

a. *AR3+ OB

b.*AR3 - OB

Solution a. AR3 <- AR3 + ARO with reverse carry propagation;
AR3 = 200h +20h (with reverse carry propagation) = 220h.

b. AR3 <- AR3- ARO with reverse carry propagation;
AR3 ~ 200h - 20h (with reverse carry propagation) = 23Fh.

./

Dual-Operand Addressing

Dual data-memory operand addressing is used for instructions that simulta­
neously perform two reads (32-bit read) or a single read (16-bit read) and a
parallel store (16-bit store) indicated by two vertical bars, II. These instruc­
tions access operands using indirect addressing mode.

If in an instruction with a parallel store the source operand and the desti­
nation operand point to the saine location, the source is read before writing to
the destination. Only 2 bits are available in the instruction code for selecting
each auxiliary register in this mode. Thus, just fo~r of the auxiliary registers,
AR2-AR5, can be used, The ARAUs, together with these registers, provide the
capability to access two operands in a single' cycle. Figure 5.12 shows how an
address is gene~ated using dual data-memory operand addressing.

5.4.6 Memory-Mapped Register Addressing

Memory-mapped register addressing is used to access the memory-mapped
registers without affecting either the current data-page pointer (DP) value or
the current stack-pointer (SP) value. This mode works for both ~irect and
indirect addressing~ Taking only the seven least significant bits of the 16-bit
direct address or the value of the auxiliary register used for indirect address­
ing, the required address is generated.

For example, if ARi is used indirectly to point to a memory-mapped reg­
ister using the memory-mapped register addressing mode and its contents are

128 Chapter 5 Programmable Digital Signal Processors

AROBKlk 1

ARO(l6) index .

AR2(16)

AR3(16)
AR4(16)
ARS(16)

BK(16)

Data bus DB(l6)

DAB(16)
(read)

EAB(16)
(write) or
CAB(l6)
(32-bit read)

Data bus EB{16)

Figure5.12 Block diagram of the indirect addressing mode of TMS320C54xx processors
usi l1g dual memory operands

(Courtesy of Texas Instr!Jments Inc.)

3825h, then ARl points to the timer period register (PRD), since the seven
LSBs of ARl are 25h, which is the address of the PRD register. After execution, .
ARl contains 0025h.

Consider the following instruction as another example:

LDM AR4. A

In this case the data stored at OOl4h; which is the memory address of AR4, is
loaded onto A. . <

5.4.7 Stack Addressing

The stack is used to store the return address during the servicing of interrupts
and invoking of subroutines. It can also be used to pass parameters to sub­
routines during program execution. The stack is ·filled from the highest to the.
lowest memory address and emptied from the lowest to the highest address.

http:Figure5.12

5.5 Memory Space of TMS320C54xx Processors 129

A 16-bit stack pointer (SP) is used to address the stack location at a given in~
stance. SP points to the last element stored onto the stack. Instructions that
access the stack for saving and recovering data on the stack consist of PUSHD,
PUSHM, POPD, and POPM;

5.5 Memory Space of TMS320C54xx Processors

TMS320C54xx processors provide for a total of 128K words of memory ex­
tendable up to 8192K words. This includes both program memory and data
memory. Within this space; RAM (both single access and dual access), ROM,
EPROM, EEPROM, or memory-mapped peripherals may reside either on- or
off-chip. The program memory space is used to store program instructions
and the tables used in the execution of programs. The data-memory space is
used to store data required to run programs and for external memory-mapped
peripherals. Figures 5.13(a) and (b) show memory maps for the basic and ex­
tended memories. of the TMS320C5416 processor.

The size of the data memory is 64K words, part of which is on-chip
DAl,tiM. The device automatically accesses the on-chip RAM when the ad­
dress is within its· range.· Memory-mapped registers are also part of the data­
memory space.

The program memory is organized into 128 pages, each of 64K word size.
Page 0 is part of the basic 128K space, and pages 1 to 127 are extended pages.
Out of the 64K words on page 0, 4K words are on-chip ROM. The remaining
space on page 0 as well as the extended space consist ofDARAM and SARAM,
both on-chip and off-chip, as shown in Figures 5.13(a) and (b)~ The 4K on­
chip ROM space contains a GSM EFR speech codet table, a bootloader, Jl-Iaw
and A-law expansion tables, a sine look-up table, and an interrupt vector
table.

The MP/MC, OVLY, and DROM bits located in the processor mode status
register (PMST) are used to enable and disable on-chip memories in the pro­

.gram and data spaces. The functions of these bits are described in Table 5.3.

> Example 5.4' 	 What is the configuration of on-chip DARAM, on-chip SARAM, and ROM if
MP/MC = 0, OVLY I, and DROM 0 for TMS320C5416?

Solution a. 	Since MP/MC = 0, 16K on-chip ROM is enabled as program memory at.
address cOOOh-feffh.

b. Since miLY = 1, DARAM is mapped on to the program memory space
at address 0080h-7flTh. Memory at addresses OOOh-007fh is reserved for
memory-mapped registers and the scratch pad purpose.

c. Since DROM = 0, ROM is not mapped on to the data memory.

010000' 020000'
On-Chip
.ARAM0--3

(OVLY=I)
External

t---_---11027FFFI(OVLY=0)

028000 I 0 ChO n- Ip
SARAM0--3

130 Chapter 5 Programmable Digital Signal Processors

Hex Page 0 Program Hex Page 0 Program Hex
0000 Reserved

(OVLY I)
External

(OVLY=O)

On-Chip
DARAM0--3
(OVLY= I)

External
(OVLY=O}

External

Interrupts
(External)

00000000 Reserved
(OVLY=I)

External
r-i0VLY=OL

On-Chip
DARAM0--3
(OVLY=I)

External
(OVLY=O)

External

On-Chip ROM
(l6KX Iii-bit)

Reserved

Interrupts
(On-Chip)

005F

0060
0080

007F007F
·007F

0080
0080

7FFF7FFF 7FFF8000
BFFF

8000
8000

COOO
FF7F FEFF

FFOOFF80
FF7F
FF80

FFFF FFFF
MPtMC=1 MPIMC=O

(Microprocessor Mode) (Microcomputer Mode)

FFFF

Address ranges for on-chip DARAM in data memory are:

Hex Program Hex Program Hex Program
030000'

On-Chip
iARAM0--3

(OVLY=I)
External

037FFFI (OVLY =0)

IIP,(MC=O)
External

'!MC=I)
........__-' 03FFFFI--__....

Page I Page 2 l'age 3 Page 4

XPC I XPC=2 XPC=3 XPC=4

Address ranges for on-chip DARAM in program memory are: DARAM4: 01800Qh-Q19FFFh;
. DARAM6: OIDOOOOh-QlDFFFh;

Address ranges for on chip SARAM in program memory are: SARAMO: 028000h-029FFFh;
SARAM2: 02CooOh--Q2DFFFh;
SARAM4: 038000h-Q39FFFh;
SARAM6: 03COOOh-Q3DFFFh;

(b)

Figure 5.13 Memory map for the TMS320C5416 processor

(Courtesy of Texas Il\struments Inc.)

DARAMO: 0080h-IFFFh;
DARAM2: 4OQOh-5FFFh;
DARAM4: 80ooh-9FFFV;
DARAM6: COOOh-DFFFh;

(a)

Hex Program

040000=
bn-Ch. ip
ARAM0--3

(OVLY= I)
External

04~fFFI~VLY= 0)

048000

External

Data

Memory-Mapped
Regist~

Scratch-Pad
RAM

On-Chip I

DARAM0--3
(32K X 16-bit)

On-Chip
DARAM4-7
(DROM=I)

or
External

(DROM=O)

DARAMI:2000h-3FFFh
JARAM3: 6000h-7FFFh
DARAM5:AOooh-BFFFh
DARAM7: EOOOh-FFFFh

Hex Program

7FooOO=
On-Chip
ARAM0--3

(OVLY=I)
External

7F7FFF I (OVLY = 0)

7F8000

External

7FFFJ:F L...'__----'

Page 127
XPC=7Fh

DARAM5:0IAOooh-QIBFFFh
DARAM7:0IEOOOh-QIFFFFh
SARAMl: 02AOOOh-Q2BFfFh
SARAM3: 02EooOh-02FFFFh
SARAM5: 03AOOOh-o.3BFFFh
SARAM7: 03EOooh-Q3FFFFh

5.6 Program Control 131

Table S.3 Processor Bits for Configuring the On-Chip Memories

PMST Bit Logic On-chip Memory Configuration

MP/MC 0 ROM enabled

ROM not available

OVLY 0 RAM in data space

1 RAM in program space (except page0)

DROM 0 ROM not in data space

ROM in data space

r> ExampleS.S Repeat Example 5.4 if MP/MC = 1, OVLY = 1, and DROM = L

Solution a. Since MP/MC = I, TMS320C5416 is in microprocessor mode, the 16K ROM
is off-chip in the program memory space.

b. Since OVLY = 1, DARAM is mapped on to the program memory space
at address 0080h-7fifh. Memory at addresses OOOOh-007fh is reserved for
memory-mapped registers and the scratch ·pad purpose.

c. Since DROM = I, 16K ROM is mapped on to the on-chip data memory
at address cOOOh-fefth and memory from ffOOh-fffih is left for reserved
purpose.

5.6 Program Control

The program control unit of TMS320C54xx processors contains the program
counter (PC), the program counter-related hardware, hardware stack, repeat
counters, and status registers. The PC addresses the program memory, either
on-chip or off-chip, and is loaded in one of several ways, depending on the
sequence of instructions being executed. These are

• 	 Sequential: PC <- PC + 1.

• 	 Branch: The PC is loaded with the immediate value following the branch
instruction.

• 	 Subroutine call: The PC is loaded with the immediate value following the
call instruction.

• 	 Interrupt: The PC is loaded with the address of the appropriate interrupt
vector.

• 	 Instructions such as BACC, CALA, etc.: The PC is loaded with the con­
tents of the accumulator low word.

132 Chapter 5 Programmable Digital Signal Processors

• 	 End of a block repeat loop: The PC is load~d with the contents. of the
block repeat program address start register.

• 	 Return: The PC is loaded from the top of the stack.

The program counter-related hardware PAGEN provides for the above
options. The stack is used to save and restore the P~ value during subroutine
calls and interrupts. It can also be used to save and restore the accumulator
low word cir a data-memory value when required. .

The TMS320C54xx processors provide hardware support for repetitive exe­
cution of either a single instruction or a block of instructions. Repeat counters
are used for this purpose.

A single instruction can be repeated N + 1 times by loading the value N
in the repeat counter register (RC). Likewise, a block of instructions can be
repeated N + 1 times by loading the value N in the block repeat counter reg­
ister (BRC).

5.7 TMS320C54xx Instructions and Programming

TMS320C54xx architecture supports an instruction set consisting of a large
number of instructions [6]. Many of these are similar to the instructions for
general-purpose microprocessors. lIowever, the TMS320C54xx instruction set
consists ofa number of instructions that are specifically designed to carry out
the numerically intensive signal-processing operations efficiently. In this sec­
tion, we shall summarize the instruction set of the TMS320C54xx processors.
In particular, we shall discuss those instructions that are frequently used
to implement DSP algorithms and illustrate their use by means of sample
programs.

5.7.1 Summary of the Instruction Set of TMS320C54xx Processors

TMS320C54xx assembly language instructions canbe classified into the fol­
lowing categories based on their functions:

Load and Store Operations

• 	 Load instructions; Examples: LD, LDM

• 	 Store instructions; Examples: ST, STM

• 	 Conditional store instructions; Examples: CMPS, STRCD

• 	 Parallel load and store instructions; Example: STIILD

5.7 TMS320C54xx Instructions and Programming 133

• 	 Parallel load and multiply instructions; Example:.LDIiMAC

• 	 Parallel store and add/subtract instructions; Examples: STIIADD, STIJSUB

• 	 Parallel store and multiply instructions; Examples: STIIMPY, STIIMAC

• 	 Miscellaneous load-type and store-type instructions; Examples: MVDD,
MVPD

Arithmetic Operations

• 	 Add instructions; Examples: ADD, ADDC

• 	 Subtract instructions; E:x:amples: SUB, SUBB

• 	 Multiply instructions; Examples: MPr, MPYA

• 	 Multiply-accumulate instructions; Examples: MAC, MACD

• 	 Multiply-subtract instructions; Examples: MAS, MASA

• 	 Double (32-bit operand) instruction~; Examples: DADD, DSUB

• 	 Application-specific instructions; Example!!: EXP, LMS

Logical Operations

• 	 AND instructions; Examples: AND, ANDM

• 	 OR instructions; Examples: OR, ORM

• 	 XOR instructions; Examples: XOR, XORM

• 	 Shift instructions; Examples: ROL, SFTL

• 	 Test instructions; Examples: BIT, CMPM

Program-Control Operations

• 	 Branch instructions; Examples: B, BACC
~

• 	 Callinstru~tions; Examples: CALL, CALA

• 	 Interrupt instructIons; Examples: INT:R, TRAP

• 	 Return instructions; Examples: RET, FRET.

• 	 Repeat instructions; Examples: RPT, RPTB

• 	 Stack-manipulating instructions; Examples: PUSHD, POPD

• 	 Miscellaneous program-control instructions; Examples: IDLE, RESET

For detailed descriptions of these· and other instructions, the reader is
referred to the Texas Insttlll\1ents' TMS320C54xx DSP Reference Set, Volume
2: Mnemonic Instruction Set [6]. We shall nowdiscus~ a few of these in­
structions in dei/iii.

134 Chapter 5 Programmable Digital Signal Prol.:essors

Multiply Instruction (MPY)

This instruction can take several form:s. One such form is

MPY Xmern, Ymem,dst; where Xmem and Ymem are dual data-memory
operands and dst is accumulator A or B.

The instruction multiplies a data-memory value by anQ,ther data-memory
value and stores the result in accumulator A or B. The register T is loaded
with the Xmem value In the read-memory phase. .

dst -I- (Xmem) x (Ymem); T -I- (Xmem)

In the indirect addressing mode. the instruction can also modify the contents
of the auxiliary registers used for indirect addressing.

[> Example 5.6 Describe the operation of the following MPY instructions:

a. MPY 13, B

b. MPY #01234, A

c. MPY:+AR2-, *AR4 + 0, B

Solution Instruction (a) multiplies the current contents of the T register by the contents
of the data-memory location 13 in the current data page. The result is placed
in the accumulator B.

Instruction (b) multiplies the current contents of the T register by the con­
stant 1234 and places the result in the accumulator A.

Instruction (c) multiplies the contents of memory pointed by AR2 by the
contents of memory pointed by AR4. The result is placed in the accumulator
B. During this instruction execution, register T is loaded with the contents of
the same data-memory location pointed by AR2. AR2 is then decremented by
1 and AR4 is updated by adding to it the contents of ARO:

Multiply and Accumulate Instruction (MAC)

This instI1lction is an improvement over the MPY instruction. One of the
several forms that this instruction can take is

MAC Xmem, Ymem, src, dst; where Xmem and Ymem are dual data­
memory operands and src and dst are accumulators A and B.

The instruction multiplies a data-memory value by another data-memory
value and adds the product to the contents of the source, which may be either .
of the two accumulators A and B. The result is stored in the other accu­
mulator. The register T is loaded with the Xmem value.

---,.._----­

5.7 TMS320C54xx Instructions and Programming 135

dst +- (Xmem) x (Ymem) + (src); T +- (Xmem)

Similar to the ~PY instruction, this· instruction can modify the contents of
auxiliary registers used in indirect addressing.

I> Example 5.7 Describe the operation of the following MAC instructions:

a. MAC * AR5+, #1234h, A
(

b. MAC *AR3-, *AR4+, B, A

Solution Instruction (a) multiplies the contents of the data-memory location pointed
by AR5 by the constant 1234h and adds the product to the contents of the
accumulator A. During the execution, register T is loaded with- the content of
the data-memory.location pomted by AR5. AR5 is then incremented by 1.

Instruction (b) multiplies the contents of the data memory pointed by AR3 by
the contents of the data memory pointed by AR4. The contents of the accu­
mulator B are added to the product and the result is placed in the accumula­
tor A. The register T is loaded with the contents of the same data-memory
location pointed by AR3. AR3 is then decremented by 1 and AR5 is incre­
mented by 1.

The MAC instruction is used for computing the sum of a series of product
terms.

Multiply and Subtract Instruction (MAS)

This instruction is similar to· the MAC instruction. One form of this instruc­
tion is

MAS Xmem, Ymem, src, dst; where Xmem and Ymem are dual data-memory
operands and src and dst are accumulators A and B.

The instruction multiplies a data-memory value by another data-memory
vallie and subtracts the product from the contents of the sourc.e, which may
be either of the two accQmulators A and B. The result is stored in the other
accumulator. The register T is loaded with the Xmem value in the reaa­
memory phase.

dst +- (src) - (Xmem) x (Ymem); T +- (Xmem)

In the indirect inode, in addition to the multiply operation, the instruction
can modify the contents of the auxiliary registers used for indirect addressing.

I> Example 5.8 Describe the operation of the following MAS instruction:

MAS *AR3-,'*AR4+, B. A

136 Chapter 5 Programmable Digital Signal Processors

Solution 	 This instruction multiplies the contents of the data memory pointed by AR3
by the contents of the data memory pointed by AR4. The product is sub­

. tracted from the contents of the accumulator B and the result is placed in the
accumulator A. During this instruction, register T is loaded with the contents
of the same data-memory location pointed by AR3. AR3 is then decremented
by 1 and ARS incremented by 1.

The MAS instruction is used for computing butterflies in FFT implementation.

Multiply, Accumulate, and Delay Instruction (MACD)

This instruction carries out all the functions of the MAC instruction and, in
addition, copies the contents of the current data-memory address to the next
higher data-memory address. However, the two operands of the multiplier are
required to be a single data-memory value and a program-memory value. This
feature -is equivalent to implementing the Z-l delay encountered in digital
signal-processing algorithms. For this reason, the MACD instruction is often
used for implementing FIR filters .. The format and all other features of the
MACD instruction are ~e as those of the MAC instruction;

Repeat Instruction (RPT)

The format of this instruction is

RPT Smem Smem is a single data-memory operand
or . RPT Ilk k ;s a short or a long constant •

The instruction loads the operand in the repeat counter, Re. The instruction
following the RPT instruction is repeated k + 1 times, where k is the initial
value of the RC.

Due to the dedicated hardware support, the repeat instruction is used to
repeat an instruction a given number of times without any penalty for JooP­
ing. It may be used to compute the sum·of products as required in the imple­
mentation of FIR filters. .

I> Example 5.9 Explain what is accomplished by the following instruction sequence:

RPT #2
MAC *ARl+, *AR2-, A

Solution 	 The first instruction loads the register RC with 2. This number is the repeat
count for the ne~ MAC instruction. The MAC instruction executes three
times. It multiplies and accumulates in A the data locations contents pointed
to by the registers ARl and AR2. After each multiply and add the pointer ARl
is incremented and,pointer AR2 is decremented.

-.~.--~...---~..•.

5,7 TMS320C54xx Instructions and PrC/gramming
i

137

Block Repeat Instruction (RPTB)

RPTB instruction has the format

RPTB pmad, where pmad is the program memory address denoting the end
of the block of instructions to be repeated.

This jnstruction is similar to the RPT instruction, except that it repeats a
block of code a given number of times without any penalty for looping. One
more than the number of times the block of instructions is to be repeated
is initially loaded into the memory-mapped block repeat counter register,
BRC.

5.7.2 Programming Examples

We now look at a few sample programs written for the TMS320C54xx signal
processors. These programs particularly illustrate the use of some of the signal­
processing instructions ,and the addressing modes to access data operands.

l> Example 5.10 	 Write a program to find the sum of a series of signed numbers stored at suc­
cessive locations in the data memory and place the result in the accumulator
A, i.e.,

41fh

A L dmad(i) (5.1)
i=410h

"

Solution 	 The TMS320C54xx program for this example is shown in Figure 5.14. ARl is
used as the pointer to the numbers and AR2 as the counter for the numbers.
The program initializes the accumulator to 0, sets ARl to 410h to point to the
first number and AR2 to the initial count. This will be used to track the num­
ber of processed locations at each step of execution. Sign-extension mode is
selected to handle signed numbers. The program adds each number in ~urn to
the accumulator, increments the pointer and decrements' the counter. The
process is repeated until the count in AR2 reaches O. At the end of the pro­
gram, the accumulator A has the ~um of the numbers in location s 410h to
41fh. '

l> Example 5.11 Write a cprogram to compute the S11m of three product terms given by the
equation '

, y(n) = hox{n) + h1x(n - 1) + h2x(n - 2) (5.2)

where x(n), x(n - 1) and x(n 2) are data samples stored at three successive

138 Chapter 5 Programmable Digital Signal Processors

**********************.*************'**********************'!r*****'

*
* This program computes the signed sum of data memory locations
* from address 410h to 41fh. The resuit is placed in A.

*
* A = dmad(410h) + 1:lmad(41lh)+ •.• dmad(41fh)

*

.mmregs

.global _c_intOO

•text

c intOO:
STM 'lOH, AR2 Initialize counter AR2 = lOh
STM '41OH, ARI Initialize pOinter ARI =410h
LD 'OH, A Initialize sum A= 0
SSBX SXM Select ~ign extension mode

START:
ADD *ARl+, A ; Add the next data value
BANZ START, *AR2- Repeat if not done
NOP No operation

.end

Figure 5.14 TMS320C54xx program for Example 5.10

data~memory locations and 110. hI> and hz are constants stored at thr~eother
successive locations in the data memory. The result y(n) is to be stored in the
data memory. Use direct addressing mode to access the data memory.

Solution 	 Let 110, hI> and h2 be stored starting at address h, and x(n), x(n. "": 1), and
x(n - 2) starting at address 310h in the data memory.ProduQt terms hox(n),
h1x(n - 1), and hzx(n.- 2) are computed using the MPY instruction by mov~
ing one of the operands to register T and accessing the other operand directly
from the data memory. Note that the data~page pointer, DP, needs to be
initialized before using the direct addressing mode to . access the operand.
Product terms are computed in A or B and added. When all the three multi­
plications are done, the result accumulated in B is stored in the data memory
yen). Since yen) is 32 bits long, it is saved at two successive locations labeled
as y, with the lower 16 bits at memory location yand the higher 16 bits at the
next memory location. The TMS320C54xx program for this example is shown
in Figure 5.15. .

Figure 5.15

5.7 TMS320C54xx Instructions and Programming 139

.*'*******************
*
* This program computes multiply and accumulate using direct addressing
* mode.
*
* yen) = h(O)x(n) + h(1)x(n-1) + h(2)x(n-2)
*
* h(O), h(l), and h(2) are stored in,data-memory locations starting at
* location hand x{n), x(n-l), and x{n-2) are stored in data-memory
* locations starting at location x. yen) is saved in data-memory
* locati~n y (low 16 bits) and y + I (high 16 bits).
*
**,,*

.global c intOO

x .usect "Input Samples", 3
y .usect "Output", 2
h .usect "Coefficients·, 3

.text

c intOO:
SSBX
LD
LD
LD

MPY

SXM
#h, DP ,
@h, T
lx, DP,
@x, A

Select sign extension mode
Select the data page for coefficients
Get the coefficient h(O)
Select the data page for input samoles
A = x{n)*h(O)

LD
LD
LD
MPY

#h, DP
@h+1, T
lx, DP
@x+l, B

Select the data page for coefficients
Get· the coefficient h(l)
Select the data page for input signals
B = x(n-I)*h(1)

ADD ' A. B B x(n)*h(O) + x(n-l)*h(l)

LD
LD
LD
MPY

#h, DP
@h+2, T
lx, DP
@x+2, A

Select the data page for coefficients
Get the coefficient h(2)
Select the data page for ,input signals
A = x(n-2)*h(3)

ADD A, B B x (0) + x(n-l)*h(l) + x(n-2)*h(3)

LO
STL
STH
NOP

#y, DP
B, @y
B, @y+1

Select the data page for output
Save low part of output
Save high part of output
No operation

.end

..----- --,
TMS320C54xx program tor Example 5.11

140 Chapter 5 Programmable Digital Signal Processors

!> Example 5.12 	 Repeat the problem of Example 5.11 using the indirect addressing mode to
access data.

Solution 	 In this example, let us use the auxiliary register AR2 to address the data using
the indirect addressmg mode. AR2 is initialized to 310h, the location where
x(n) is storeg,and is advanced to the next address after each multiply opera­

**********************~~+++***

*
* This program computes multiply and.accumulate using. indirect
* addressing mode.
*
* yen) = h(O)x(n) + h(l)x(n-l) + h(2)x(n-2)
*
* 	 h(O). hell. and h(2) are stored in data-memory locations starting at

location h. x(n)~ x(n-l), and x(n-2) are stored in data-memory*
locations 	31Oh. 311h, &312h resp. yen) is saved in data-memory*
location 313h (low 16 bits) and 314h ~high 16 bits)*

*

**

.global _c~intOO

h 	 .int 10, 20, 30

.text

c intOO:
SSBX SXM Select sign extension mode
STM 131OH, AR2 lnitialize pointer AR2 for x(n) stored at

310H
STM Ih, AR3 Initialize pointer AR3 for coefficients

MPY *AR2+, *AR3+, A A : x(n)*h(O)

MPY *AR2+, *AR3+, B B = x(n-1)*h(1)

AOD A. B B = x(n)*h(O) + x(n-1}*h(1)

MPY *AR2+. *AR3+. A ; A =x(n-2)*h(2)

ADD A. B ; 8 = x(n}*h(O} + x(n-l)*h(i) + x(n-2)*h(2}

STl B. *AR2+ ; Save low part of result
STR B, *AR2+ ;._Save h,igh part of result
NOP ; .No operation

.end

Figure 5.16 TMS320C54xx program for Example 5.12

5.7 	TMS320C54xx Instructions andProgranuning 141

tion. AR3 is used as the pointer to access coefficients starting at h. At the end
of three multiply operations, AR2 points to 313h, the address at which the
lower 16 bits of yen) are to be stored. The TMS320C54xx program for this
example is shown in Figure 5.l6.

l> 	 E~ample 5.13 Repeat the problem of Example 5.11 by using the MAC instruction.

**
1<'

* This program computes multiply and accumulate using the MAC
* instruction
*
* 	 yen) ~ h(O)x(n) + h(l)x(n-l) + h(2)x(n-2)

\

*
* 	 where, h(O) ,hO). and h(2) are in the program-memory locations

starting at h, x(n). x(n-1), and x'(n-2) are in data":memory locations*
starting at x.y(n) ,is to be saved in location y (low 16 bits) and*

* y + I (high 16btts).

*

**

.global _c_intOO'

.data

:bss x, 3

.bss y, 2

h 	 •int 10, 20, 30

.text

c intOO:
SSBX SXM Select s1gn extension mode
STM #X, AR2 Initialize AR2 to point to x(n)
STM #h, AR3 Initialize AR3to point to h(O)
La DOH, A Initialize result in A = 0

RPT #2 	 Repeat the next operation 3 times
MAC *AR2+, *AR3+. A ; yen) computed

STM #y, AR2 ; Se~ect the page for yen)
STL A. *AR2+ ; Save the low part of yen)
STH A. ,*AR2+ Save the high part of yen)
NOP ; No operation

.end

Figure 5.17 The TMS320C54xx program for Example 5.13

142 Chapter 5 Programmable Digital Signal Processors

Solution 	 The MAC instruction multiplies the contents of two data-memory locations
and adds the result to the previous contents of the accumulator being used.
(Note that only auxiliary registers AR2-AR5 can be used.) This instruction is
repeated twice using RPT ipstruction. After each MAC instruction the auxil~
iary registers, which are being used, should be incremented by 1. Finally, the
result is stored in the memory location pointed by ''I' using STL instruction
first for the lower 16 bits and then using STH instruction for the higher 16 bits.,
The TMS32054Cxx program for this example is shown in Figure 5.17. ,

5.8 On-Chip Peripherals

On-chip peripherals facilitate interfacing with external devices such as mo­
dems and analog-to-digital converters. They also provide certain features that
are required for implementing real time systems using the processors. All the
'54xx devices have the same CPU, but different on-chip peripherals are avail­
able in different devices. These peripherals include general-purpose I/O pins,
a software-programmable wait-state generator, hardware timer, host port in­
terface (HPI), clock generator, and serial ports. Of these, the general-purpose
I/O and the software-programmable wait-state generator are described in­
Chapter 9 on parallel peripheral devices. The timer, the host port interface,
clock generator, and serial ports are briefly described below. The tables in
Appendix A give details of the information required for programming these
on-chip peripherals.' 	 ,

5.8.1 ' Hardware Timer

The timer is an on-chip down counter that can be used to generate a signal to
. initiate an interrupt or to initiate any other process. The timer consists ofthree

memory-mapped registers-TIM, PRD, and TCR. A logical block diagram of
the timer circuit is shown in Figure 5.18. The timer register (TIM) is a 16wbit
memorywmapped register that decrements at every pulse from the prescaler
block (PSC). The timer period register (PRD)' is a 16-bit memory-mapped
register whose contents are loaded onto the TIM whenever the TIM decre­
ments to zero or the device is reset (SRESET). The timer can also be inde­
pendently reset using the TRB signal. The timer control register (TCR) is a
16-bit memory-mapped register that contains status and control bits. Table 5.4
shows .the functions of the various bits in the TCR. The prescaler block is
also an on-chip counter. Whenever the prescaler bits count down to 0, a clock

5.8 On-Chip Peripherals 143

PSC

Borrow Borrow

SRESET

TRB

CPU clock

TSS

• ~TmT

> II> TOUT

Figure 5.18 Logical block diagram of timer circuit

(Courtesy of Texas Instruments Inc.)

pulse is given to the TIM register that decrements the TIM register by 1. The
TDDR bits contain the divide-down ratio, which is loaded onto the prescaler
block after each time the prescaler bits count down to O. That is to say that the
4-bit value of TDDR determines the divide-by ratio of the timer clock with
respect to the system clock. In other words, the TIM decrements either at the
rate of the system clock or at a rate slower than that as decided by the value
of the TDDR bits. TOUT and TINT are the output signals generated as the
TIM register decrements to O. TOUT can .trigger the start of the conversion
signal in an ADC interfaced to the DSP. The sampling frequency of the ADC
determines how frequently it receives the TOUT signal. TINT is used to gen­
erate interrupts, which are required to service a peripheral such as a DRAM
controller periodically. The timer can also be stopped, restarted, reset, or dis­
abled by specific status bits.

5.8.2 Host Port Interface (HPI)

The host port interface (HPJ) is a unit that allows the DSP to interfa.ce(to an
8-bit or a 16-bit host device or a host processor. The HPI communicates with
the host independently of the DSP. The HPI features allow the host to inter­
rupt the DSP, or vice versa, when required; The interface contains minimal

144 Chapter 5 Programmable Digital Signal Processors

Table 5.4 . Function of Various Bits in the TCR Registers

Reset
B'it Name Value Function

15-12 Reserved Reserved; always read as o.
11 Soft o Used in conjunction with the Free bit to determine the

state of the timer when a breakpoint is encountered in '
the HLL debugger. When the Free bit is cleared, the
Soft bit selects. the timer :mode.

Soft 9 The timer stops immediately.

Soft = 1 The timer stops when the co~ter
decrements to O.

10 Free o Used in conjunction with the Soft bit to determine the
state of the timer when a breakpoint is encountered in
the HLL debugger. When the Free bit is cleared, the
Soft bit selects the timer mode.

Free = 0 The Soft bit selects the timer mode.

Free = 1 The timer runs free regardless of the Soft bit.

9-6 PSC Timer prescaler counter. Specifies the count for the on­
chip timer. When PSC is decremented past 0 or the
timer is reset; PSC is loaded with the contents of TDDR
and the·TIM is decremented.

5 TRB Timer reload. Resets the on-chip timer. When TRB is
set, the TIM is loaded with the value in the PRD and
the PSCis loaded with the value in TDDR. TRB is
always read asa O.

4 TSS .0 Timer stop status. Stops or .starts the on-chip niner. At
reset, TSS is cleared and the timer immediately starts­
timing.

TSS ~ 0 The timer is started.

TSS The timer is stopped.

3-0 TDDR 0000 Timer divide-down ratio. Specifies the timer divide­
down ratio (period) for the on-chip timer. When PSC is .
decremented past 0, PSC is loaded with the .contents of
TDDR.

(Courtesy of Texas Instruments Inc.)

external logic,' so that a system with a host and a.DSP can be designed without
increasing the hardware on the board. The HPJ interfaces to the PC parallel
ports directly. A generic block diagram of the HPJ is shown in Figure 5.19.

5.8 On-Chip Peripherals 145

HPIl6HOST ~ DATA[15:0]. PPD[15:0] :

HINT
DMAI I

Address[l7:0]
HCNTLO
HCNTU
HBIL

RIW' ­_~=~~;(ASData strobes' HRIW ~.
READY " HRDY HDSl, HDS2, HCS

~
Figure 5.19 A generic diagram of the host port interface

(Courtesy of Texas Instruments Inc.)

Important signals in the HPI are as follows:

• 	 The 16-bit qata bus and the 18-bit address bus.

• 	 The host interrupt, HINT, for the DSP to signal the host when its atten­
tion is required.

• 	 HRDY, a DSP output indicating that the DSP is ready for transfer.

• 	 HCNTLO and HCNTU, control signals that indicate the type of transfer
to carry out. . the transfer types are data, address, etc.

• 	 HBIL. If this is low it indicates that the current byte is the first byte; if it
is high, it indicates that it is the second byte.

• 	 HR/W, indicates ifthe host is carrying out a read operation or a write
operation.

By appropriately using these signals, the DSP device can be interfaced on a
host such as a Pc.

5.8.3. Clock Generator

The clock generator on TMS320C54xx devices has two options-an external
clock and the internal clock. In the case of the external clock option, a clock
source is directly connected to the device. The internal clock source option, on
the other hand, uses an internal clock generator and a phase locked loop
(PLL) circ)lit. The PLL, in turn, can be hardware configured or software pro­
grammed. Not all devices of the TMS320C54xx family have all these clock
options; they vary from device to device.

146 Chapter 5 Pro~ammable Digital Signal Processors

5.8.4 Serial 110 Ports

Three types of serial ports are available on the '54ndevices,'depending on the
type of the device. These are synchronous, buffered, and time-division multi­
plexed ports.

The synchronous serial ports are high-speed, full-duplex ports that provide
direct communication with serial devices, such as codec, and analog-to-digital
(AID) converters. A buffered serial. port (BSP) is asynchronous serial port that
is provided with an autobuffering unit and is clocked at the full clock rate. The
autobuffering unit supports high-speed data transfers and reduces the over­
head of servicing interrupts. A time-division multiplexed (TDM) serial port is
a synchronous. serial port that is provided to allow time-division multiplexing
of the data. We will cover serial UO in chapter 10.

The functioning of each of these on-chip peripherals is controlled by
memory~mapped registers assigned to the respective peripheral. Figure 5;8(b)
gives the list of peripheralmemoty-mapped registers along with their ad­
dresses for the TMS320C54xx devices.

5.9 Interrup~s of TMS320C54xx. Processors

Many times. when the CPU is in the midst of executing a program, a periph­
eral device may require a service from the CPU. In such a situation, the main
program maybe interrupted by a signal generated by the peripheral device.
This results in the processor suspending the main program in order to execute
another program. called interrupt service routine, to service the peripheral
device. On completion of the interrupt service routine, the processor returns
to the main program to continue from where it left.

Interrupt may be generated either by an internal or an external device. It
may also be generated by software. Not all interrupts are serviced when they
occur. Only those interrupts that are called nQnmaskable are serviced when­
ever they occur. Other interrupts, which are called maskable interrupts, are
serviced only if they are enabled. There is also a priority to determine which
interrupt gets serviced first if more than one interrupts occur simultaneously.

Almost all the devices of the TMS320C54Xxfamily have 32 interrupts. How­
ever. the types and the number under each type vary from device to device.
Some ofthese interrupts are reserved for use by the CPU. Figure 5.20 gives the
types of interrupts, their locations, and priorities for· TMS320C54xx pro­
cessors.

A more detailed description of interrupts and how an interrupt is handled
when it occurs is given in Chapter 9.. .

5.9 Interrupts of TMS320C54xx Processors 147

LOCATION

NAME DECIMAL HEX PRIORITY FUNCTION

RS; SINTR ·0 00 Reset (hardware and
software reset)

NMI, SINT16 4 04 2 Nonmaskable interrupt
SINT17 8. 08 Software interrupt #17
SINT18 12 OC Software interrupt #18
SINT19 16 10 Software interrupt #19
SINT20 20 14 Software interrupt #20
SINT21 24 18 Software interrupt #21
SINT22 28 1C Software interrupt #22
.SINT23 32 . 20 Software interrupt #23
SINT24 36 24 Software interrupt #24
SINT25 40 28 Software interrupt #25
SINT26 44 2C Software interrupt #26
SINT27 48 30 Soft;vare interrupt #27
SINT28 52 3£ Software interrupt #28
SINT29 56 38 Software interrupt #29

·SINT30 60 3C Software interrupt #30
INTO, SINTO 64 40 3 External user interrupt #0
INT1, SINT1 68 44 4 External user interrupt #1.
INT2, SINT2 72 48 5 External user interrupt #2
TINT, SINT3 76 4C 6 Timer interrupt
RINTO, SINT4 1 80 50 7 McBSP #0 receive

interrupt (default)
XINTO, SINT5 84 54 8 McBSP #0 transmit

interrupt (default)
RINT2, SINT6 sa 58 .9 McBSP #2 receive

interrupt (default)
. XINT2,. SINH 92 5C 10 McBSP #2 transmit

Interrupt (default)
INT3, SINT8 96 60 11 External user interrupt #3

.HINT, SINT9 100 64 12 HPJ interrupt
RINT1, SJNT10 104 68 . . 13 McBSP #1 receive

interrupt (default)
XINT1, SINT11 106 . 6C 14 McBSP #1 transmit

interrup~ (default)
DMAC4, SINT12 . 112 70 15 DMA channel 4 (default)
DMAC5, SINT13 116 74 16 DMA channel 5 (default)
Reserved 120-127 78-7F Reserved

Figure 5.20 Table for interrupt locations and priorities for TMS320C54xx processors

·(Courtesy of Texas Instruments Inc.)

Loads PAB with
the PC's contents

Lo~ IR With the contents
ofPH

DecodeS the IR's contents

. Loads DB with the datal
read. operand

Loads CB with the data2
read operand

Loads EAB with the data3
write address, if required

~

LoadsPB w
fetcbedinst
word

Loads DAB with the datal
read address, ifreqUired

Loads CAB with the data2
read address, if required.

Updates auxiliary registers .
and stack pointer

ith the
ruction

Execute/write

i
Executes the instruction
and loads EB with write
data

Time

148 Chapter 5 Programmable Digital Signal Processors

5.10 Pipeline Operation of TMS320C54xx Processors

The CPU ·of'54xx devices has a six-level-deep· instruction pipeline. The· six
stages of the pipeline are independent of each other; This allows overlapping
execution of instructions. During any given cycle, up to six different instruc­
tions can be active, each at a different stage of processing. The six levels of the
pipeline structure are program prefetch, program fetch, decode, access, read,
and execute. .

1. 	 During program prefetch, the program address bus, PAB, is loaded with
the address of the next instruction to be fetched.

2. 	 In the fetch phase, an instruction word is fetched from the program bus,
PB, and loaded into the instruction register,IR. These two· phases form
the instruction fetch sequence.

3. 	During the decode stage, the contents of the instruction register, IR,
are decoded to determine the type of memory access· operation and the
control signals required for the data-address generation unit and the
CPU. 	 .

. Figure 5.21 Six-stage pipeline of TMS320C54xx execution

(Courtesy of Texas Instruments Inc.)

5.10 Pipeline Operation of TMS320C54u Processors 149

l> Example 5.14

. Solution

4-. 	 The access phase outputs the read operand's address on the data address
bus, DAB. If a second operand is required, the other data address bus,
CAB, is also loaded with an appropriate address. Auxiliary registers in
indirect addressing mode and the stack pointer (SP) are also updated.,

5. 	 In the read phase the data operand(s), if any, are read from the data
buses, DB and CB. This phase completes the two-phase read process and
starts the two-phase write process. The data address of the write oper­
and, if any, is loaded into the data write address bus, EAB.

6. 	 The execute phase writes the data using the data write bus, EB, and com­
pletes the operand write· sequence. The instruction is also executed in
this phase. .

Figure 5.21 shows the six stages of the pipeline .and the event.s that occur in
eachstage. The following examples demonstrate how the TMS320C54xx pipe­
line works while executing instructions.

Show the pipeline operation of the following seque~ce of instructions if the
initial value of AR3 is 80 and the values stored in memory location 80, 81, 82
are 1, 2, and ,3. .

LD*AR3+. A
ADD #lOOOh. A
STLA. *AR3+

Figure 5.22 is the solution to this example problem.

Exec &

CYGle Prefetch Fetch Decode Access Read Write AR3 A

1· LD 80 X

2 ADD LD 80 X

3 STL ADD LD 80 X

4 STL ADD lcD 81 X

5

6

STL ADD
STL

LD- LD
81
82

1
OOOlh

7 STL ADO 82 1001h

8 STL 82 1001h

Figure 5.22 Pipeline operation of the instruction sequence of Example 5.14

150 Chapter 5 Programmable Digital Signal Processors

Cycle

1

2

3

4

5

6

7

8

9

Prefetch

ADD

LD

MPY

ADD

Fetch

ADD

LD

MPY

ADD

Decode

ADD

LD

MPY

ADD

Access

ADD

LD

MPY

ADD

Read

ADD

LD

MPY

ADD

Exec &
Write AR3 ARI

81' 84

81 84

81 84

82 84

82 85

ADD 83. 85

LD 83 85

MPY 83 85

ADD 83 85

A T

1 X

1 X

1 X

1 X

1 X

03 06

03 06

03 06

15h 06

Figure 5.23 Pipeline operation of the instruction sequence of Example 5:'5

l> Example 5.15 Show the pipeline operation of the following sequence of instructions if the
initial values of ARI, AR3, A are 84, 81, 1 and the values stored in memory
location 81, 82, 83. 84 are 2, 3, 4, 6. Also provide the values of registers AR3,
ARI. T and accumulator, A, after completion of each cyde.

ADO *AR3+. A
LD *ARl+. T
MPY *AR3+.B
ADD B. A,

Solution Figure 5.23 is. the solution to this example problem.

5. 11 Summary

In this chapter, we have looked at the architectural features of the commercially
available programmable digital signal processors. In particular, we have studied
in detail the following features of the Texas Instruments.TMS320C54xx DSPs:

• 	 Architecture of the processors, consisting of the bus structure, central
processing unit (CPU), and internal memory organization

Assignments 151

• 	 ,Addressing modes, conslstmg of immediate addressing, absolute ad­
dressing, accumulator addressing, direct addressing, indirect addressing,
memory-mapped addressing, and stack addressing

• 	 Address-generation unit, including single-operand address modifica­
tions, circular address modifications, bit-reversed address modifications,
and dual-operand address modifications

• 	 Assembly language instructions, including signal processing-specific in­
structions and programming examples

• 	 Memory organization

• 	 On-chip peripherals

• 	 Interrupts

• 	 Pipeline operation

References

1. TMS320C2x User's Guide, Texas Instruments, 1993.

2. DSP 56000/56001 Digital Signal Processor User's Manual, Motorola, 1993.

3. ADSP21Ol/2102 User's Manual, Analog Devices, 1993..

4. TMS320C54xxDSP Reference Set, Vols. 1 and 2, Texas Instruments, 1997.

5. TMS320VC5416 DSP Data Manual, Texas Instruments, 2002..

6. TMS320C54x DSP Reference Set, Vol. 2, Texas Instruments, 1997.

Assignments

5.1 	 How will you configure a TMS320C5416 processor to have the following on­
chip memories? Specify the address range in each case.

On-chip DARAM: for program

On-chip ROM: for program

How much RAM for data will be available in the specified configuration?

5.2 	 Explain the difference between the internal and external modes of clocking
TMS320C54xx processors. How do you vary the clock frequency in each case?

5.3 	 Identify the addressing mode of the source operand In each of the follo.:ving
instructions:

a: 	 ADD >I- AR2, A

b. 	 ADD >I- AR2+:, A

.,
152 Chapter 5· Programmable Digital Signal Processors

c. ADD*AR2. + %, A

d. ADD #Ofih, A

e. ADD 1234h, A

f. ADD *AR2+ OB, A

g. ADD *+AR2, A

5.4 	 What will be the .contents of accumulator A after the execution of the in­
struction

LD 	 *AR4,4, A

if the currentAR4 points to a memory location whose contents are 8bOeh. and
the ~XM bit of the status register STl is set? ..

5.5 	 Write a sequence of TMS320CS4xx instructions to configure a circular buffer
with a start address at0200h and an end address at 021fh with current buffer
pointer (AR6) pointing to address 020Sh.

5.6 	 Write a TMS320CS4xx program to compute the equation

y= mx+ c

Assume that ~ and c 'are stored in the data memory and m in the program
memory; The result should be stored in the data memory.

5.7 	 Write a TMS320C54xx program to implement second~order IIR filter equations

den) = x(n) + d(n -l)al + den - 2)a2

y(n) = 	d(n)bo+ den - 1)b1 + d(n - 2)b2

where ah a2, bo, bI , b2 are filter coefficients (integers), x(n) is the latest input
sample, y(n) is the filtered output sample, and den) is an intermediate result.
You may assume that, during calculations, all signals remain within values
represented by 16 bits. 	 . ..

S.8 	 Write a TMS320CS4xx program to read the cosine value of a variable from
a table stored in the program memory and store it in the data memory. The
variable is located at address VALUE in the· data memory, an.d the cosine
value should be stored at the same location. The cosine table is stored at
address TABLE in the program memory.

5.9 	 Write a TMS320CS4:x::(C program to read .100h words from the input port at
address INPORT and store them in the data-mem9rystarting at address
BUFFER.

5.10 	. Writ.e a TMS320C54xx program to mask the lower 6 bits of a word stored in
the data memory and write the modified word back at the same location.

5.11 	 What is the role of the interrupt pins in il DSP device? Are these the only
means of interrupting a DSP program? How do you prevent a signal on an
interrupt pin from interrupting a time-critical program being executed by the
DSP? .

Assignments 153

5;12 	 By means ofa figur~, explain the pipeline operation ofthe following sequ~nce
of TMS320C54xx: instructions if the initialva1ue of AR3 is 80 and the values
stored in memory location 80,81,82 are 1,2, and 3.

LD *AR3+, A
ADD *AR3+. A
STL A. 	 ,*AR3+

Chapter 6.
Development Tools for Digital
Signal-Processing Implementations

6. 1 Introduction

In the last chapter, we studied TMS320C54x:x DSP's architecture and instruc­
tions, and we wrote a few simple programs to illustrate the use of its instruc- ,
Hons. In this chapter, we introduce a development tool that can be used to
implement and test DSP algorithms. This tooUs the D.SP System Design Kit, or
DSK, for TMS320C54n processors. It comes with the development software
called the Code Composer Studio (CCS). We will briefly describe this tool and
show how it can be used to develop DSP applications. Specifically, we discuss
the following topics: .

The DSP development tools

The DSP System Design Kit (DSK)

Software for development

The assembler and the assembly source file

The linker and memory allocation

The C1C++ compiler

The Code Composer Studio (CCS)

DSP software development example

6.2 -The DSP Development Tools'

A development tool provides a: hardware/software platform to implement and
test a design. For implementing' TMS3ioC54xx DSP designs,. a range of sys­
tems exist with varying developmental capability and. price tags. The least
expensive developmental system is the DSP System Design Ki~, or DSK,. and
the most expensive and also the most capable system is the Emulator. The

-_._-­

154

6.3 The DSP System Design Kit (DSK) 155

medium-capability system is the Evaluation Module, or the EVM. Here, we
limit our discussions to the use of the DSK for implementing and testing DSP
algorithms. The DSK provides all the capabilities that a beginner needs to start
implementing DSP schemes using TMS320C54xx DSP devices.

6.3 The DS' System Design K.it (DSK)

TMS320VC5416 DSK, or simply DSK, is a low-cost development tool that
allows a student to explore TMS320C54xx DSP architecture and implement
signal-processing algorithms. The DSK is specifically suitable for a beginner
learning DSP -implementations. It comes with a TMS320VC5416-based board,
and DSK-specific development software. The DSK board can be connected to a
PC using the universal serial bus (USB) cable, as shown in Figure 6.1. An em­
bedded JTAG emulation logic on the DSK allows for code development and
debug without the use of an external emulator. Four jacks for analog inputs
(such as a microphone) and outputs (such as a speaker) provide interface to
the outside world.

The board is shown in the block diagram of Figure 6.2. The DSK board IS

designed around a-16":160 MHz VC5416 DSP processor. The DSP device pro­
vides a 64K-word dual-access program/data RAM, a 64K-word single-access
program RAM, and a 16K-word program ROM. In addition to the memories,
it also provides three multichannel buffered serial ports (McBSPs), a DMA
controller, 8/16-bit host port interface, and a timer. Additional external mem­
ory is provided with a 64K~word S.RAM and a 256K-word flash memory on the
DSK board.

The DSK uses the PCM3002 stereo codec consisting of a 16-bit analog~to­
digital converter (ADC) and a 16-bit digital-to-analog converter (DAC). The
codec provides the capability to convert an analog signal toa serial digital
signal for the DSP's multichannel buffered serial port McBSP2 and to convert

DSK PC
AnalogI II

USB Port AnalogOut

..

• Microphone

Port

Speaker

USB

USB Cable

Figure 6.1 Signal-processing configuration using the C 5416 DSK

[,

- -
Tools for Digital Signal-Processing Implementations 156 Chapter 6

ceo;:;

USB
IfF

+5Vin

Figure 6.2 Block diagram of thgD,SK board

(Courtesy of Texas Instruments Inc.)

the digital signal to analog for the analog output port. We consider the details
of this interface in Chapter 10.

The other provisions on the board include three expansion connectors for
memory, peripherals, and h6st interfaces. Four jumpers are provided to con­
figure, the board for various clock frequencies and running the DSP in micro­
processor or microcomputer mode. A reset push button switch is provided to
reset the board. The board uses 5V dc power supply. For more details on the
DSK board hardware, the reader should consult reference [I] given at the end
of this chapter.

6.4, Software for Devel~pment

The software development flow chart of Figure 6.3 describes the, various lan­
guages, tools, and libraries that may be employed to develop an application.
The flow chart also shows the files that are used and created in the deVelop­
ment process. '

The tools depicted in the flow chart consist of the compiler, the assembler,
the linker', and .the dequgger. The utilities that may be neededconsist of the
archiver, the library· builder, and the hex converter. The files encountered in

6.4- Software· for Development 157

: Macro.:
• •source
• . files

•• Macro.... library·•

••..

•••••..

•

•·••••

•

• •
:;Assembler :

COFF
object
files

•••·•

•

: Runtime- •
: support: Library of: .

: object·: I ..r
: files:

: library

C54x

.,". ..
• C/C++ ••• fil~s .. · •

: . source :

Assembly· .
translation
assistant

..., ...

.. Assembler. .,• source··:

Figure 6.3 Software development flow

(Courtesy of Texas Instruments

the development process consist of source files, COFF object files, and a COFF
executable file;

The C compiler translates a source file into a C54ix assembly language
source file. To create a source file, a tool called the editor is needed. An editor
maybe any ASCII editor available on the PC, such as EDIT in DOS. The
assembler translates assembler source files into COFF object files. Source files

158 Chapter 6 Development Tools for Digital Signal. Processing Implementations

can contain instructions, assembler directives, and macros. The assembler _
directives are employed to control the assembly process, such as the source
listing format, data alignment, and section contents. The linker combines the
relocatable COFF object tiles and library modules into a single executable
COFF object tile. It creates the executable module by assigning symbols to
memory locations and resolving symbol references.

The archiver utility collects a group of tiles into a single archive tile. Macros
can be combined to form a macro library. During assembly, the assembler
searches the library and uses the needed macros., Archiver can also be used to
combine a group of object tiles into an' object library. The linker uses the
object library· to resolve external references during the linking process. The
compiler package may include the library-build utillty, which can be used
to build runtime-support libraries. The assembly translation assistant utility
can be used to convert an assembly language source file containing mne­
monic instructions to an assembly language source tile containing algebraic
instructions.
. TMS320C54xx DSP accepts executable COFF tiles as· input. A hex conver­
sion utility is used to convert a COFF object tile into TI-tagged, Intel, Moto­
rola, or Tektronix object formats. The converted tile can be down1oade~ to an
EPROM programmer. The absolute lister· accepts linked object files as input
and creates an absolute file as output. The created tile has absolute rather than
relative addresses. The cross-reference lister uses object tiles to .produce a
cross-reference.

The debuggiIlg tool provides a mechanism to download an executable pro­
gram to the board and run it to verify its operation. More important, it is
used to debug the pro{Wlm by using controlled execution and the monitoring
support provided in the debugging environment. The DSK debugging tool is
described in the next section.

In order to support application development using DSK, the DSK software
provides host utilities .and board drivers and libraries. The host utilities run
on the host PC and provide functions to control the DSK board, whereas the
target libraries are for the DSK board and provide functions to control the
peripherals on the board. C54xx DSK host utilities provide the user with a way
to use the board without having to write 'an application from scratch. These
utilities support C54xx DSK board contiol, such as DSP reset; DS'P application
loadinga.n,d execution, device configuration, status display, board confidence
testing. and flash memory programming. The host utilities can be used to load
and run any application or to configure and monitor the C54xx DSK device
without writing the application to do it. Stand-alone embedded' executable
functions can be programmed into flash memory. For more information on
these utilities, the reader should consult reference [2] given at the end of this
chapter.

The board drivers for the C54xx DSK provide the low-level software inter­
face. These dtivers are not intended to be directly accessible for the user-mode
applications. A Win32 DLL that provides a consistent API across an supported

6.5 The Assembler and the Assembly Source File 1S9

Window platforms hides the details of accessing these dnvers. The purpose of
the board driver functions is to allow the user-mode DLL to access and con­
trol C54xx DSK. These functions provide a b.asic interface that gives access to
the board in all supported Windows environments. The Win32 DLL provides
inte11igentprocessing and control functions that call kernel-mode board
driver functions to access board re.sources and the PCI configuration data. The
board libraries provide functions for board initialization as well as initializa­
tion and control of on-board peripherals.

6.5 The Assembler and the Assembly Source File

A program written in an assembly language is called an assembly source pro­
gram. An example of such a program is shown in Figure 6.4. This program
is essentially the same as the one in the last chapter, except that a few new

**

*
* This program computes the signed sum of 16 data memory
* locations starting at Number. The result ;s to be placed in A.
*.

**

.mmregs

.global c ;ntOO

.data.

Number:
.int .5, 14. ~7: 22, ~25, 4, 2, 0, 6~ 33, 4, 11, 12, -12, 8, 16

. text.

c ;ntOO:
stm nOh. AR2 1nit counter AR2 = 16
stm #Number, ARI 1nitpointerARl to first· number
ld #Oh, A 1nttialize sum A =0·
ssbx SXM Select Sign extension

START:
add *ARl+, A Add the next data value
banz START,*AR2- Rep~jtifnotdbne

nop No operation, just for debugging

.end

Figure 6.4 An assembly source program for TMS320C54xx

160 Chapter 6 Development Tools for Digital Signal-Processing Implementations

directives statements have been added. The directive statements are for the'host
program that will be used to convert the source program to the machine program
for executioI). on the processor. The program that does this conversion is called
an assembler. The statements added in the progli'am in Figure 6,4 are for the
assembler that comes with DSK. Here, we will briefly discuss these statements.
However, the reader is advised to consult reference [3] for complete details.

The .instructions in the program are the processor instructions that we dis­
cussed in the last chapter. The labels such as START in Figure 6.4 refer to the
memory addresses for the instructions. The statements starting with a star (*)
are the comments to facilitate program understanding and do not produce
any converted code. The statements J:4at start with a dot (.) are called direc­
tives. A directive is not a processor instruction; it is an instruction to the
assembler program to control the assembly process. For instance, the .int
directive in the program of Figure 6.4 specifies to the assembler to allocate·
word-size memory locations and initialize them with the data specified after
the directive. The memory allocation starts at the address to which the label
"Number" refers. .

The .mmregsdirective definesmembry-mapped registers of the prQcessor.
For instance, ARO register refers to a specific memory location after as~

· sembling and this reference or definition is provided by the .mmregs direc­
tive. The.global directive declares the specified label visible to other program
modules. The .data and .textare called section directives. These are provided

· to define· data and code sections of a program. For instance, starting at .data
till .text, th~ allocation is to the data section. Starting at .text, the allocation
is to the code section. Finally, the .end directive specifies the end of the source
file. .

There are many other direCtives that faCilitate the aSSembly process of
converting instructions and allocation of code and data. The reader is advised
to lookthese up ih reference[3].

6.6 The Linker and Memory Allocation

The linker is another program that is also a part of the development system.
It is needed to allocate the user program and its sections to actual physical
me.mory on the target, such as the bSK board. It provides a way by which we
can use the resources of the hardware in view of the program that we. intend
to test. Another important use of the linker is to allow a 'programmer to write

· an application in modules. The linker combines these modules into a single
machine program for the hardware execution on the DSP deviCe.

Typically, a command file' is used to define the connection between the
hardware resources and the program sections. An example of a command file
for the program in Figure. 6.4 is shown in Figure 6.5. Memory is defined as
consisting of two pages, PAGE 0 and PAGE 1. PAGE 0 refers to the program

6.8 The Code ComposerStpdio (CCS) 161

/*
* =;====== example6pl.cmd =;;=~===

*
*/

MEMORY"
{

PAGE 0: IPROG: origin = OxlOOO. ·len = Ox3000
PAGE 1: IDATA: origin = Ox400. len = OxlOO

}

SECTIONS
{

.text: {} > IPROG PAGE 0

.data: {. }.> IOATA PAGE 1

Figure 6;5 ·A command file for the program of Figure 6.4

memory; it start~at OxlOOO and has a length of 0x3000. PAGE 1 refers to the
data memory starting at Ox400; it has a length of OxlOO. These are valid

. memory locations in the DSK board.· The· sections of the program are assigned
to exist in these two types of pages. For instance,.text is the code section and
it is assigned to PAGE 0 or the program memory. Similarly, .data section is
defined to be in the data memory or PAGE 1. For more on linker and memory
allocation, the reader is advised to cons~1t reference [3].

6.7 The C/C++ Compiler

The PSK comes with a CtC++ compiler that can be used to develop DSP ap­
plications using the high-level languages C and C++. The compiler generates
an assembly file that can be further converted with the assembler program to
generate an object file for the linker. For information on developing C or C++
programs, the reader is advised to consult an appropriate reference [4].

6.8 The Code Composer Studio (CCS)

The DSK comes complete with the DSK-specific Code Composer Studio (CCS).
CCS provides an integrated development environment (IDE) for project man­
agement, editing, compiling, debugging, and visualization. Both CtC++ and
assembly language codes can he developed and debugged.

162 %apter 6 Develo.pment To.o.ls fur Digital Signal-Processing Implementatio.ns

To. use CCS, we need to. kno.w ho.w to. build applicatio.ns and ho.w to. debug
o.r test them using a target such as the DSK board. These two. aspects are
co.nsidered in the fo.llo.wing subsectio.ns.

6.8.1 Building a Project

A new pro.ject is built by cho.o.sing "New" in the Pro.ject menu. The Project
Creatio.n windo.w appears, allo.wing o.ne to. specify the pro.ject mime, lo.catio.n,
and type. The pro.ject type executable generates an .o.ut extensio.n executable
file. Ending the pro.ject creatio.n takes yo.u to. the Pro.ject View windo.w, where
files to. be used in the project can be added. These files are the so.urce flIes
(bo.th assembly and C++), fibrary files, and the command file. Select "Add
Files" under the Pro.ject menu and -specify the file type and its lo.catio.n to. add
it to. the pro.ject. The include files are nut added; these are auto.matically added
by the CCS after scanning the so.urce files.

A pro.ject co.nfiguratio.n is selected fro.m the Pro.ject to.o.lbar. Two. co.nfig­
uratio.ns, Debug o.r Release, are available fur different phases o.f pro.gram de­
velo.pment. The o.utput generated after the project is built is placed in the
co.nfiguratio.n-specificsubdirecto.ry in the directo.ry fur the pro.ject.

Figure 6.6 sho.ws a sample pro.ject file generated by the CCS in respo.nse
to. selectio.ns and the. files used. This file co.ntains all the info.rmatio.n abo.ut
the project, such as pro.ject settings, so.urce files, co.mpiler settings, and linker
settings. The details o.f the settings. fur the co.mpiler and linker are given in

. refer.ence [2).
The project is built by cho.osing "Rebuild All" in the Project to.o.lbar. The

executable file is placed in the appro.priate directo.ry, such as the Debug
. directo.ry. The executable pro.gram can. be IQaded to. the bo.ard using "Lo.ad
Pro.gram" under the File menu. The pro.gram can be executed o.r debugged
using the Debug o.ptio.n in the File menll. The debugging can be do.rie using
vario.us contro.ls and o.ptio.ns to. run the program and view its results. So.me o.f
these o.ptio.ns are discussed in the next sectio.n.

6.8.2 The Debug Options

The CCS. debugger provides a po.werful debugging capability by permitting
the executio.n o.f a pro.gram in many different ways and viewing the results in
many different fo.rmats~ The basic debug capabilities o.f CCS co.nsist o.f pro.vi­
sio.ns to. do.wnlo.ad· a pro.gram to. the DSK bo.ard, run the pro.gram, single-step
thro.ugh instructio.ns, mo.dify registers ana memo.ry lo.catio.ns, view registers
and lo.catio.ns, and apply reset to. the pro.cesso.r. In additio.n to. basic capa­
bilities, there are a number o.f advanced debuggirig features pro.vided in CCS.

, So.me of these features are as fo.llo.ws:

http:fo.llo.ws
http:lo.catio.ns
http:lo.catio.ns
http:instructio.ns
http:do.wnlo.ad
http:o.ptio.ns
http:o.ptio.ns
http:contro.ls
http:vario.us
http:directo.ry
http:directo.ry
http:selectio.ns
http:directo.ry
http:co.nfiguratio.n-specificsubdirecto.ry
http:uratio.ns
http:subsectio.ns
http:applicatio.ns
http:Implementatio.ns

6.S The Code Composer Studio (CCS) 163

; Code Composer Project File, Version 2.0 (do not modify or remove this

1i ne)

[Project Settings]

ProjectDir="C:\ti\myprojects\example6pl\"

ProjectType=Executable

CPUFamily=TMS320C54XX

Tool="Compiler"

Tool="DspBioiBuilder"

Tool="Linker"

Config="Debug"

Config="Release"

[Source. Fi 1 es]

Source=n •• \ •• \ •• \WINDOWS\Desktop\DSPBookPgm\ch6pgms\example6pl.asm"

Source:;." •• \ •• \ •• \WINOOWS\Desktop\OSPBookPgm\ch6pgms\exampl e6p1.cmd"

["Compiler" Settings: "Debug "]

Options=-g -q -fr"C:\ti\myprojects\example6pl\Debug" -d"_DEBUG"

["Compi] ern Setti ngs: "Rel ease"]

Options=-q -02 -fr"C:\ti\myprojects\example6pl\Release"

["DspBiosBuilder" Settings: "Debug"]

Options=-v54

["DspBiosBuilder" Settings: "Release"]

Options=-v54

["Lin'ker" Settings: "Debug"]

Opt'ions=-q -c -0". \Debug\example6pLout" -x

["Linker" Settings: "Release"]

Options=-q -c -0".\Release\example6p1.out"-x

Figure 6.6 A sample project file created by the C c.s

Breakpoints: A breakpoint can be set on' an instruction. Execution of the
program stops at the breakpoint. giving an opportunity to view the results
produced by the part of the program that has been executed.

Watcll Window: This feature allows one to monitor program variables as
the execution takes place. . ,

Probe Points: By adding a Probe Point on a line of the program. data can
be transferred either from a file on the host to the DSK memory or from
the DSK memory to a file on the host. The program execution resumes
after transferring the data. .

164 Chapter 6 Development Tools for Digital Signal-Processing Implementations

Graphing:CCS provides a number of ways to graph the data processed by
the program. This capability is particularly useful in viewing a signal in the
frequency and time domains.

Profiling: A pro filer can be used to determine the number of cycles Ii par­
ticular function or a program takes to execute or how many times the
function is called. This capability can be used to optimize the program
performance.

Real-Time Analysis: The CCS provides tlie capability to monitor and ana­
lyze a real-time program without interfering with its execution. This capa­
bility is provided by way of a DSP/BIOS kernel and-RTDX (real-time data
exchange) technology. The kernel, which is loaded to the board, uses API
functions to implement run-time services. These functions can be linked
into an application and allow a user to implement performance monitoring
and program tracing. The RTDX provides a link to obtain and'monitor
target data i~ real time. This capability allows the user to transfer data
betWeen the host and the target without interfering with the targetap­
plication. RTDX has two components, one of which runs on t.'Qe target to
provide a link to the target data. On the host platform, RTDX runs in con­
junction with CCS to provide data visualization and analysis. For more in­
formation on this capability, the reader is advised to ron the DSP/BIOS and
RTDX tutorials available in the CCS environment by invoking the Help
function. .

6.9 DSP Software Development Exampl~

In this section, we will go through the various steps of building and debugging'
an application for the DSK using the CCS. These steps will be illustrated llS~g
the source program of Figure 6.4 and the command file of Figure 65. The
process illustrated here does not demonstrate the complete power ofthe tools;
it is a simplified version of the tools an~ illustrates the basic proces~ j)fa1>pli­
cation development. 	 .

1. 	We start by creating a new project, as shown in Figure 6.7, by selecting
"New" under the Project toolbar. The project name, exampl~pl, can be
entered along with its location. The project type chosen will be Execut- .
able (.out). The target is TMS320C54xx.

i. The project window after creating and selecting the project is shown in
Figure 6.8.

3. 	 The project files are added to the project by selecting "Add Files to
Project" under the Project toolbar. As shown in Figure 6.9, we add the
source file example6p1.asm. The process is repeated for the command

6.9 DSP Software Development Example 165

Figure 6.7 Creating a new project in CCS IDE

:file example6p1.cmd. While selecting a file, the file location and its type
must be selected to see the file in the window before it can be added.

4. 	Figure 6.10 shows the Project window after adding and selecting the
. source and the command files.

S. 	 Figure 6.11(a) shows how project build options can be selected for the
assembling, compiling, and linking. The buil,d options are selected from
the Project toolbar.Here we can specify options for the assembler, com­
piler, and the linker. Figure 6.11(b) shows where the place for the object
files is specified.

6. 	The project is built by selecting the "Build" option under the Project
toolbar. Figure 6.12 shows the building of the ,project. The lower window.,
shows aliy error if it occurs during the build process.

7. 	 The built program can be downloaded to the DSK board by selecting
"Load Program" in the File menu. This is shown in Figure 6.13.

166 Chapter 6 Deyelopment Tools for Digital Signal-Processing Implementations

Figure 6.8 The project window for the being created

8. 	After downloading the prograpl, it can be de~ugged, or simply run, by
choosing the debug features. Restarting the program makes, it l>,egin
from the first instruction, as shown in Figure 6.14. Tbe, right arrow
shows the start point. In order to execute it to the end, we may set a
breakpoint at the last "nop" instruction. The breakpoint is selected from
the, Debug toolbar. The filled circle on the nop instruction shows the
breakpoint location. Since the program uses registers, we may view these
as shown in Figure 6.14. The register window is selected from the View
menu. Notice that A = 0, ARlO, and AR2 = O. These are the registers
used in the program. The program adds the numbers starting at the
location Number. Note that the location Number is at address 400h, as
the data section is defined in the command file to start at this address.

9. 	 Executing the program with a run command generates the sum of 16
numbers in register A. The result is shown in Figure 6.15. It is easy

6.10 Summary 167

Figure 6.9 Adding files to the project

to verify that the ARI and AR2 registers also contain the appropriate
numbers after completing the program execution. To' debug the pro­
gram we also can run the program using single-step execution, in which

,case one instruction at a time i~ executed. Simultaneously we can view
the contents of registers as the instructions are executed.

6.10 Summary

In this chapter, we introducep an important and inexpensive tool called the
DSP System Design Kit (DSK) for the C54:xx DSP devices and its associated
development software called Code Composer Studio Integrated Development
Environment (CCS IOE). The package can be used to develop DSP applica­
tions. These tools were illustrated using a simple example.

168 Chapter 6 Development Tools for Digital Signal-Proces&ing Implementations

illsdgoS416dsk f SpeChWI'I O«)ltal }!CPU~l ~ C54X· Code Cornpo$er Studto 'C5416 OSK Toob - 1~ ~;,; ...~ 't?~

Files
~-SJ GELlie,
B"iJil Proiects

8·";pIaSpl.p~
H;;:j DSPIBIOS Conlig

··ISI .,.""le£pl.cmd
""8 GenefClled Files
-fillnclude

!,tW Lbafres
&6:1_

;~ample6pl·"I':1

Figure 6.10 Project window after adding source and command files

6.10 Summary 169

.p~

3cm~
exafTl)ieSp1. cmd .

j.. ii Generaled F'1Iet
i""Ui Include
F-{iJ LbliRes
S·IiiJ_

:.- ·~~e6p1.a~~1~

(a)

Figure 6.11{a) Selecting project build options

170 Chapter 6 Development Tools for Digital Signal-Processing Implementations

GEUies
Ptojectss-a eoampIe6pl.p;1
: -£iii DSPIBIOS Conflg
HJjex_1e6p1.crnd
f-il::I G""",OledFi\e.
r·-riiJlnciudo
: ..t:lll LilIOIie!
8-61_

~~1."Di

Figure '6.11(b) Selecting project build options

6.10 Su.mmary 171

This program computes the signed sum of 16 data ",emory
loco.tions startin"S' at Number. Jhe r€lsul t is to be placed in A .

•••••• Will •••••,..........iI·•••.••••(............................... 111.•••••••••

_c_intOO

~data

S. 14. -7. 22. -25. 4. 2. O. 6. 33. 4. ll ••12. -12. 6. -16

-d "_DEBUG" -Ii!".'/.'/.

OO'-CGTOOLS'BIN"clSOO" -@"Debug.lkf"

Complete. _

Errors. 0 Warnings. 0 Remarks.­

Figure 6.12 Building the project

172 Chapter 6 Development Tools for Digital Signal-Processing Implementations

'l&dgo,;lGdsk [Sp.c"", OIQlti>l)lCf'U_1 . ($\X. Cod..c.>IlI~,';$IU.",·~t, 'i;ll '. .

• 12. -12. 8, 16

1>£l"""f'_DEEUG" _@",./,./ •

.~

-~-A~

Ranlarks.

Figure 6.13 Downloading the project to the DSK

6.10 Summary 173

.,..~

SELfi.,
"'o;.ot.

S·..3lpI.6pl.p~
.·CJ OSPJBIOS CotJIiIl
.I!! "'''1'le€pl,cmd

~l

i.::J Generated Fi1et/iI
"alnc~ll' f_. '-0 LbulIie;

II BCJ..SW/ce.Gi,i_I
IlEI

_c_intOO

.data

5. 14. -7. 22. -25. 4. 2. O. 6. 33. 4. 1L 12 •. -12. 8. 16

.text

stm #lOh. AR2 counter AR2 •. 16
stm #Numher. ARl pointer AR1 to first number
Id #Oh. A sum A .. 0
ssbx SXM Select sign extension mode

add *AR1+. A ; Add the next data value
banz START. -AR2- ; Repeat if not done
nap No operation .. just for debugging

.end

STO ­
0000000000 STl'
0000000000 PMST ­
0000 DP ­

-0 ASM­
• 0000 INn! •
• 0000 . IMR •

0000 IFR ­
IPTR.

Figure 6.14 Debugging the project using a breakpoint

174 r:hapter 6 Development Tools tor Digital Signal-Processing Implementations

_c_intOO

.data

5. 14. -7. 22. -25. ~. 2. D. 6. 33. 4. ", 12. -12. e. 16

; Ini t counte%' AR2 16
; ,Inlt pointer ARl to first number

Initialize sum A ... a
Select sign extansio~ mode

; Add the next data value
ban>: START. *AR2 - ; Repeat if not d.one
nop ; }.Io operatlon .. just for debugging

.end

Figure 6.15 Result of executing the project using a breakpoint

References

1. 	 TMS320VC5416 DSP Starter Kit (DSK)' Technical Reference, Spectrum Digital
Inc., 506005-0001 Rev.AI 2002. (http://www.spectrumdigital.com).

2. 	 . Code Composer Studio Getting Started Guide, Texas Instruments Literature
Number SPRU509.

3. 	 TMS320C54xx Assembly Language Tools User's Guide, Texas Instruments Lit­
erature Number SPRUI02 .

. 4. TMS320C54xx Optimizing C/C++ COl.l1piler User's Guide, Texas Instruments
Literature Number SPRUI03.

http:http://www.spectrumdigital.com

Laboratory Assignments 175

Laboratory Assignments

l6.1 	 Build a project to verify Example 5.11 using the following data:

h(O) = 5, h(1) = 31, h(2) = 13, x(n) = I, x(n- 1) = 5, x(n ...:. 2) = -3.

L6.2 	 Build a project to verify Example 5.12 using the following data:

h(O) = 	5, h(I) = 31, h(2) = 13,x(n) = l,x(n - 1) = 5,x(n - 2) = -3.

L6.3 	 Build a pr.oject to verify Example 5~13 usingthe following data:

h(O) = 5, h(1) = 31, h(2) :=:: 13, x(n) = 1, x(n - 1) = 5, x(n - 2) == -3.

L6.4 	 Write a program that computes the square of"the distance between the two
points with the coordinates (Xl> Yl) and (Xl, yz). Build a project and verify the
program using a set of points. .

L6.5 	 Use the program in L6.~ to write another program that computes the distance
between the points. Build a project and verify the program operation using
a set of points. You may use the following algorithm to compute the square
root:

Square root of N = Nllmber of sequential odd integers starting at 1 that add
to (or whose total approaches) N. For instance, 25 = 1 + 3 + 5 + 7 + 9, or it .

. is the sum offive odd integers and 5 is the squareroot of 25. •

Chapter 7
Implementations of Basic DSP Algorithms

7. 1 Introduction

In this chapter. we deal with implementations of DSP algorithms. Here we
write programs to implement the_core algorithms only. However. these pro­
grams' can be combined with input/output routines to create applications that
work with a specific hardware. Specifically, in this chapter, the following
C54xx implementations using assembly language [5.6,7] are covered:

Q-notation

FIR filters

IIR filters

Interpolation filters

Decimation filters

PID controller

Ad<ilptive filters

2-D signal processing

7.2 TheQ-notation

DSP algorithm implementations deal with signals and coefficients. To use a
fixed-point DSP device efficiently, one must consider representing filter co­
efficients and signal saplples using fixed-point 2's c.omplement representation.
Typically, filter coefficients are fractional numbers. T~ represent such num­
bers, the Q~notation has been developed. The Q-notation specifies the number
of fractional bits. For instance, Q7 for a 16-bit number means that the most

116

7.2 The Q-notation 177

significant 9 bits represent the whole part and the sign of the number and the
least significant 7 bits are the fractional part of the number. In other words,
the assumed decimal point lies between bit 6 and bit 7.

A commonly used notation for DSP implementations is Q15. In the Q15
representation, the least significant 15 bits represent the fractional part of a
number. In a processor where 16 bits are used to represent numbers, the Q15

. notation uses the MSB to represent the' sign of the number and the rest of
the bits represent the value of the number. In general, the value ofa 16-bit
Q15 number N, represented as blSb14b13 ... b1bo, can be determined from the
equation

N = -blS + bl4Z- l + b13 Z-2 + ... +blZ-14 + bo2-IS (7.1)

. Thus, the numbers that can be represented by the Q15 notation, using 16 bits,
range from -1 to 1 - 2-15 • This range is generally adequate to represent filter
coefficients in DSP algorithms.

f> Example 7.1 	 What values are represented by the 16-bit fixed point number N 4000h in
the Q15 and the Q7 notations?

S91ution 	 4000h = 0100 0000 0000 OOOOb. In the Q15 notation, it represents 0.100 OOOQ.
0000 OOOOb with the assumed decimal point. Use of Eq. 7.1, to compute its
value, yields

N= +0.5

Similarly, the same number in the Q7 notation represents 0100 0000 0.000
OOOOb, which, using Eq. 7.1, computes to

N +128.0'

Multiplication of numbers represented using the Q-notation is important
for DSP implementations. Figure 7.I(a) shows typical cases encountered in
such implementations. For instance, if two 16-bit Q15 numbers are multiplied
as integers, the 32-bit result is a number in Q30 representation. In other
words, the two MSBs are the sign bits. If this result is to be used as it is, it is
important to know where the position of the decimal point is. If the 32-bit
result is left shifted one bit position and the 16 MSBs are extracted, we have
the final result in Q15 representation. This procedure of dealing with the
Q15 numbers can be employed in DSP implementations. Figure 7.1(b) is a
TMS320C54xx program that illustrates how to'multiply two Q15 numbers and
produce a Q15 result This program also illustrates how to minimize the error
due to truncation of the 16 LSBs to obtain a Q15 result. This can be done by
rounding off the result b~fore truncation.

178 .Chapter 7 Implementations of Basic DSP Algorithms

Nl
...1

Signed
Biriary N3N2 .J Multiplier

N J
(16 bit)

Qo

Qo

QI5

N2
(l6 bit)

Qo

QI5

QI5

N3
(32 bit)

Qo

. Ql5

Q30

Figure 7.1(a) Multiplication of numbers represented using Q-notation

7.3 FIR Filters

A finite impulse response (FIR) filter oforder N can be described.by the dif­
ference equation

m=N-l

y(n) =2: h(m)x(n - m) (7.2)
m=O

or in expanded form we have ..

y(n) = h(O)x(n) + h(l)x(n -'-1) + ... + h(N --'- 1)x(n{N 1» . (7.3)

For FIR filter implementation, we use Eq. 7.3 to illustrate howfue DSP code
can be written. Figure 7.2 shows ablock diagram'for the implementation. To
compute y(n), we start with the computation and accumulation of tj:le last
product, followed by 'the one before the last, and so on. The implementation
requires signal delay for each sample to compute the next output. The next
output, y(n + 1), is given as

y(n + 1) = h(O)x(n + 1) + h(I)x(n) + ... + h(N· l)x(n - (N - 2» (7.4)

Figure 7.3 shows the memory organization for the implementation of the
filter. The filter coefficients and.the signals samples are stored in two circular
buffers each of a size equal to the filter. AR2 is used to point to the samples

. .------------~~

http:described.by

.' 7.3 FIR Filters 179

;-------- ---~-----------
; Program Name: 	 ex7plQxx.asm

• Description: 	 Thi.s is an example to show how to multiply numbers
represented using Q-notation. It implements the
following:

NlxN2 = Nl* N2

where
NIland N2are lo-bit numbers in Q15 notatiol1
NlxN2 is the 1~-bit result in Q15 notation

• Author: 	 Avtar Singh'. SJSU
;---~------------
; Definitions

.l1II1regs memory-mapped registers

.data sequential locations
Nl: .word 4000h N1 = 0.5 (Q15 number)
N2: .word' 2000h N2 = 6.25 (Ql!) number)
NlxN2: •space 10h ; space'for N1 xN2

• text
• ref _c_intOO

.sect ".vectors"
RESET: 	 b _c_intOO ; Reset vector

nop
nop

_c_intOO:
stm INI. AR2 ; AR2 pOints to Nl
ld *AR2+. T ; T reg = Nl
mpy *AR2+. A ; A = Nl * N2 in Q30notation
add #1, 14. A ; round the result
sth A, 1, *AR2 save Nl * N2 as Q15 number
nop
nop

;end

Figure 7.1(b) TMS320C 54xx program to multiply two 015 numbers

180 Chapter 7 ImplemeIl.tations of Basic DSP Algorithms

x(n) x(n-(N-I»x(n-I)
~--~,----------------

h(N-I)h(O)' ,

yen)

Figure 7.2 A FIR filter implementation block diagram

x(n+ 1)

!

i]
x(n-(N-I»

x(n-(N-2»

i]

x(n)

h(N-I)

h(N-2)

h(O)

~./

MAC

yen)

Figure 7.3 Organization of signal samples and filter coefficients in circular buffers fora FIR
filter implementation

7;4 IIR Filters 181

and AR3 to the coefficients. In order to start with 'the last product, the pointer
register AR2 must be initialized to access the signal sample x(n -' (N - 1»,
and the pointer register AR3to access the filter coefficient h(N - 1). As each
product is computed and added to the 'previous result, the pointers advance
circularly. At the end of the computation, the signal sample pointer is at the
oldest sample, which is replaced with the newest sample to proceed with the
next output computation.

Figure 7.4 shows the TMS320C54xx program to implement the FIR filter. In
this. implementation, it is assumed that the most recent incoming signal sam­
ple is available from a buffer addressed by the pointer ARS. The computed
outputs are placed in another buffer using the pointer AR6. In a Teal-time DSP
system, the incoming samples can be from an AID converter and the outgoing

. samples can be applied to a DIA converter. Such interfaces are covered in
Chapters 9 and 10.

7.4 UR Filters

An infinite impulse response (IIR) filter is represented by a transfer func­
tion, which is a ratio oftwo polynomial~ in z. To implement such a filter,.the
difference equation representing the transfer function can be derived and
implemented using multiply and add operation,s. To show such an imple­
mentation, we consider a se't:ond-order transfer function given by

H(z) = y(z) =bo +b1z-l + b2z-
2

(7.5)
X(z) 1 - alz-1 - azz..,-2

A higher-order IIR filter can-be constructed by cascading second-order se<:­
tions [1, 2]. To develop the difference equation for the IIR filter in Eq. 7.5, we
rewrite it as

Y(z) Y(z) W(z)
(7.6)

X(z) = W(z) . X(z)

where W(z), an intermediate variable, has been introduced to facilitate im­
plementation. Next, we assign the numerator of the transfer function as

. 	Y(z) Z
W(z) = bo+ b1z-1 + b2z- (7.7)

which can be represented by, a difference equation as

y(n) bow(n) + b1w(n- 1) + b2w(n - 2) (7.8)

18'2 Chapter 7 Implementations of Basic DSP Algorithms

;--~------~---~----------------~~---------
Program: ex7p2FIR.asm

Description: This is an example to show how to implement an FIR filter.

It implements the f'Ollowing equation

y(n)=h(N-l)x{n-(N-l»+h(N-2)x(n-(N-2»+ ••• h(l)x(n-l)+h(O)x(n)

where 	 N = Number of filter coefficients = 16.
h(N-l). h(N-2) •••• h(0) etc are filter coeffs (q15 numbers)
The coefficients are available in file: coef(}ir.dat.
x(n-(N-l» .x(n-(N-2)j •.•• x(n) are signal samples(integers).
The input x(n) is received from the data fiie: data_in.dat .

. The computed output yen) is placed in a data buffer.

Author: Avtar Singh. SJSU
;------------------------------------~--------~-----------------------------------

Defi'nitions

InSamples

OutSamples

SampleCnt

FirCoeff

Nml

c intOO:

.mmregs

.def _c..;intDO

.sect "samples"

;include "data.:.in.dat"

.bss y.200.1

.set 200

.bss CoefBuf. 16. 1

.bss SampleBuf. 16. 1

.sect "FirCoeff"
, .include "coff fir.datU

. set 15

.text

STM #OutSamples. AR6

RPT #SampleCnt

ST #.0. *AR6+

STM #InSamples. AR5

STM #OutSamples. AR6

STM #SampleCnt. AR4

CALL fi r i nit

SSBX SXM

Allocate space for x(n)s

Allocate space for y(n)s

Number of samples to filter

; Memory for coeff circular buffer
; 'Memory for sample circular buffer

Filter 	coeff (seq locations)

: 	N- 1

Clear output sample buffer

AR5 pOints to InSamples buffer
AR6 pOints to OutSample buffer
AR4 = Number of samples to fil ter

• 	Init for filter calculatioRs
Sel,ect sign extension mode

Figure 7.4 TMS320C54xx implementation of a FIR filter 	 (continued)

7.4IIR Filters 183

loop:
LD *AR5+,A A = next input sample (integer)
CALL fir_filter Call Filter Routine
STH A,I,*AR6+ Store filtered,sample (integer)
BANZ loop,*AR4 M Repeat till all samples fiHered
nap
nap
nap

;---~---------------
; FIR Filter Initialization Routine
; This routine sets AR2 as the pOinter for the sample circular buffer, and
; AR3 as the pointer for coefficient circular buffer.

BK = Number of filter taps - 1.
j ARO 1 = circular buffer pointer incremento:i

;--------~------------~-----------~-------------------~-----------------~---~-----
fir init:

ST #CoefBuf ,AR3 ; AR3 is the CB Coeff Painter
ST #SampleBuf.AR2 ; AR2 is the CB sample pointer
STM #Nml,BK BK = number of filter taps
RPT #Nml
MVPD #FirCoeff. *AR3+% Place coeff. in circular buffer
RPT #Nml - 1 Clear circular sample buffer
ST #Oh,*AR2+%
STM #l.ARO ARO = 1 =CB painter increment
RET
nap
nap
nap

j ___ ____________________ M'_____ ~-

FIR Filter Routine

Enter with A = the current sample x(n) an integer;
M

AR2 pointing to the location for the current sample x(n),

and AR3 pointing to the q15 coefficient h(N-l}.

Exit with A = yen} as q15 number.

j--­
f1 r· fi lter:

STL A, *AR2+0% Place x(n}in the sample buffer

RPTZ A, #Nml ; A ': 0

MAC *AR3+0%,*AR2+0%.A ; A = filtered sum (q15)

.RET '

nap

nap

nap

.end

Figure 7.4 Continued

184 Chapter 7 Implementations of Basic DSP Aigorithms

bo

wen) yen)

,a l b l
Delay

wen-I)

Delayaz bz

w(n-2)

Figure 7.5 A second-order IIR filter

Similarly, assigning the denominator as

W(z) ___----,-_---;;­
(7.9)

X(z) ­

gives the difference equation

w(n) = x(n) + alw(n - 1) + azw(n 2) (7.10)

Figure 7.5 shows a block diagram of this IIR filter. To compute y(n), we first
compute w(n) from w(n 1), w(n 2), and x(n). Next, w(n), w(n - 1), and
w(n - 2) are used to compute y(n). The program in Figure 7.6 shows the
TMS320C54xx implementation of the second-order IIR filter. The filter co­
efficients are stored in memory in the order bo, bI> bz, al> and az. The inter­
mediate signals are stored in the order w(n), w(n - 1),and w(n 2). Like the

7.4 IIR Filters 185

;-----------------------.-------~---------------------------------*---~-----------
:,, Program Name: ex7p3IIR.asm

Description: 	 This is an example to show how to implement anHR filter. It
implements the transfer function

H(z) = [bO'+ b1.z**(-1) + b2.z**(-2)]/[I-al.z**(-1)-a2.Z'**(-2)]

which is equivalent to the equations:

wen) = x(n) + aI.w(n-I) + a2.w(n-2)

yen) =~O.w(n).+ bI.w(n-I) + b2.w(n-2)

where

w(n), wen-I) ,and w(n-2) are the intermediate varl abl es .used 1 n

computations (integers).

a1. a2, bO, bI, and b2 are the filter coefficients (qI5 .numbers).

xCn) is the input sample (integer). Input samples are placed in

the buffer, InSamples, from a data file, data_in.dat

yen) is the computed output (integer). The output samples are,

placed in a buffer, OutSamples.

Author: 	 Avtar Singh. SJSU.

;---------------------------~--~--
Definitions

.mmregs

.• def _c_intOO

.sect "samples"
InSamples .include "data_in.dat" All ocate space for x (n) s
OutSamples .bss y.200.1 Allocate buffer for y(n)s
SampleCnt .set 200 Number of sampl es to fi Her

; Intermediate variables (sequential locations)
wn .word 0 ;initial wen)
wnm1 .word 0 ;initial wen-I) = 0
wnm2 .word 0 ;.initial w(n-2) =·,0

.sect "coeff"
Fil ter coeffi cients (sequenti allocations)

bO .word 3431 ;bO = 0.104
bi .word -3356 ;bI '" -0.102
b2 .word 3431 ;b2 =,0.104
al .word -32767 ;a1 =-1
a2 .word 20072 :a2 = 0.612

Figure 7.6 TMS320C54xx implementation of the second-order IIR filter 	 (continued)

186 Ch(lpter 7 Implementations of Basic DSP Algorithms

_c_intOO:

. loop:

.text

STM.IOutSamples, AR6
RPT #Sampl eCnt
ST 10, *AR6+

STMHnSamples, AR5
STM NOutSamples. AR6
STM NSampleCnt. AR4

LD *AR5+,15,A
CALL i i r fn'te'r
STHA,I,*AR6+
BANZ loop,*AR4­
nop
nop
nop

Clear output sample buffer

; AR5 pOints to InSamples buffer
; AR6 pOints to OutSample buffer
; AR4 = Number of samples to filter

; A = next input-sample (qI5)
; Call Fi lter Routine
; Store filte.red sample (integer)

Repeat till all samples filtered

;-~-~---~--------~~--~---~----~--~-~-----~---------------------------.------------
IIR. Fil ter Subrout i ne

Enter with A = x(n) asqI5 number

Exit with A = yen) as qI5 number

Uses AR2' and A.R3

;--------------------------------------~--
i i r _ fi 1ter:

SSBX SXM Select sign extensi.on mode

;w(n)=x(n)+al.w(n-I)+a2.w(n-2)

STM Na2,AR2
STM Nwnm2. AR3
MAC *AR2-, *AR3-.• A

MAC *AR2-,*AR3-,A

STH A,I,*AR3

; AR2 points to a2
; AR3 points to w(n-2)
; A = x(n)+a2.w(n-2)
; AR2 points to al &AR3 to wen-I}
; A • x(n}+al.w(n-I}+a2.w(n-2)
; AR2 points to b2 &AR3 to wen}
• Save wen}

;y (n) =bO. w(n)+bl. w(n-l}+ b2. w(n.;.2)

LD NO,A
STM Nwnm2,AR3

MAC *AR2-,*AR3-,A

DELAY *AR3

; A = 0

; AR3 points tow(n-2}

; A = b2.w(n-21)

; AR2 poi nts to bi & AR3 to wen-I)

• w(n-I} -> w(n-2) .

Figure 7.6 . Continued

http:extensi.on

·7.5 Interpolation Filters 181

MAC *AR2-,*AR3-.A

DELAY *AR3
MAC *AR2,*AR3.A

RET
nop
nop
nop

.end

; A = bl.w(n-1)+b2.w{n-2)
; AR2 pOints to bO &AR3 to wen)
; wen) -> wen-I)
; A ~ bO.w(n)+bl.w(n-l)+b2.w(n-2)

; Return

Figure 1.6 Continued

FIR filter implementation, the incoming sample x(n) is obtained from the
buffer InSamples. This buffer is set up using samples in the data file data_in..
The filtered signal sample is placed in another buffer called OutSamples. The
program uses linearly addressed buffers and the, delay. instruction in i)nple­
mentation. .

7.5 Interpolation Filters

An interpolation filter is used to increase the sampling rate. The interpolation
process involves inserting samples between the incoming samples to create
additional samples to mcrease the sampling rate for the output.

One way to implement an interpolation filter is to ·first insert zeros between
samples of the original sample sequence. The zero-inserted sequence is then
passed through an appropriate lowpass digital FIR filter to generate the inter­
polated sequence [4]. The interpolation process is depicted in Figure 1.7.

x(n) Insert
(L-1)
Zeros

xz(m) y(m)Low pass
Filter

Sampling
Frequency Is Lis Lis

Figure 1.1 Digital interpolation with interpolation factor::;: L

188 Chapter 7 Implementations of Basic DSP Algorithms

[> Example 7.2 Consider the sample sequence x~n) given by···

x(n) [0 2 4 6 8 10]

Le~ us insert a zero between each two samples to generate the zero-inserted
sequence xz(n) as

iz(n) = [0 ·0 2 0 4 0 6 0 8 0 10 0]

Now, if ~ sequence is convolved with the sequence hen), given as

hen) [0.5 1 0.5]

the result is a linearly interpolated sequence yen), given by

yen) = [0 0 1 2 3 4 5 6 7 8 9 10 5 0]

The kind of interpolation carried out in the example is called linear inter­
. polation because the convolving sequence hen) is derived based on linear

interpolation of samples; Further, in this case, the hen) selected is just a
secon:d-order filter and therefore uses just two .adjacent samples to interpolate
a sample. A higher~order filter can be used to base interpolation on more
input samples. To implement an ideal interpolation, it is shown in the lit­
erature that a filter based Qn samples of an appropriate sine function can
be used. .

If we assume that the unit sample response of such a filter is available, we
need to consider only the implementation technique. Figure 7.8 shows how an
'interpolating filter using a 15-tap FIR filter and an interpolation factor of 5
can be implemented. In this example, each incoming sample is followed by
four zeros to increase the number of samples by a factor of 5. The interpolated
samples are computed using a program similar to the one used for a FIR filter

. implementation.
One drawback of usmg the implementatlon strategy depicted in Figure 7.8 ..

is that there are many mUltiplies in which one of the multiplying elements is
zero. Such multiplies need not be included in computation if the computation
is rearranged to take advantage of this fact. One such scheme, based on gen­
eratingwhat are called polyphase subfilters, is available for reducing the com­
putation. For a case where the .number of filter coefficients N is a multiple of
the interpolating factorL, the scheme implements the interpolation filter using

. the equation

NIL-l

y(m + i) = L h(kL + i)x(n - k) (7.11)
k=O

where i = 0,1,2, (L 1) andm nL.
\

7.5 InterpblationFilters 189

IARll"'"

x(n+ 1)
o
o
o
o

l
x(n) . =xz (m) h(O)

o =xz (m-l) h(l)·
. h(2) o .=xz(m-2)

o =xz(m-3) h(3)
o =xz (m-4) h(4)

x(n-l) =xz (m-5) h(5)
o ,= xz(m-6) h(6)
o =xz(m:'7) h(7)
o = xz (m-8) h(8)
o =xz(m-9) h(9)

x(n-2) = xz (m-lO) h(lO)
o =xz(m-ll) h(ll)
o =xz(m-12) h(12)
o == xz (m-13) h(l3)
o == xz(m-14) h(14)IAR21.....

~/
MAC

~

y(m)

Figure 7.8 Digital interpolation using a FIR filter with interpolation fa~tor = 5

Figure 7.9 shows a scheme that uses polyphase subfilters to implement the
interpolating filter .using the IS-tap FIR filter and ali interpolation factor of 5.
In this implementation, the 15 filter taps are arranged as shown and divided
into five 3-tap subfiltets. The input samples x(n), x(n 1), and x(n - 2) are
used five times to generate the five output samples. This implementation re­
quires 15 multiplies as opposed to 75 in the direct implementation of Figure
7.8. The TMS320CS4:xximplementation for the interpolating scheme of Figure
7.9 is shown in Figure 7.10.

190 Chapter 7. Implementations of Basic DSP Algorithms

t
h(4)
h(9)
h(l4)

h(3)
_h(8)
h(13)

h(2)
h(7)
h(l2)

h(l)
h(6)
hell)

h(O)
h(5) ,

h(lO)

y(m+4)

x(n+ 1)

t 	 y(m+3)

Delay

x(n) y(m+2)tx(n-l)i it if t

x(n-2) tI ARl f--+

t y(m+ 1)

t

y(m)I AR2 ~

Figure7.9 	 Digital interpolation implementation using five polyphase subfilters; interpolation
factor 5, i.e., m = 5n .

7.6 Decimation filters

A decimation filter is used to decrease the sampling· rate. The decrease in
sampling rate can be achieved by simply dropping samples. For instance, if
every other sample of a sampled sequence is dropped, the sampling rate of the
resulting sequence will: be half that of the original sequence. The: problem with
dropping samples is that the new sequence may violate the sampling theorem,
which requiresthaf the sampling frequency must be greater than two times·
the highest frequency contents. of the signal. .

To circumvent the problem of violating the sampling theorem, the signal to
be decimated is first filtered using a lowpass filter. The cutoff' frequency of the
filter is chosen so that it is less than half the final sampling frequencY. The
:filtered signal can -be decimated by dropping samples.· In fact, the samples that
are to be dropped need not be computed at all. Thus, the implementation of a
decirilator is juSt a FIR filter implementation in which some of the outputs are
not calculated. This process can be described by the following ·equation -[4]:

N-l

y(m) y(nL) = L h(k)x(nL - k); ,n 0, 1,2,... (7.12)A·

k=O

where L is the decimation factor and N is the filter size.

7.6 DedmationFilters 191

.._--­

Program Name: 	 ex7p4INT.asm

Description: 	 This is an example to show. how to implement an interpolating FIR

fi lter. The fil terl ength isIS and the interpol at i ng factor-

is 5. It implements the equations

y(m) = h(10)x(n-2) + h(5)x(n-l) + h(O)x(n)

y(m+l) = h(1l)x(n-2) + h(6lx(n-l) + h(l)x(n)

y(m+2) = h(12)x(n-2) :l;: h,(7)x(n-l) + h(2)x(n)

y(m+3) = h(13)x(n-2} + h(8}x(n-l) + h(3)x(n)

y(m+4) = h(l4)x(n~2) + h(9)x(n-l) + h(4)x(n)

where.

m = 5n.

h(Ol., h(1}etc. are the filter coefficients (q15 numbers)

stored ,in.data memory in the order: h(4l. h(91. h(14). h(3). h(8),

h(13)~ ~(2). h(7). h(12), h(l). h(6). hell), h

x(n). x(n-!), and x(n:-2) are signal samples ~in:tegers) used in

computing the next five output samples.

The input samples are obtained from a file and placed in memory

starting at address InSamples.

The computed output samples are placed starting at 'data memory

location OutSamples.

Author: 	 Avtar Singh, SJSU

;-----------------------~7---~--------------~--------------------------------------
Def; niti oos

.rrmregs

.def c jntOO

.sect "samples"
InSamples .include "data_in.dat" Incoming data a file)
InSampCnt .set 50 sample count

.bss sample.3,l Input samples: x(n).x(n-l).x(n-2)

OutSamples .bss y,250,l Allocate space for y(n)s
SampleCnt .set 250 Number of samples

Figure 7.10 TMS320C54xx program for an interpolation filter implementation (continued)

192 Chapter 7 Implementations ofBasic nsp Algorithms

Coeff

CoeffEnd

Nm1
IFm1

_cJntOO:

INTl oop1:

INTloop2:

NXTcoeff:

.sect "Coeff"

.word 2560. 3072, 512

.word 2048. 3584, 1024

.word 1536. 4096. 1536

.word 1024, 3584, 2048

.word 512. 3072, 2560

.set 2

.set 4

.text

ssbx SXM

rsbx FRCT

stm #InSamples.ar6

, stm #InSampCnt-1,ar7
s-tm #OutSampl es,ar5
rpt #SampleCnt-1
st #O,*ar5+

stm #OutSamples,ar5

stm' #sample,ar3

rpt #Nm1

st #0. *ar3+

stm #CoeffEnd-1.ar2
stm #IFm1,ar4

stm#sample+Nm1.ar3
stm #Nm1,ar1
ld #O.A

mac *ar2.... *ar3-.A
banz NXTcoeff.*ar1­
banz INTloop2.*ar4­
sth A.1.*ar5+

stm #sample+Nm1-1. ar3
rpt #Nm1-1
delay *ar3­

Filter cQeffs h(4), h(9), h(14)
Filter coeffs h(3). hea). h(13)
Filter coeffs h(2). h(7). h(12)
Filter coeffs h(l), h(6). hen)
Filter coeffs heO). h(5). h(lO)

of coeffjinterp factor-1
Interpolating factor-1

Select sign extension mode

ar6 pOints to the input samples
ar7 = inpuf sample count - 1
ar5pOints to the output samples
Reset output samples memory

ar5 points to the output samples
ar3 points to current inpiJt samples
Reset the input samples

ar2 pOints to the last coeff
ar4 Interpolation factor -1

ar3 points to last sample in use
ar1 = samples, for use
A = 0

Compute interpolcited sample

Store the interpolated sample

Delay the sample array'

Figure 7.10 Continued

7.7 PID Controller 193

ld *ar6+,A
stm /fsample,ar2
stl A,*ar2

Get the next sample

Place it in the sample buffer

banz INTloop1,*ar7­ Repeat for all input samples

nop
nop
nop

.end

Figure 7.10 Continued

x(n) y(n) y(m)Lowpass Down...~ Digital Sampler
Filter

Sampling
Frequency is is islL

Figure 7.11 Digital decimation with decimation factor L

Figure 7.11 shows a block diagram of a decimation filter. Digital decimation
can be implemented as depicted in Figure 7.12 for an example of a decimation
filter with decimation factor of 3. It uses a lowpass FIR filter with 5 taps. The
computation is similar to that of a FIR filter. 'However, after computing each
output sample; the signal array is delayed by three sample intervals by bring~
ingin the next three samples into the circular buffer to replace the three oldest
samptes. The TMS320C54xximplementation of the decimation filter is shown
,in Figure 7.13.

7.7 PID Controller

Abasic feedback control system is shown in Figure 7.14. The signal x(n) is the
desired plant outpu~ and y(n) is the actual response .. The error, e(n), is the.,
diffe.rence between x(n) and y(n). The PID controller uses the error to gener­
ate input to the phint. In a continuous~timesystem the PID control output is

194 Chapter 7 Implementations of Basic DSP Algorithms

x(3n.+3) .
x(3n+2)
x(3n+ I)

I"
I
I
I
I
I
I
I
I
I
I
~

h(4)

"I h(3)x(3n-3)
I
I
I h(2).x(3n-2) I
I
I h(l)x(3n-l) I
I .
I h(O)x(3n) I
~

.MAC

y(m)

Figure 7.12 	 Digital decimation filter implementation or a decimation factor = 3 and a lowpass
filter of length 5 .

generated from the equation

.'J deu(t) = Kpe(t) +Ki. e(t) dt +Kd dt (7.13)

where Kp, Kj, and Kd are constants that depend upon how the plant is to be
controlled. The control is based on the error, error integral, and error deriva­
tive, giving it the name PID.

The continuous-time equation can be digitized using approximations for
the derivative and the integral. The digital equivalent of Eq. 7.13 can be shown
to be

«(n) = u(n -	 1) +Koe(n) +K1e(n ,... 1) +Kae(n - 2) (7.14)

where Ko, Kh and Kz are new constants that are related to the constants Kp,
Kil Kd. and the sampling interval.

7.7 PID Controller 195

-------_._--­
Program Name: 	 ex7p5DEC.asm

Description: 	 This is an example to show how to implement a decimation filter.
It implements the following equation

y(m) =	h(4)x(3n-4) + h(3)x(3n-3) + h(2)x(3n-2) + h(1)x(3n-l) +
h(0)x(3n)

followed 	 by the equation

y(m+l) = h(4)x(3n-l) + h(3)x(3n) + h(2)x(3n+l) + h(l)x(3n+2) +
h(0)x(3n+3)

and so on for a decimation factor of 3.and a filter length of 5.

Where

h(O), h(l)~ h(2), h(3), and h(4) are the fi)ter coefficients.

x(3n), x(3n-l). x(3n-2), x(3n-3), and x(3n-4) are signal samples.

x(3n+l). x(3n+2). x(3n+3) are incoming signal samples.

y(m), y(m+l) ••• etc. are the output signal samples.

Signal samples are integers and the filter coefficients are

q15 numbers.

Author: 	 Avtar Singh. SJSU
;--'--­

Definitions
.tlI1lregs
.def c intOO

InSamples
OutSamples
SampleCnt

• sect II samp1es II
.include "data in.dat"
.bss y.80,1
.set 240

A11 ocate space for x (n) s
Allocate space for y(n)s
Number of samples to decimate

FirCoeff.
Nml

.sect "FirCoeff"

.include "coeff dec.dat"

.set 4

Filter coeff (sequential locations)

Number of filter taps - 1

.bss CoefBuf, 5, 1

.bss SampleBuf, 5, 1
Memory for coeff circular buffer
Memoryfo'r sample circular buffer

Figure 7.13 The TMS320C54xx implementation of the decimation mter 	 (continued)

196 Chapter 7 Implementations of BaskDSP Algorithms

.text
c intOO:

STM HOutSamples, AR6 Clear output e buffer
RPT HSampleCnt
ST HO, *AR6+

STM HInSamples, AR5 AR5 points to InSamples buffer
STM HOutSamples, AR6 AR6 pOints to OutSample buffer
STM HSampleCnt, AR4 AR4 Number of samples to filter
CALL dec init ;' Init for filter calculations

oop:
CALL dec filter Call Filter Routine
STH A; I, *AR6+ Store filtered sample (integer)
BANZ loop,*AR4- Repeat till all samples filtered
nop
nop
nop

, 	 .-.-- -~---------------------------

Decimation Filter Initialization Routine
Thi s routine sets AR2 as the poi nter for the sample ci rcul ar buffer," and
AR3 as the pointer for coefficient circular buffer.

, 	BK = Number of fi 1 ter taps.
ARO = 1 = circular buffer pOinter increment.
-~----~------~----------------------~--

dec init:
ST HCoefBuf,AR3 AR3 is the CB Coeff Pointer
ST HSampleBuf,AR2 AR2 is the.CB sample pOinter
STM HNm1,BK BK = number of filter taps
RPT HNm1'
MVPD HFirCoeff, *AR3+% Place coeff in circular buffer
RPT HNml Clear circular sample buffer
ST iOh, *AR2+%
STM #l,ARO; ARO 1 CB nter increment
RET Return
nop
nop
nop

;----------------------------------~--------------------~-------------------------
FIR Filter Routine
Enter with A = x(n), AR2 pointing to the
circular sample buffer, and AR3 to the
circul ar coeff buffer. ARO = 1.

; Exit with A yen) as q15 number.,

;-----------------~.--~----------

Figure 7.13 Continued

7.7 PID Controller 197

dec filter:
LO *AR5+.A

,STL A. *AR2+0%
LO, *AR5+.A
STl A. *AR2+0%
LO *AR5+.A
STL A •. *AR2+0%

Place next 3 input samples
into the signal hUffer

RPTZ A. #Nml
MAC *AR3+0%.*AR2+0%.A
RET

; A = 0
A = fi ltered s i gnat

; Return
nop
nop
nop

.end

~ig~re 7.13 Continued

u(n) y(nx(n) + e(n)
PID-.. -.. -..Plant+ ,CQntroller

'­-' ­
,

Figure 7 .14 A PID' controller for a plgnt

The implementation of the PID controller requires programming the dif­
ference equation 7.14. Figure 7.15 shows the block diagram that can be used to
write the code to realize the controller. The program for the TMS320C54xx is
shown in Figure 7.19. Note .that to actually use the program, we need to gen­

, erate the error signal outside the signal processor. Alternatively, we need to
have desired input and actual output samples that can be subtracted to gen­

, .eratethe error signal. For the real-time implementation, these signals are
received ·from AID converters, and the computed control is applied to a D/A
converter.

198 Chapter 7 Implementations of Basic DSP Algorithms

!
Ko

u(n)e(n)

Delay

u(n J. 1)

Delay

Kl

e(n-l). ..,

Delay I- K2

e(n-2)

Figure 7.15 PIO controller implementation

7.8 Adaptive Filters

An adaptive filter is a filter whose coefficients can be updated on-line to
counter varying signal distortions. Figure 7.17 is a block diagram of an adap­
tive filter. The filter in the diagram is typically a FIR filter whose· coefficients
can be adjusted to minimize some measure of the error signal. The error sig­
nal e(n) is generated by subtracting the actual filter output y(n) from the cle­

-sired output d(n). The desired output is application dependent. A technique
used extensively to design an adaptive filter is based on minimizing the mean
square error (MSE) [3]. The following equations can be derived using the MSE
technique:

y(n)
N-l

L bk(n)x(n k) (7.15)

*"-0

e(n) = d(n) ­ y(n) (7.16)

7.8 Adaptive Filters 199

---------------------------._---­

Program Name: ex7p6PID.asm

Description: This is an example to show how to implement a PID controller .

. It implements the following equation

u(n) = u{n-l) + KO.e(n) + KI.e(n-l) + K2.e(n-2)

where

KO, KI, and K2 are controller coefficients (q15 numbers).

e(n), e(n-l), and e(n-2) are error signal samples (integers).

T~e error samples are the stored values and the computed control

values, are also stored in a· buffer.

,. 	 The program can be modified for a realtime control system using an
interrup~ invoked at the sampling interval, . reading the next incoming
error sample from an input port, and applying the. computed control
through an output port.

Author: , Avtar Si ngh, SJSU

;--~----~---------~-------------~---
.lJI11regs memory-mapped registers
.def _c_intOO

ErrSal1)ples .bss e, 200. 1 Allocate space for e(n)s
ContSamples .bss u, 200, 1 Allocate space foru(n}s
SampleCnt .set 200 Sample count

•data
• Control and error Signals {seqlfenti all ocati ons)
un: .word 0 ; computed control u(n) as· integer
en: .word 1 error samples e(n) as integer
enml: •wQrd 2 error slimpl es e (n-l) as integer .
enl)l2: .word 1 error s~mples e(n-2) as integer

.sect "coeff"
'; PID Contl"oller coefficients (sequential locations)
KO:.word 2000h' 1/4 in q15
Kl: .word 0400hl/32 in q15
K2: .wora 0040h 1/512 in q15

Figure 1:l6 TMS320C54xx implementation of a PID. controller 	 (continued)

·200 Chapter 7 Implementations of Basic DSP Algorithms

.text
c intOO:

STM HContSamples,AR6 Clear control sample buffer

RPT HSampleCnt

5T HO, *AR6+

STM HErrSamp1es, AR5 AR5 poi nts to InSamp1es buffer ftart
STM #ContSamRles,AR6 AR6 points to OutSample buffer start
STM HSamoleCnt. AR4 AR4 = Number of samples to filter

loop:

LD *AR5+,B B = next error sample

CALL PID Call PID Control Routine

5TH B,*AR6+ Store computed control

BANZloop,*AR4- Repeat till all sample.s. done

nop

nop

nop

PID Controller Subroutine

Enter with B = e(n) as integer

Exit with B • u(n). as integer

Uses A, AR2, and AR3

;-----------------~-~---------------------~---
PID:

SSBX SXM . ; Select sign extension mode
STM #enm2, AR2 ; AR2 pOints to current e(n-2)
STM #K2, AR3 ; AR3 pOints to current K2
LD #0, A ; A • 0
MAC*AR2-, *AR3-, A ; A = K2.e(n-2)
DELAY *AR2 ; e(n-l) -> e(n-2)
MAC *AR2-, *AR3-, A ; A = Kl.e(n-l) + K2.e(n-2)
DELAY *AR2 ; e(n) -> e(n-l)
STL B, *AR2 ; new e(n)
MAC *AR2-, *AR3, A ; A = KO.e(n) + Kl.e(n-l) + K2.e(n-2)
ADD *AR2, 15, A ; A • u(n-l) + KO.e(n) + Kl~e(n-l) + K2.e(n-2)
ADD #1, 14, A Round the result
STH A, I, *AR2 • new
LD *AR2. B B = new control
REr Return
nap
nop
nop

.end

Figure 7.16 Continued

7.9 2-D Signal Processing 201

d(n)

x(n) y(n)Filter with adjustable
coefficients

e(n)

Figure 1.11 An adaptive filter

bk(n + 1) bk(n) + 2pe(n)x(n k)

= bk(ri) +erf(n)x(n - k) . (7.17)

where

erf(n) = 2pe(n) (7.18)

Equation 7.15 is that of a FIR filter. Here, bk(n) is the kth filter coefficient at
instant n. N represents the number of filter coefficients. The p in Eq. 7;17 is
called the coefficient ofadaptation. The adaptation speed and accuracy depend
upon p.

The updating scheme for the coefficients is shown in Figure 7.18. Each co­
efficient is updated using the erf(n) which cim be computed in advance using
Eq. 7.18: The program in Figure 7.19 shows the implementation of a 9-tap
adaptive filter for the TMS320C54:xx.

7.9' 2-D Signal Processing

Consider the example of the N-tap FIR filter discussed earlier. If the values
of the samples {x(n),x(n 1),x(n 2), . .. ,x(n -N +l)} are considered as a
vector Xn and the values of the coefficients {h(O), h(l), h(2), . .. , heN l)} are

. considered as another vector H, the· value of the output sample given by

yen) = x(n)h(O) + x(n - I)h(1) + x(n 2)h(2) + ... +x(n - N + l)h(N - 1)
(7.19)

can be considered as the dot product of the two vectors Xn and H. In other
words,

202 Chapter 7 Implementations of Basic DSP Algorithms

x(n+l)

. ~ 1.
_Ix(n-N:+-l)IAR21­ ~

x(n-N+2)
x(n-N+3)

[1 x(n)f1I·

bN_l(n)
bN_2(n)
bN_3(n)

bo(n)

.

~
,;.

%~n)
+

bk(n +1); k =(N-l), (N - :l}, >.. ,2, 1,0

figure 7.18 updating filter coefficients in the adaptive filter implementation

Y.. X.. ·H (7.29)

where· d~notes the dot product. Many times in digital signal proc~ssing, one
or both the operands X and Hmay be two-dimensional, i.e., matribes instead
of vectors. A typical application is in image processing. In such a case, X may
represent intensity values of pixelll (picture elements) in the horizontal·and
vertical directions of a two-dimensional image and H may represent coeffi­
cients in the horizontal and verticaJ directions of a two-dimensional filter. One
of the most frequently used operations in image processing involves sliding
the two-dimensional window offilter coeffidents(usuallymuchsmaller in size
compared to the size of the image) on the image to perform an operation such
as filtering out an unwanted feature or enhancing a desirable feature. All these
operations can be basically reduced to multiplication of·rwo matrices .. There­
fore, it becomes essential to know how to write a program to- multiply two
matrices in order to be able to use the device in· two-dimensional signal-
processing applic.ations. .

-

·_.--.----­

7.92-D Signal Processing 203

;~--------------~-------------.-~--~-'~--.-----~-----------------------~-~---~----------
Program Name: ex7p7ADP.asm

;

Description:

;

;

Author:
; - - - - --_ - - - -. ­

Definitions

InSamples
OutSamples
SampleCnt

FilterSize

This is an example to show how to implement an adaptive filter. It
implements a 9-t!lP adaptive filter using .the following equations

yen) =

'bO(n+l)
bl(n+l)

b8(n+l)

where

bO(n)x(n) + bl(n)x(n-:-l) + b2(n)x(n-2) +
b3(n)x(n-3) -I- b4(n)x(n.;4) + b5(n)x(n-4)+
b7(n)x(n..:7) + b7(n)x(n-7}+ b8(n)x(n-8)

= bO(n) + erf(n).x(n)
= bl(n) + erf(n).xln-l)

= b8(n) + er:f(n).x(n-8)

bO(n), bl(n), •.• etc. are filter coeff atn. and bO(n+l).

bl(n+l), ••• etc. are same filter coeffat n+l.

These coeffi<:ients are q15 numbers and are stored in a circular buffer

(CoefBuf).

x(n). x(n-1}, etc. ate input samples (integers) stored ina Signal

circul ar buffer (Sampl eBuf). .

y(.n) is the filtered output (integer).­

den) is the desired output (integer).

e(n) =den) - yen) (integer)

erfn = e(n) * mu (integer) .

mu is the adap~ation coefficient (q15 number).

Avtar Singh, SJSU
- - - - - - - ---- -- - - - --- - --- - - - '" - ---- - - - ---- ----- - - - -­--_ --..;. -:- - -..;. -_., ­

.mmregs

.def c intOO

.sect "samples"

.include "data_in.dat"

.DSS y,400,l

.set 400

.•bss CoefBuf.9,l

.bssSampleBuf,9,l

.set 9

--..:. -,-- "'If,- ~

Input samples to be filtered
Output samples
Input sample buffer 'size

Coeff circular buffer
Sample circufar buffer
Filter size

Figure 7•.19 The TMS320C54xx implementation ofan adaptive filter (continued)

204 Chapter 7 Implementations of Basic DSP Algorithms

mu

dn
en
yn
erfn

c 	intOO:

loop.:

adaptive_filter:

.set 328

.word·O

.word 0

.word 0

.word 0

•text

SSBX SXM
STM 10utSamples, AR6
RPT ISampleCnt-l
ST 10, *AR6+
STM IOutSamples, AR6

STM IInSamples, AR5
STM ISampleCpt-l. AR4
STM IFilterSize-l. BK
STM ISampleBuf, AR3
STM ICoefBuf. AR2

RPT IFil terSi ze-l .
ST iOh.*AR2+% .

RPT IFilterSize-l
ST IOh,*AR3+%

CALL adaptive_filter
BANZ loop. *AR4­
nop
nop
nop

• mu =0.01 (as q15 nlimber)

; 	Desired Signal den)
Error Signal e(n)
Filterea Signal yen)
erfn = e(n) .mu

select sign extension mode
AR6 points to out sample buffer

Reset the output sample buffer
Reset output sample buffer pOinter

; 	AR~ points to input sample buffer
• AR4 = the sample count
• BK = filter size '

AR3 points to the sampleCB
; AR2 points to the coeff CB

Reset coeff buffer (CoefBuf)

'; 	 Reset sample buffer (SampleBuf)

Do adaptive filtering
Repeat for all samples

; Compute yen) using current filter coefficients
STM 11. ARO
RPTZ A. IFilterSize-l
MAC *AR3+0%, *AR2+0%. A
STM Ivn. ARl
STH A, 1. *AR1
STH A. 1, *AR6+

; ARO = 1 for increment
; yen) bO(n)x(n) ••• b8(n)x(n-8)

Save y(n) as an integer
Save filtered signal

Figure 7.19 Continued

7.9 2"'D Signal Processing 205

Generates den) from the computed yen).

den) can be generated (or obtained) in many different' ways.

Generation of den) depends on the problem at hand.

1ow:

high:
end dn:

LD *ARl, B
STM #dn, ARI·
BC high, bgt
ST #OcOOOh, *ARI
B end_dn
ST #4000, *ARl

Compute the error e{n)

STM Idn, ARl

LD *ARI. A

STM Iyn, ARl

SUB *ARl, A

STr.; len, ARl

STL A, *ARI

; Update coefficients
STM T
MPY *ARl. A
STM #erfn, ARl
STH A. I, *ARl

STM #FilterSize-i. BRC
LD *ARI, T
RPTB end_update
MPY *AR3+0%, A
ADD *AR2,l5. A

end_update:
STH A.I, *AR2+0%

Obtain new input sample
L.D *AR5+. B
STL B. *AR3+0%

RET
nop
nop

.end

Figure 7.19 Continued

; B =yen)

; ARI points to the den)

; Btanch to high if yen) > 0

; d~n) = cOOOh if yen) < 0

;d(n) = 4000h if yen) > 0

e{n) = den) - yen)

erfn =mu.e{n)

BRC = No of Taps - 1

T = erfn

Update coefficients

A = erfn*x(n)

Update coefficient

Save the updated coefficient

Get the new Input sample
Put new sample in sample buffer

Return

206 Chapter 7 Implementations of Basic DSP Algorithms

Cll CI2'" CINall a12'" au. b ll b I2 •••

a2l azz ••• an C2l CZl '" cZN. bZ1 bn ···
•

bKl bK2 ••• .CMl CM2'" CMNall an'" au

where J =K, 1= M, and L.= N

Figure 7.20 Organization of matrices A, B, and C

7,9.1 Matrix Multiplication

Let A(i, j) be an I x J matrix and B(k, I), a K x L matrix. In order to be able
to multiply the matrix A by the matrix B, J should be equal to K. We call. the
product matrix C(m, n), with M rows and N colUmns. Since we have multi­
plied an I x J matrix by a K x L matrix (J being equal to K), the resulting
matrix will have I rows and L columns, i.e., M = I, and N = 1. Figure 7.20
shows the org~nizationof the matrices A, D, arid C.

Each element of the matrix C is the dot product· of a vector representing
a row of the matrix A with a vector representing a column of ma~ D. For
example. .

Cll = allbll + a12 b21 + a13b31 + , .. + alJbKI

CI2 = aU bl2 + a12 b22 + al3b32 + ... + anbK2

CIN == allbll + al2b21 + al3b31 + '" + alJbKl

C21 = a21 bll + a22 b21 + a23 b31 + ... + a2JbKl

C22 = a2l b12 + a22 b21 +a23 b32 + ... + a2J~

. cZN a21 bU + aZZ b21 + a23b31 + ... + alJbKl

CMI= an b l1 +aIlb11 + al3b31 + ... + aIjbKI

CM2 = allbl2 + al2bzz + al3b32 + ... + aljbK2 .

CMN = an bn +allb21 + au b31 + ... + anbKl

In other words. in order to obtain the element Cl1, row 1 of A is multiplied
with column 1 of B; to get C12. row 1 of A is multiplied by column 2 of D, etc.,
until all the elements of row 1 of C are computed. Then the operation is
repeated withrow 2 of A to get the elements of row. 2 of C and so on until all
the elements of C are computed. . .

7.9 2-D Signal Processing 207

bl!'~--1::1
alZ I bZI

al3 b31

---:-:~--I
aZZ

a Z3

1
1- - ~~; -­

bzz

b3Z

---:-~--I I---:~;--
an

a33

, a 34

,
b23

b33

b43

-I 	ell

elz

e l 3
...... -..... ­

'eZ I

e2l

e23

e 31

en

e33

Figure 7,21 Memory organization for matrix multiplication of a 3 x 4 matrix with a 4 x 3
, matrix

In order to implement the matrix multiplication algorithm on the
TMS320C54xX, the data corresponding to matrices A and B and the resulting
matrix C should be organized in the DSP memory as shown in Figure 7.21.
The elements of mattiX A are ordered row by row. those of matrix Bare
ordered col~ by column. and the elements of the product matrix C are
stored row by row: Note that Figure 7.21 is an example in which A is a 3 x 4
matrix, B isa 4 x 3 matrix, 'and therefore. C is a 3 x 3 matrix.

, '

Three pointers are required to keep track of the elements in,the matri~esA.
B. and C. Let these pointers be arlo ar2. and ar3; respectively. All the pointers
are initialized to the stiu'ting addresses of the respective matrices. To compute
Cu. arl has to advance from, an toa14 and ar2 from bn to b41 • To compute Cu.
arl has to be reset to an and has to go again from au to a14. On the other
hand. ar2 con.tinues from b12 to b42;'. Thi$ is repeated for all the elements of the
first row of C. Le.• arl goes from all to' a14 three times while ar2 goes all the
way from bll to-b34•After computing all the elements of the first row of C. arl
is set toa21 while ar2 is reset to bn to) compute the elements of row 2 of C in
the same way as was done for row L This process is repeated for all the rows
of C. ar3 statl$ at 1(11 and moves to C33 with the computation of each element
of C. The memory organization for the matrix elements is shown' in Figure
7.21. The TMS320C54xx program for matrix multiplication is shown in Figure
7.22; Note that the program uses the repeat-block ~struction to compute the
dot product used in the matrix multiplication.

208 Chapter 7 Implementations of Basic DSP Algoritluns

Program Name:

Oescription:

"

Author:

RESET:

matArowl:
matArow2:
matArow3:

matBcol1:
matBco12:
matBco13:

. ex7p8MAT.asm

This is an example to show how to implement matrix mutiplication.
It implements the following equation

C = A.B

where
A is a 3 x 4 matrix,
B is Ii 4 x 3 mqtrix, and
C is a 3 x 3 matrix

Matrix Aelements are stored in data memory row after row.
Matrix Belements are stored in data memory column after column.
Matrix C elements are stored in data memory row after row.

All elements are q15 numbers.

Avtar Si SJSU

.mmregs memory-mapped. registers

.ref c intOO

.sect ",vectori"

B c intOO Reset vector
NOP
NOP

.data

.word 1000h,2000h,3000h,4000h row 1 of matrix .A
~.word 1000h,2000h.3000h,4000h row 2 of matrix A
.word 1000h.2000h,3000h,4000h row 3 of matrix A

.word 1000h.2000h,3000h,4000h; column 1 of matrix B

.,word lOOOh,2000h,3000h,4000h column 2 of matrix B

.word lOOOh,2000h,3000h.4000h column 3 of matrix B

Figure 7.22 The TMS320C54xx implementation of the matrix mUltiplication (continued)

matC:

Nml

_c_intOO:

.word 0.0,0

.word 0,0,0

.word';O.O,O

.set 3

.text

ssbx sxm
stm #matC, ar3
stm #matArowl, arl
stm #matBcoll, ar2
stm' #Nml, .BRC
ca11 DOTPROD
5th a,l,*ar3+

stm #matArowl, arl
stm #matBco12.ar2
stm #Nml, BRC
call DOTPROD
sth a.l,*ar3+

stm #matArowl, arl
stm #matBco13. ar2
stm ilNml. BRC
ca11 DOTPROD
sth a.l,*ar3+ .

stm ilmatArow2, ad
stm #matBcoll~ ar2
stm ilNml, BRC
call DOTPROD
sth a,l,*ar3+

stm #matArow2, arl
stm #matBco12. ar2
stm #Nml •. BRC
ca11 DOTPROD
.sth a,l,*ar3+

stm #matArow2, arl
stm #matBco13, ar2
stm ilNml,BRC
ca11 DOTPROD
sth a,l.*ar3+

row 1 of matrix C

row 20f matrix·C

row 30f matrix C

columns of matrix A-I

select sign extension mode
ar3 = matrix C start address
~rl = matrix ALrow 1 start address
ar2 = matrix B col 1 start address
BRC= row/col el~ments - 1

; find dot product
save the result as matrix C element

arl =matrix A row 1 start address
ar2 =matrix B col 2 start address
BRC =row/col elements - 1
find dot product
save the result as matrixC element

arl =matrix A row 1 start address
ar2 = matrix B col 3 start address
BRC = row/col elements - 1
find dot product
save the result as matrix C element

arl =matrix A row 2 start address
; 	ar2 =matrix B col 1 start address

BRC = row/col elements - 1
find dot product
save .the result as matrix C element

arl =matrix A row 2 start address
ar2 =matrix B col 2 start address
BRC = row/col elements - 1
find dot product

; 	save the result as matrix C element

arl =matrix A row 2 start address
ar2 = matri.x B col 3 start address
BRC =. row/col elements -1
find dot product
save the result as matrix C element

Figure 7.22 Continued

·stm #matArow3. arl arl = matrix A row 3 start address
stm #matBcoll. ar2 ~r2 = matrix B colI start address
stm #Nml. BRC . BRC = row/col elements - I
call DOTPROD find dot product
sth a.I,*ar3+ save the result as matrix C element

stm #matArow3. arl arl = matrix A row 3 start address
stm #matBco12, ar2 at2 " matrix B col 2 start address
stm #Nrnl, BRC BRC = row/col .elements - 1
ca11 DOTPROD find dot product
sth a.I,*ar3+ save. the result as matrix C element

stm #matArow3. arl arl =matrix A row 3 start address
stm.#matBco13.ar2 ar2 =matrix B col 3 start address
stm #Nml,BRC BRC =rowjcol elements ~ 1
call DOTPROD find dot product
sth a.I.*ar3+ save the result as matrix C element
nop
nop
ilop

;------------~--~------------

Dot Product Routine

This routine determines the dot product of two. vectors

Input: 	 arl" pointer to the first element of vector I
ar2 = pOinter to the first element of vector 2
BR(" size - 1 for ei ther vector

....
All elements are q15 numbers

Output: 	 Pi = dot product as q30 number

'. 	 .
;---~---------------------------~
DOTPROD:

ld #0, a A = 0
NXTeleofA:

rptbend_dotp-l A = sum of arl(i)*ar2(i} for all
ld *ar2+. t
mac *arl+. a

end_dotp: ret return
nop
nop

.end

Figure 7.22 Continued

Assignments 211

7. 1 0 Summary

In this chapter, we have covered some basic DSP implementations with
the view of using a fixed-point programmable DSP device such as the
TMS320C54xx. All these . implementations require some sort of multiply and
accumulate operation on two arrays, typically an array of samples and an
array of coefficients. In all these implementatipns, memory organization is
important, as it leads to the specific programming strategy to do the compu­
tations. An<)ther important aspect of these implementations is how signal
samples and coefficients are represented. The Q-notation is handy when rep­
resenting fractional filter coefficients. However, care must be exercised in
U$ing the multiply operation on nurribers represented in 'the Q-notation.

The implementations covered in this chapter iQc1ude FJR filters, IIR filters,
interpolation filters, decimation filters, ;PID cOf!.4'oUer, adaptive filters, and
2-D signal processing: In these implementations, it lsassl/.med that the input
signal samples are available in a memory bpffer or in a data file. The com­
puted output samples are also placed in a mel,llory buffer. HoweVer, to design
a real-time application requires inclusion of AID and D/A interfacing along
With the appropriate software to control them for d~ta acquisition. Real-time
signal processing is considered in Chapters 9 and 10.

References

1. 	 Strum, R. D., and Kirk, D. E. First Principles of Discrete Systems and Digital
Signal Processing, Addison-Wesley; 1988.

2. 	 Peled,A., and Liu, B. Digital. Signal Processing, John Wiley, 1976.

3. 	 Stearns, S. D., and Ruth, D. A. Signal Processing Algorithms, Prentice-Hall,
1988.

4. 	 Orfanidis, S. J. Introduction to Signal Processing, Prentice"lHall, i996.

5. 	 TMS320C54xDSP Reference Set, Volume 1, Texas Instruments, 200l.

6. 	 TMS320C54x nsp Reference Set, Volume 2, Texas Instruments, 1999.

7. 	 TMS320C54x Assembly Language Tools, User's Guide, SPRU102D, Texas In­
strUments, December 1999.

Assignments

7.1. Determine the value of each of the following 16-bit numbers represented using
the given Q-jtotation~ ..

212 	 Chapter 7 Implementations of Basic DSP Algorithms

a. 4400h as a QO number

b. 4400h as a Q15 number

c. 4400h as a Q7 number

7.2. 	 Represent each ofthe following as 16-bit numbers in the desired Q-notation:

a. 0.3125 as a Q15 number

b. -0.3125 as a Q15 number-

c. ~.125as a Q7number

. d. ..,-352 as a QO munber

7.3. 	 Modify the TMS320C54xx program in Figure 7.l(b)so that it can be used to
multiply a QI5 number with a QO number to obtain the result in QO notation.

7.4. 	 Modify-the TMS320C54xx program in Figure 7.1(b) so that the rounding is
done as follows: Use ordinary rounding as in the program except when the
part to be truncated is exactly equal to half the largest value represented by
the·dropped bits, in which case the part to be kept is incremented only if. as a
binary nUmber. it represents an odd. integer.

7.5. 	 Analyze the' following program to answer the questions at the end. Assume
that all specified data locations are on the same page starting at aO.

. data
ao .word 6000h
bi .word 2000h
xn .word 4000h
yn ;word Oh
ynmi .word 3000h

.text
ld #aO.dp
ld aO,t
mpy xn,a
ld bl. t
mac ynml. a
sth a. 1. yn

Assuming that all memory contents for constants and signals are in Q15
notation. determine the

a. decimal values represented by ao. bl. xn, and ynmI,

b. decimal value of the computed yn and that of the error due to trunca­
tion.

c. equation for yn implemented by the above program.

7.6. 	 For the following program determine (a) the difference equation, and (b) the
transfer function for the· implemented filter. .

,

. Assignments ~13

AGAIN:
Ld #yn,dp ; Set the data page
portr inport, xn ; Get the new input x(n) sample
ld #0, a·
ld . xnm2, t
mpy a2, a
ld xnml, t
delay xnml
mac aI, a
ld xn, t
delay xn .
mac aO, a
ld . ynm2,T
delay ynm2
mac b2,a
ld ynrnI, t
delay ynmi
mac bI, a
ld yn, t
delay yn
mac bO,a
sth a,yn ; Replace y(n) with the computed y(n)
b AGAIN

Assume that all signals are integers and stored in the order y(n), yen ­
yen - 2), x(n), x(n - I), x(n - 2) starting at the lowest address and proceed­
ing to the higher addresses on the same page. Note that ynml in the code
stands for yen - 1) and· similarly other signals are denoted. All coefficients
such as aO, aI,: .. , etc. are also stored as integers on the same data page.

7.7.· 	-. An N -tap FIl3- filter has

h(i) = heN 1 i)

where i = 0,1, ... , (Nf2) I, for an even value of N. Use the coefficient sym­
metry to rewrite Eq. 7.2 so that the number of multiplies is minimized. Show
an implementation scheme similar to Figure 7.3 for the filter. .

7.S. 	 An N-tap FIR filter has

hO) = heN 1 - i)

where i = 0, 1, ...• (N - 1)12, for an odd value of N. Use the coefficient sym­
metry to rewrite Eq. 7.2 so that number of multiplies is minimized. Show an
implementation scheme similllr to Figure 7.3 for the filter.

7.9. 	 Modify the TMS320C54xx program for the FIR filter implernentationshown in
Figure 7.4 to implement the symmetrical tap filter in Problem 4 with N = 30.
Test the filter implementation using an appr9priate set of tap values.

214, Chapter 7 Implementations of Basic DSP Algorithms

7.10. 	 Modify the TMS320C54xx. program for the FIR filter implementation shown in
Figure 7.4 to implement the symmetrical tap filter in Problem 5 with N 31.
Test the filter implementation using an appropriate set of tap values.

7.11. 	 Implement the IIR filter represerited by the following difference equation on
the TMS320Cc54xx.. Assume that g:15 notation is used to represent the values
of coefficients and QO to represent the signal' samples.

y(n).= b(O)X(tl) + b(l)x(n - 1) + a(O)y(n - 1) + a(l)y(n 2) + a(2)y(n 3)

7.12. 	 Using the program of-Figure 7.6, develop a TMS320C54xx. program toimple­
ment the following FIR filter: .

H(z) = (0.1 + 0.2z-1 +0.lz-2)(0.5- 0.2z-2
)

(1 + 0.25z-:-1)(cl 0.15z-1 - 0.5z-2)

7.13. 	 Determine ·the linearly interpolated sequence from the given sequence

x(n) =[0 48 12 16 128 4 0]

for an interpolation factor of 3. What interpolating sequence h(n) can achieve
the specified interpolation?

7.14. 	 MQdify the interpolatio~ filter implementation scheme of Figure 7.9 so.as to
avoid going over the san:J.ple sequence five times: This can be done using more
memory locations. . .

7.15. 	 Use the scheme of Problem 11 to write a TMS320C54xx program for the in­
terpolation filter .. Use appropriate data to test the program.

7..16. if decimation bya factor of 8 is achieved by decimating by a factor of 2 fol­
lowed by another factor of 4, determine the clltofffrequencies of the two low- .
P8.$S filters that should be used in the decimation scheme.

7.17. 	 Develop a decimation filter program that can be used to decimate by a factor
of 2s using a subroutine to decimate by a factor of 2 in !=onjunctionwith
appropriate filters.

7..18. 	 In the PID controller of Figure 7.14, K3 = Kl /64, K2 =,Kd8. Modify Eq. 7.14 so
that a minimum number of multiplies are used for its implementation. What
processor operation 'can .be used to achieve this? . .

1..19. 	 Develo~ a TMS320C54xx program for the PIt> controller of Problem 5.

7.20. 	. Modify, the adaptive filter implementation scheme of Figure 7.18 so that the
adapQve filter is also an interpolCltion filter with an interpolation factor of 2.

7.21.. 	 Develop a TMS320C54xx. program for the scheme of the adaptive and inter­
polation filter in. Problem 17. ­

7.22. 	 Develop a TMS320C54xx subroutine to multiply two 3 x 3 matrices.

7.23. 	 Use the subroutine developed in Problem 19 to develop a TMS320CS4xx. pro­
gram toimplelllent 2-D convolution. Ass1;UDe appropriate ~uesfor the 2.rD
signal s!lDlplesand the convolutiQn coefficients.

Chapter 8
Implementation of FFT Algorithms

8.1 Introduction

In this chapter, we cover the implementation· of FFT algorithms for OFT
computation and related issues. As an example, an 8-point DIT FFT algorithm
is implemente!i with considerations for computational structure and scaling to
avoid overflow. The following topics are covered in this chapter:

An FFT algorithm for OFT computation

A butterfly computation.

Overflow and scaling

Bit-reversed jndex generation

An 8-point FFT implementation on the TMS320C54xx

Computation of the signal spectrum

8;2 An FFT Algorithm for DFT Computation,

Here we consider the OFT computation using FFT algorithms. We discuss
these algorithms from the implementation point of view. For a detailed treat­
ment 'of the FFT, we refer the reader to the many available excellent books on
the subject

The discrete Fourier transform (OFT) pair is given as

n=N-l
X(k) L x(n)e-J2nnkIN; k = 0,1,2, ... , (N 1) (8.1)

n=O

and

215

~16Chapter 8 Implementation of FFT Algorithms

k=N-l

x(n) = liN :L: X(k)ej2nnklN; n = 0,1,2, ...• (N - 1) (8.2)
k=O

where x(n) is the time-domain sequence;X(k) is the corresponding frequency- '
domain sequence, and N is the numberofelemEmts ofeach sequence.

Equation (8.1) is known as the forward transform, or DFT,and (8.2) as the
inverse transform, or IDFT. Replacing e-j2n1N by WN, we get

n=N-:-l

X(k) = L x(n)WN nk
; k = 0,1,2, ... , (N - 1) (8.3)

n=O

and

k=N-l

x(n) = (lIN) L X(k)WN- nk; n=0,1,2, ... ,(N-l) (8.4)
k=O .

where WN"k is known as the twiddle factor.
Noteihat the direct DFT computation of (8.1) or (8.2) requires N 2 complex

multiplies and N(N - 1) complex additions., That is, it requires approximately
N2 complex operations. Let us now consider a few specific cases starting with
the 2-point DFT. The objecti;ve is~o derive an algorithm for efficient compu­
tation of the DFT and IDFT.

8.2.1 2-Point DFT Computation

For N = 2, Equation 8.3 written explicitly for k = 0 and 1 gives

0X(O) =x(0)W20 +x(l)W2 (8.5)

X(1) = x(0)W20 + X(I)W2-1 (8.6)

Note that the,twiddle factor W2() = eO = 1 and W2:-1 =e-j'l< = -1.
, Substituting for twiddle factors in E9uations 8.5 and 8.6 gives

X(O) = x(O) +x(I) (8.7)

XCI) =x(O) - x(l) (8.8)

The computation represented by thes.e equatioris is shown in the signal flow
graph of Figure 8.1. This computation is called an in-place computation if
the computed values X(O), X(1) replace x(O) and x(I), respectively. Note that.
the 2-pointDFT computation requires only add and subtract operations to '
implement. The structure in Figure 8.1 is called a butterfly.

8.2 An FFT Algorithm for DFT Computation 217

x(O) 0::::::: :;;0 X(O)

x(1)o< ::;. >0 XCI)
. -1

. Figure 8.1 Signal flow graph for a2-point DFT computation

x (0) 0.::;: ;:>" Q;: pX(O)

x(2) 0"'" ::;'.">.0 t1;: Y fl X(I)

xCI) 0.::;: ;p If X::;. 1 'b X(2)

WI
4

x(3) 0"" >:1 >0).?) >OX(3)1

'- _v.----~" -"
stage 1 stage 2

Figure 8.2 Signal flow graph for a 4-point DFT computation

8.2.2 4-Point DFT Computation

Computation of a .i-point DFTcan be shown to yield the structure shown in
Figure 8.2. Note that now we require a total of four butterflies in two stages of
computation. The first stage has two butterflies, one operating on x(O) and
x(2) and the second operating on x(1) and x(3). In the second stage, the first
butterfly operates on upper outputs of the first-stage butterflies and the sec­
ond one operates on the lower outputs of the first-stage butterflies. Also, note
that the lower output of the second butterfly of the first 'stage needs to be
multiplied with the twiddle factor W4 1 • '

Further, note that the input samples x(O) through x(3) are required to be
rearranged in the order x(O), x(2), x(l), x(3) to implement the computation·
depicted in Figure 8.2. Now, if the naturally occurring input sample indices 0,
1, ~,3 are represented by their binary equivalents 00, 01, 10, 11 and these
binary numbers are reversed, we get 00, 10, 01, 11, which are 0, 2, 1, 3, the

·218 Chapter 8 Implementation of FFT Algorithms

x(O) 00:: JJ . Q; P Q p X(O)

x(4) cr= :> '=0 o;:)(;p q \ / p X(l)

x(2) '" .. :;r.> . of X:>. "0 Q;: \ X I f X(2)

x(6) 0'" :> >0.:> d' :> "0 '\ X X ;\ fJ X(3)

x(l) 00:: P 0;: P (\ X· X *:> \i)

x(5) <::f"" >: >0 0;;;:
-1

rf)(:> 'l:> :> d' \ :> b r "

X.;p :> d / X \:> '0 X(5)

x(3) Q;: »

x(7) c;('") >0.)rf-1 Wsz ?1 'b>-~~:>7"""d:L...._4-_'
'-.r------' ' . W,' ~1 • X(/)

\. .J v-­
stage 1 v,)stage 2 stage 3

Figure 8.3 Signal flow graph for an 8-point DFTcomputation

indices for the sequence in which the signals must be processed by the com­
putational structure of Figure 8.2. This pro'cess of rearrangement of indices for
OFT computation is called bit reversing and is further considered ina sub­
sequent section.

8.2.3 8M Point OFT Computation

When 8 points are used to compute DRT, the result is the computational
structure of Figure 8.3. Now we have three computationaLstages, each stage
requiring 4 butterflies for a total of 12· butterflies. Note. that the input is. re­
arranged following bit-reversed itidices of eight input samples. The relation­
ship between the input indices and the bit-reversed indices required for OFT
computation .will be explored furtPer in a subsequent section. Further; note
that now more twiddle factors are needed to compute the OFT. .

8.2.4 N = 2'" Point FFT Computat.ion

. The above approach to OFT computation extended to a case of N points,
where N is a power of 2, yields 10g2 N stages of computation, with each stage

8.3 A Butterfly Computation 219

requiring N /2 butterflies. This computational structqre is the fast Fourier
transform, or FFT.

Another FFT Algorithm

Two types of commonly used FFTalgorithms are available, decimation-in­
tinie (DIT) and decimation-in-frequency (DIF). If the naturally occurring
input time~sequence sampl~ indices are. bit reversed and processed by the
above algorithm, the frequency domain output is in t:he natural order. Such
a computation is called a DIT FFT algorithm. Another algorithm results if a
time-d()main sample sequence is used without bit-reversing the indices. The
latter algorithm is similar to the former, with small changes in the butterfly
computational structure. The output generated by the latter algorithm has bit- .
reversed indices. This second approach is called the DIF FFT algorithm. The
details of the DIF FFT algorithm can be found in most books on DSP funda­
mentals [1] and are left for the reader to explore.

Zero-Padding

At times"the sequence to be transformed is appended with zeros before com­
putingthe DFT. This can be done to satisfy the condition that the FFT algo­
rithm requires that the number of points be a power of 2. Another objective of
zero-padding is to increase the transformed points to decrease the frequency
interval between adjacent points represented by the X(k) sequence. This leads
to improvement in frequenq resolution for representing signals in the fre­
quency domain.

8.3 A Butterfly Computation

A general DIT FFT butterfly in-place computation structure is shown in Figure
8.4. Its implementation requires the following computation:

AR+jAr a
-.I I

AR + jAr

B I 'BI
R +j r

WFf +jW{

Figure 8.4 A general butterfly computation structure

220 Chapter 8 Implementation of FFT Algorithms

AR' + JAI' = (AR + JAI) + (BR + jBI).(WRr + jWlr)

= AR + BR WRr - BI Wlr + j(AI + BI WRr + BRWlr) (8.9)

BR' + jBI' = (AR + jAI) - (BR + jBI)(WRr + jWlr)

= AR BRWRr +BI Wlr + j(AI - BI WRr - BRWIr) (8.10)

Equating real and imaginary parts yields

AR'= AR + BRWRr - BIW{

AI' == AI + BI WRr+BR Wlr
(8.11)

BR' = AR - BRWR
r + BIWl r

BI' AI - BI WRr - BR Wlr

or

AR' = AR + TMPI

AI'·= AI + TMP2
(8.12)

BR' = AR - TMPI

BI' AI TMP2

where

TMPI = BR WRr - BI WIr (8.13)

and

TMP2 = BI WRr + BR WIr (8.14)

Thus, to compute the butterfly one can use Equations 8.13 and S.14 to first'
compute TMPI and TMP2 and then use these in Equation 8.12.

8.4 Overflow and Scaling

The data must be properly scaled down before or during a butterfly compu­
tation to avoid overflow at any stage of calculations. Overflow leads to a use­
less transformed result. However, excessive scaling leads to precision prob­
lems due to dropping of the least significant bits. Thus, one needs to have an
idea about the magnitudes of signal values so that scaling is applied only when
needed. hi essence, the purpose of scaling should be to avoid overflow without
sacrific~g precision.

8.;4 Overflow and Scaling 221

. Consider the following equation iIi the butterfly computation

All = AI + BI WRr + BR Wrr (S.15)

where WRr = cos (}, wIr = sin (}, (}::::;; 27tnklN. Substituting for the twiddle
factor gives

AI I = AI + BI cos (} + BR sin (} (S.16)

The maximum value of All occurs when oAr11M = O. This yields

OAI'lo(} = -B, sin (} + BR cos (} = 0

That is,

tan (} BR/BI (S.17)

which yields
BR

sin·(} = VBR2 +BI2

BI
. (S.lS)

Cos (} = VBR2 + BI2

Substituting sin (} and cos (} in Equation 8.16 yields

AI~ax = AI + VBR2 + BIZ . (S.19)

If we assume that the maximum value of each variable in Equation 8.19 is 1,
then the maximum possible value that AI' c.an attain is given as

AI~ax = 1 + V2 2.414

Similarly it can be shown that the maxima for other computed variables. in
Equation 8.12 in the butterfly computations are also equal to 2.414. Therefore,
to avoid overflow each htput variable can be multiplied- by 112.414 = 0.414
before computing the butterfly. The butterfly computation is modified, by in­
cluding this scale factor, as shown in Figure 8.5(a). If a shift operation, which.
is simpler to implement, is used to scale the variables, the scale factor to avoid
overflow should be 0.25. Figure 8.5(b) shows the butterfly computation that
uses 0.25 as the scale factor. Use. of the shift operation is preferred in pro­
grammable signal processors where it is implemented as part of data transfer
and requires no additional execution time. However, in such a case we may be
scaling more than what is absolutely needed and thus compromising the
computational accuracy. For simplicity we will use shift in the FFT imple­
mentation example considered in a subsequent section. Figure 8.5(c) is the

222 Chapter 8 Implementation of FFT Algorithms

Xl
(1 + $)

A I °AI-,-- R+J I

Butterfly Computation

/(1/1+ $) I__ BRI+ JBI I

AR +jAI ")

BR +JBI :>

1
W~+jW{

Figure 8.S(a) 	 Butterfly computation, where the magnitude of all numbers is limited to less than
1, using a scale factor = 1/(1 + v?)

AR +jA y,;­ f---- A:+jA(I ----:);;--­

Butterfly Computation
y,;­

BR + jB! .) 	 ~B:+ jB:
I

W~+jW{

Figure 8.S(b) Butterfly computation where all magnitudes must be less than 1 and the scale
. factor is apower of 2 .

A I °AIBFAa+jAI R +J I

xl.
4

B lOBIBR +JBI (WJ +jW[) R +J I

Figure 8.S(c) A representation for the butterfly computation using a seaIt=! factor of 114

85 Bit-Reversed Index Generation 223

representation for the butterfly strucfure that wi.1l be used in the DIT FFT im­
plementation. This representation includes the scale factor as well as the
twiddle factor.

8.5 Bit-Reversed Index Generation

The table in Figure 8.6(a) shows the relationship between the naturaIlyoccur­
ring original input indices and the indices with reference to which DIT DFT is
computed. The bit-reversed indices, needed for the DI':(FFT implementation,
can be generated using a reverse carry add operation, as shown in~e example
of Figure 8.6(b). For instance, if the current bit-reversed index"is 01002 in an
8~point DFT, then, the next bit-reversed index is obtained by adding 01002

(half the DFT size) using reverse carry propagation (carry moving to the
right).

As discussed in Chapter 5 TMS320C54xx has an addressing mode that al­
lows one to implement bit reversing in a very convenient manner. As the
naturally sequenced input data is obtained, it is bit reversed before placing in
memory for FFT computation.

Original Index Bit-Reverseq Index

000 000
001 100
0·10 010

'011 110
100 001
101 101
110 011
111 111

Figure 8.6(a) Bit-reversedindices in an 8-point DFT computation

0010 (Carry in)

0100 (Current bit-reversed index)

+ 0100 (Half the number of OFT points)

0010 (Next bit-reyersed index)
010.0 (Carry out)

Figure 8.6(b) Bit-reversed index ('!onor:ltinn o":lm"lo

224 Chapter8 Implementation of FFT Algorithms

·.8.6 	An 8-Point FFT Implementation on the
TMS320C54xx

An 8-point DIT FFT implem~ntation structure based on the butterfly of Figure
8.5(c) is shown in Figure 8.7. The TMS320C54xx program that implem~nts
the. algorithm is shown in Figure 8.8. The program uses subroutines for bit

x(O) X(O)

x(4)

x(2)

x(6)

x(l)

~x(5)

. x(3) 	 ­

xlA

WO

xlA

WO

x1A

WO

xlA

WO

I--
-

xlA X(l)

I--
,

WO X(2)
:X1A I--

W2 II---'- X(3)

WO X(4)

I--
xlA WI X(5)

.

WO W2 X(6)

W2 W3 .-- X(7)
'---

Figure 8.7 An 8-point FFT implementation structure; scale factor for all butterflies 114

8.6 An 8-Point FFT Implementation on TMS32QC54xx 225

Program Name: FFT8.asm

Description: This program implements an 8-point OIT FFT algorithm.

Author: Avtar Singh, SJSU

.mmregs

.def _c_intOO

.data
;--­

Transformed .data
;-----~---------~---
XOR .word 0 Real part ofXO
XOI .word 0 Imag part of XO
XIR. .word 0 Real part of Xl
XlI .word 0 Imag part of Xl
X2R .word 0 Real part of X2
X2I .wordO Imag part of X2
X3R .word ,0 Real part ofX3
X3I .word 0 Imag part.of X3
X4R .word 0 Real part of X4
X4I .word 0 Imag part of X4
X5R .word 0 Real part of X5
X5I .word 0 Imag part of X5
X6R .word 0 Real part of .X6
X61 .word 0 Imag part of X6
X7R .word 0 Real part of X6
X7I .word 0 Imag part of X7
;--­

Input data. It should be replaced with the actual data for which the
FFT is to be computed

.. ----- ... - --~-- --- - -,----- ------- ---- ----- - - -------- ------ ---,.,---------­
xO .word 0
xl .word 23170
x2 .word 32767
x3 .word 23170
x4 .word 0
x5 .word ~23170
x6 .word -32767
x7 .word -23170

Figure 8.8 FFT implementation program for the TMS320C54xx (continued)

226 Chapter 8 Implementation of FFT Algorithms

;--------~--
Twiddle Factors (q15 numbers)

;-----------------------~-------------~-------------------------------
W08R .word 32767 ; cos (0)

W081 .word 0 ; -sin(O)

W18R .word 23170 ; cos(pi/4)

W181 .word -23170 ; -sin(pi/4)

W28R .word 0 ; cos(pi/2)

W281 .word -32767 ; -5i n(pi /2)

W38R .word -23170 ; cos(3pi/4)

W381 .word -23170 : -sin(3pi/4)

;--­

Spectrum Data

;--------~-- ----------------
SO .word 0 ; SO = Freq 0.fs/8 contents
SI .word 0 ; SI = Freq l.fs/8 contents
52 ;word 0 S2 = Freq 2.fs/8 contents
53 .wordO S3 = Freq 3.fs/8 contents
S4 .word 0 54 .-Freq 4.fs/8 contents
S5 .word 0 55 = Freq 5.fs/B contents
S6 .word 0 ; S6 = Freq 6.fs/B contents
57 .word 0 S7 Freq 7.f5/B contents
;--------~---~~-------------------------~------------- ----------------

Butterfly scratch-pad locations
;---~-~---------~-------
TMPI .word 0
TMP2 .word 0

.text

--~------------~-----------

Main Program

This program computes B-point DFT using OIT FFT algorithm.

'; It cil so computes signal spectrum using the transformed data.

;--------------------------------~------------------------------------
ntOO:

SSBX SXM Select sign extension mode,
CALL _clear Clear FFT data locations
CALL _bitrey Get bit-reversed input data

STAGE 1 Butterflies:

Figure 8.8 Continued

8.6 An 8-Point FFT Impl~mentation on TMS320C54xx 227

; Call BUTTERFLY with AR = XOR, AI = XOI, BR = XIR, BI XII
Replace XOR, XOI, XIR. XII

STM IXOR, ARI
STM IXIR, AR2
STM IW08R, AR3
CALL _butterfly

; Call BUTTERFLY with AR = X2R, AI = X2!, BR = X3R, BI X3I
; Repl ace X2R, 'X2I, X3RJ X3I

I
I

STM IX2R, ARI
I

i
STM IX3R. AR2 !

STM ifWOBR, AR3/
CALL _butterfly i

; Call BUTTERFLY with AR = X4R, AI = X4I, 8R = XSR, BI = X5I
; Repl ace X4R, X4I, XSR~ X5I

STM IX4R, ARI
STM #X5R, AR2
STM IWOBR, AR3
CALL _but~erflY

; 	Call BUTTERFLY with AR = X6R, AI = X6!, BR = X7R, 81 = X7I
Replace X6R, X6!, X7R~ X7I

STM IX6R, ARI '
STM IX7R, AR2
STM #WOBR, AR3
CALL _butterfly

; 	STAGE 2 Butterflies:

; Call BUTTERFLY with AR XOR, AI = XOI, BR = X2lR, BI = X2I
ace XOR. XOI, X2R, X21

STM IXOR, ARI
STM #X2R, AR2
STM IWOBR. .AR3
CALL _butterfly

Figure S.S Continued

1

228 Chapter 8 Implementation of FFT Algorithms

Apply Twiddle Factor W28 to X3R, X31
Call BUTTERFLY with AR = XIR~AI = XII, BR *-X3R, ~I = X3I
Replace XIR, XII, X3R, X3I

STM #XlR, ARl
STM #X3R, AR2
STM #W28R, AR3
CALL butterfly

Call BUTTERFLY with AR = X4R, AI ': X4I, BR = X6R, BI X61
ac~~4R, X4I, X6R, X6I

STM #X4R, ARl
STM #X6R, AR2
STM #W08R, AR3
CALL _butterfly

Apply Twiddle Factor W28 to X7R, X7I
Call BUTTERFLY withAR = X5R. AI = X5I, BR = X7R, BI X7I
Replace X5R. X5I. X7R. X7I

STM #X5R. ARl
S"fM #X7R. AR2
STM #W28R·, AR3
CALL _butterfl y

STAGE 3 Butterflies:

with AR = XOR. AI '" X01, BR '" X4R. BI '" X41
ace XOR, XOI, X4R, X4I

STM #XOR. ARI
STM #X4R, AR2
STM #W08R, AR3
CALL _butterfly

Apply Twiddle Factor Wl8 to X5R. X5I
Call BUTTERFLY with AR = XIR, AI '" XII, BR = X5R, BI X51
Replace XIR, XII, X5R, X5I

STM #XIR, ARl
STM #X5R, AR2
STM #W18R, AR3
CALL butterfl y

Figure 8.8 Continued

8.6 An 8-PointFFT Implementation on TMS320C54xx 229

: 	Apply Twiddle Factor W28 to X6R, X6I
Call BUTTERFL~ with AR = X2R, AI :: X2I., BR :: X6R, Bl X61
Replace'X2R, X2I,X6R, X61

. STM #X2R;;ARl
STM #XOR, AR2
STM- #W28R, AR3
CALL _butterfly

; 	Apply Twiddle Eactor W38 to X7R, X7I
Call BUTTERFLY with AR:: X3R, AI X3I, BR = X7R, BI :: X7I
Replace X3R, X3I, X7R, X7I

STM #X3R, ARl
STM #X7R, AR2
STM #W38R, AR3
CALL _butterfly

Spectrum computation

STM #X.OR, ARl ARl points to transformed XOR
STM .#SO, AR2 AR2 pOints to spectrum SO
STM #7, AR3 AR3 ~#of. spectrum points-l

CALL _spectrum Compute signal spectrum
nop
nop

. .
;----~-- ----------------

This subroutine moves the data to the FFT·memory.
The data is written in bit-reversed order.

. 	

;------------~-------------~----------~~------------~--------~--------
bitrev:

STM #xO, ARl ARl pOints to input sample xO
STM #XOR, AR2 AR2 pOints to FFT data memory start
STM #8, ARO ARO = FFT order :: 8
STM #7,AR3 AR3 = FFT order-l ~ 7

loop:
LD *ARl+, A Get next input data sample
STL A, *AR2+0B Store bit-reversed- in FFT memory
BANZ loop, *AR3- Repeat for all input samoles
RET
nop .

. >

Figure 8,8 Continued

230 Chapter 8 Implementation of FFT Algorithms

;--~--~------~--------------------------------------~--------------~--
Clear FFT data memory routine

;---~--~----------------
clear:

STM #XOR. AR2 AR2 points to FFT data memory
RPT #15 .; Clear FFT memory
ST #0, *AR2+
RET

.	nop

nap

;--­
This subroutine implements the butterfly computation

Use ARI as painter to first complex number.
Use AR2 as pointer to second complex number.
Use AR3 as pointer to twiddle factor.

AR <= AR + BR*WR - BI*WI

AI <= AI + BR*WI + BI*WR

BR <= AR - BR*WR + BI*WI

,. Bl <: Al - BR*WR - BI*WI

Scale Factor: 1/4

_butterfly:
MVMM AR1. AR5 AR5" = AR1
STM #IMP!, AR4 AR4 pOints to TMP1

LD *fl,R5, -2, A
STL A, *AR5+ Replace AR with AR/4
LD *AR5, -2, A
STL A, *AR5- Replace AI with AI/4

LD *AR2. -2, A
STL A, *AR2+ Replace BR with BR/4
LD *AR2, -2. A
STL A. *AR2- ~eplace BI with BI/4

LD *AR5+. A
STL A, I, *AR4+ Store AR in TMP1
LD *AR5-, A
STL A, I, *AR4- Store AI in TMP2

Figure 8.8 Continued

8.6 An 8-Point FFT Implementation on TMS320C54xx 231

;AR <= AR + BR*WR - BI*WI
LD #0, A ; A = 0
MPY *AR2+, *AR3+, A A = BR*WR
MAS *AR2-, *A~3, A A = (BR*WR) - BI*WI
ADD *AR5, 15, A A = (BR*WR - BI*WI) + AR
ADD #I,14,A Round the result
STH A, I, *AR5+ ; Save computed AR

;AI <= AI + BR*WI + BI*WR
LD #0, A : A = 0
MPY *AR2+, *AR3-, A A = BR*WI
MAC *AR2-, *AR3, A A = (BR*WI) + BI*WR
ADD *AR5, 15, A A = (BR*WI + 'BI*WR) + AI
ADD #I,14,A Round the result
STH A, I, *AR5- Save computed AI

;BR <= AR - (BR*WR - BI*WI)
LD *AR4+, A ; A = AR
SUB *AR5+, A ; A = AR-(BR*WR ~ BI*WI)
STL A, *AR2+ Save computed BR

;BI <= AI ~ (BR*WI + BI*WR)
lD *AR4-, A ; A = AI
SUB *AR5-, A ; A = AI-(BR*WI + BI*WR)
STL A, *AR2: ; Save computed BI
RET
nop .
nop

-------------~-------------------~-------~------------ ---------------
This subroutine computes the spectrum of the transformed data.

Use.ARI as pointer to the transformed data.
Use AR2 as pOinter to the spectrum data.

S(k) = (I/N)*IX(k) 1*IConj(X(k)) I

~---~----------- ---------------

_spectrum:
LD #O,A ; A = 0
LD #O,B B = 0
SQUR *ARl+,A Square X(k) real
SQUR *ARl+,B Square X(k) imaginary
ADD B,A A = IX(k) I. IConj(X(k)) I

Figure 8.8 Continued

,232 Chapter 8 Implementation of FFT Algorithms

STH A.l.*AR2
lO *AR2.13,A
STH A, *AR2+
BANZ _spectrum, *AR3­
RET
nop
nop

divide by 8
Store the spectrum result

.end

Figure 8.8 Continued

reversing and butterfly computation, as described earlier. For programming
details see references [2, 3], The program is written to carry out computation
stage by stage, starting from the left and proceeding to the right. For simplic­
ity, the implementation uses the butterfly routine including the scaling within
the butterfly. More accurate implementations are possible that exploit scaling
only when needed. For instance, the scale factor of 0.25 in an 8-point FFT
computation results in overall scaling of 0.253 = .015625. However, the re­
quired scaling is = 0.4143 0.07l. If we apply a scaling of 0.25 to the first two
stages and none to the third, the overall scaling will be 0.0625, which is ade­
quate to avoid an overflow. Similarly; other scaling strategies can be devel­
oped, and these are left as exercises to explore. The implemented scale factor
can be accounted for in the interpretation of theiransformed data or it can be
used to scale the result back to obtain the true transformed result.

The program in Figure 8.8 can be extended to transform any x(n) sequence
with numbers that are powers of 2. A sequence that does not satisfy this con­
dition can be extended to the next power-of-2 number by appending it with
zeros. 'The zero-appended sequence can then be processed to compute~e
transform. These extensions are left as exercises. In order to extend tlle pro­
gram to a higher number of points, such as 16 ,or 32, we need to include more
calls to additional butterflies. A simple extension of the program based on
adding more calls makes it unmanageable. In such a case, the program should
be restructured to incorporate nested loops. In such an implementation the
computation will proceed similarly for each stage, computing the butterfly in
the innermost loop. This, however, requires storing all the twiddle factors,
including WN O, in sequential memory locations. Such an implementation is
left as an exercise for the reader.' ,

8.7 Computation of the Signal Spectrum

The spectrum of a signal describes the power associated with each frequency
content. of the signal. The spectrum estimate for an N-point .transform is given

Assignments 233

by [1]

. S(k) (l/N)X2 (k) == (lIN)X(k)X*(k) . (8.20)

where k = 0, 1,2, ... , (N - 1). If (liN) is absorbed ina scale factor, then
Equation 8.20 can be computed from

S(k) == (Real(X(k)))2 + (Imag(X(k»)2 (8.21)

,
Figure 8.~ includes a subroutine to compute the signal spectrum. using the
result of the 8-point FFT.

8.8 Summary

This chapter is about the implementation ·of an FFT algorithm on the fixed­
point signal processor TMS320C54xx. The FFT computation structure is de­
scribed. The butterfly and bit-reversing aspects ate covered from an imple­
mentation point of view. The implementation issues, such as overflow and
scaling, are discussed. The chapter includes an implementation example for an
8-point DIT FFT algorithm. The example also includes spectrum computation
using the FFT result.

References

1. 	 Strum, R. D., and Kirk, D. E. First Principles of Discrete Systems and Digital
Signal Processing, Addison Wesley, 1988.

2. 	 TMS320C54x DSP Programmer's Guide (spru538.pdf, 231 KB), 2001.

3. 	 MS320C54x DSP Mnemonic Instruction Set, Reference Set, Volume 2 (Rev. C),
(sprul72c.pdf, 1096 KB), 2001.

Assignments

1. 	 Determine the following for a 128-point· FFT computation:

a. number of stages

b. number of butterflies in each stage

c. number of butterflies needed for the entire computation

d. numbe,r of butterflies that need no twiddle factors

234 	 Chapter 8 Implementation of FFT Algorithms

e. number of butterflies that require real twiddle factors

f. number of butterflies that require complex twiddle factors.

2: 	 What minimum size FFT must be used to compute a DFT of 40 points? What
must be done to the samples before the chosen FFT is applied?

3. 	 How many add/subtract ttl) and multiply (M) operations are needed to im­
plement a general butterfly similar to the one described in Section 8.3?

4. 	 Show that the butterfly computation of Section 8.3 can also be implemented
using the following equations: .

ARI AR + BR WRr
- BI wrt

All = AI + Br WRt + BR Wl
f

BRI 2AR ARt

BIII2AI -Ar

5. 	 Compare the butterfly implementation in Problem 3, with that in Problem 4 in
terms of multiply, add, and shift operations. .

6. 	 Compare the following specific cases of b,utterfly implementation using the
equations in Section 8.3: .

a. Al Br 0, WR f + jWI f = 1

b. WR
f + jWrt 1­

c. WR
r + jWI r =j

7. 	 Derive equations, similar to the ones in Section 8.3, to implement a butterfly
encountered in a DIF FFT implementation. Such a butterfly is represented by
the following equations:

ARI + jAr I (AR + jAr) + (BR+ jSr)

BRI + JBII = «AR + jAr) (BR + jBd)(WR
r + jWI r)

8. 	 Derive the optimum scaling factor for the DIF FFT butterfly.

9. 	 How can the program of Figure 8.8 be modified so that scaling is done only
when needed?

10. 	 Rewrite the program in Figure 8.8 using nested loops so that there is just one
CALL statement to call a butterfly routine.

11. 	 Modify the program in Problem 10 so that it can be used to compute a FFT for
any number of points that are powers of 2 ..

12. 	 Modify the program in Problem 11 so that it can be used to compute a FFT fer
points that are not powers of 2.

13. 	 A time-domain sequence of 73 elements is to be convolved with another time­
domain sequence of 50 elements using DFT to transform the two sequences,
multiplying them, and then doing IDFT to obtain the resulting time-domain
sequence. To implement DFT or IDFT, the DIT-FFT algorithm is to be used.

Assignments 235

Determine the total number of complex multiplies needed to implement the
convolution. Assume that each butterfly computation reqUires one complex

. multiplication.

14. 	 The computation in Problem 13 is to be implemented on a fixed-point signal
processor that takes 10 ns to do a real integer multiplication. Determine the
convolution computation time. If the convolution is to .be implemented for a
real-time signal and each time a new sample is received the transform is to be
calculated; determine the highest frequency signal that can be handled by the
signal processor.

Chapter 9
Interfacing Memory and Parallel 1/0
Peripherals to Programmable DSP Devices

9.1 Introduction

In previous chapters, we studied the architectures of digital signal processors
and learned about -their instruction set and programming techniques. Iri a
complex DSP system, in addition to the processor, there are also external
peripherals, such as memory and input/output devices. In order to interface
such peripherals, we need to understand variou$ interfacing DSP signals and
the techniques for using them. Peripherals can be interfaced to a processor
either in serial or in parallel mode. In the serial mode, data transfer takes
place bit by bit; in the parallel mode transfer takes place word by word. The
choice is based on the nature of the peripheral and the desired data transfer
rate.

In this chapter, we consider the interfacing signals of the TMS320C54xx
processors and use of these signals for parallel interfacing of memory and·
peripherals. These topics are covered under the following headings:

Memory space organization .

External bus interfacing signals

Memory interface

Parallel I/O interface

Programmed I/O

Interrupts and I/O

Direct memory access

9.2 Memory Space Organization

The TMS320C54xx devices each support a basic memory space (internal and
external) of 192K 16-bit words. This consists of 64K words of program mem­

------~----

236

9.2 Memory Space Organization 237

Hex Page 0 Program Hex Data

Memory-Mapped I

Registers I

Scratch-Pad
RAM I

On-Chip
DARAM0-3
(32Kx 16-bit)

On-Chip.
DARAM4--7
(DROM=l)

or
External

(DROM=O)

Page 0 Program Hex
Reserved 0000

(OVLY=l)
005FExternal

(OVLY=O) 0060
On-Chip 007F

DARAM0-3 0080
(OVLY=l)

External

(OVLY=O
 7FFF

External 8000
On-Chip ROM

(l6Kx 16-bit)

Reserved

Interropts
(OncChip) FFFF

MPIMC=O

0000

007F

. 0080

7FFF

8000

FF7F

FF80

FFFF

Reserved
(OVLY=l)

External
(OVLY=O)

External

Interrupts
(External)

0000

007F
0080

7FFF
8000

BFFF
COOO
FEFF
FFOO
FF7F
FF80
FFFF

DARAM!: .2000h.o:3FFFh

DARAM3:6000h-7FFFh

DARAM5: AOOOh-BFFFh

DARAM7: EOOOh-FFFFh

Figure 9.1 Memory map of TMS320C5416

(Courtesy of Texas Instruments I~c.)

ory. 64K words of data· memory. and 64K words of 110 space. Program and
data memories can comprise of both internal (on-chip) and external (off-chip)
memories. ·The actual amount of memory depends. upon the particular DSP
device of the family.

Depending on a specific C54xx device. the on-chip program memory can
be ROM, DARAM, SARAM, or combinations of these types. The on-chip
memory of a device is mapped to the space by three CPU status register bits­
MP/MC. OVLY, and DROM. AS shown in Figures 9.1 and 9.2, the on-chip
memory of the TMS320VC5416 processor consists of 16K ROM, 64K DARAM.
and 64K SARAM [1].

Devices with boot loader ROM. lookup tables such as a sine table, and an
interrupt vector table are also available for applications that .needthese capa­
bilities. In some of the C54xx devices. the program memory can be extended
up to 81!12K words by providing external memory-addressing capability. For
the implementation of external memory systems these devices may be pro­
vided with up· to 23 address lines to access the memory. For example, the
C5416 provides 23 address lines that provide the capability of addressing up to
8192K of memoxy space in 128 64K word pages, as shown in Figure 9.2. .

Data memory can also be both on-chip and off-chip. As shown in Figure
9.1, the on-chip DARAM of the C5416 can be mapped as on-chip program
and/or data memory. The on-chip ROM can be mapped as on-chip program·

MP!Mc=l
(Microprocessor Mode) (Microcomputer Mode) ..

Address ranges for on-chip DARAM in data memory are; DARAMO; 0080h-lFFFh;
DARAM2: 4000h-5FFFh;
DARAM4: 8000h-9FFFh;
DARAM6; COOOh-DFFFh;

238 Chapter 9 Interfacing Memory and Parallel I/O Peripherals to Programmable DSP Devices

Hex Program Hex Program
040000'

On-Chip
7FOOOO~'

On-Chip
IDARAM0-3 ARAM0-3
(OVLY=I)

External
047FFFI(OVLY=0)

(OVLY= 1)
External

7F7FFF I(OVLY = 0)

048000 7F8000

External . External

04FFFFL, __--l 7FFFFF L'___...J

Page I Page 3 Page 4 Page 127
XPC= I XPC=3 XPC=4 XPC = 7Fh

Address ranges for on-chip DARAM in program memory are: DARAM4: 018000h-019FFFh; DARAM5: OIAOOOh-OlBFFFh
DARAM6: O}COOOOh-OIDFF DARAM7:01EOOOh-OIFFFFh

Address ranges for on-chip SARAM in program memory are: SARAMO: 028000h-029FFFh; SARAMl: 02AOOOh-02BFFFh
SARAM2: 02COOOh-02DFFFh; SARAM3: 02EOOOh-02FFFFh
SARAM4: 038000h-039FFFh; SARAM5: 03AOOOh-03BFFFh
SARAM6: 03COOOh-03DFFFh; SARAM7: 03EooOh-03FFFFh

Hex Program
010000 i

On-Chip
'ARAM0-3

(OVLY=I)
External

Ol7FFF I(OVL¥ =0)

Hex Program
020000

On-Chip
'ARAM0-3

(OVLY=I)
External

Hex Program
030000'

On-Chip
'ARAM0-3

(OVLY=I)
External

037FFFI (OVLY = 0)

Figure 9.2 Extended memory map of TMS320C5416

(Courtesy. of Texas Ins.truments Inc.)

memory, or this sp$l.ce can be in the external memory. These flexibilities are
provided to support applications with different types of needs.

On-chip memory is faster than external memory and has no interfacing
requirements because it is within the chip. It cons1l1lies less power compared
to external memory and enables higher performance of the DSPbeca~e of
better flow within the pipeline of the central arithmetic logic unit. However,
external memory provides a large memory space and hence is used when large

, . memory size is required.

9.3 External Bus Interfacing Signf'l~

A DSP device can be interfaced to a wide variety of peripherals by means of its
address bus, data bus, and a set of control signals. Important external inter­
facing signals ofTMS320C5416 devices are given in Table 9.1. The useofmany
of these signals should become evident when we discuss memory and I/O
interfacing later in this chapter.

9.4· Memory Interface

In the processor architecture, separate on-chip data and· program memories
are provideq to enhance the speed of program execution by using parallelism.

9.4 Memory Interface 239

Table 9.1· Memory and 1/0 Interfacing Signals of the !MS320C5416 Device

Signal Description

AO-A19 20-bit Address Bus

DO-015 16-bit Data Bus

DS Data Space Select

PS Program Space Select

IS 110 Space Select

RJW ReadlWrite Signal

MSTRB Memory Strobe

IOSTB 110 Strobe

READY Data Ready Signal

HOLD Hold Request

HOLDA Hold Acknowledge

MSC MiCro State Complete

IRQ Interrupt Request

lACK Interrupt Acknowledge

XF External Flag Output
).

BIO Branch Control Input

. Due to this parallel configuration and their dual-access capability. up to four
concurrent memory operations can be performed in one cycle. These include
three reads and one write operation. In spite of the advantages of on-chip
memory, size constraints may require the designer to use external memory.

The external memory interface of the C54xx processors consists of a 16- to
23-bit address bus (depending on the device), a 16-bit data bus. and interfac­
ing control signals. The interfacing signals are used to generate chip select
(CS), output enable (OE), and write enable (WE) signals required for accessing
the memory for data transfer [3]. Figure 9.3 shows a block diagram for the
memory interface of the C5416 processor. Notice that the job of the interface
is to use the processor signals and generate the appropriate signals for setting
up communication with the memory.

9.4.1 Timing Sequence for External Memory Access

The timing reference' for the external memory access is provided by the
CLKOUT signal of the C54xx devices. Depending on the operation performed.
the external memory .requires a number of clock cycles. During the entire
memory read and write operations,. MSTRB remains low and the PS and
DS are. active while program memory and data memory, respectively. are

240 Chapter 9 Interfa,cing Memory and Parallel I/O Peripherals to Programmable OSP Devices

TMS320C5416 Memory .

Vee

AO-A22

00:"015

PS,DS

MP/MC MSTRB

R/W

23

16

2/

Memory
Interface

(x+l)

16

AO-Ax

DO-DI5

Figure 9.3 Memory interface block diagram for the TMS320(5416 processor

accessed. The R/W signal is used to specify the direction of data transfer.
Figure 9.4 shows the TMS320C54n signals during two memory reads and a
memory write operation. The strobe signal, MSTRB remains low for both read
and write operations. RlW is high for the read operations and becomes low
for the write operation. Note that the write operation requires two cycles. This
is because, in the example, the write operation is. for· an external memory
location. Also note that during the read operation, is low since the read
locations are in the program space. Likewise, during the write operation, DS is
low, indicating a write operation with the data memory.

9.4.2 Wait States

The TMS320C54xx nsp can be interfaced to slower off-chip memories' and
I/O devices by introducing wait states. Software programmable wait states
are easily incorporated without any external hardware. The user-accessible
memory-mapped 'software wait state register (SWWSR) controls the internal
software wait state generator. Program and data memory spaces have two
pages each of 32K, and for the I/O, a single page of 64K that can be pro­
grammed to have software-generated wait states. This is done by means of a
three-bit field, for the corresponding space and address range, in the SWWSR:
000 corresponds to no wait state and III to seven wait states. Memory devices
that require more than seven wait states have to be interfaced using the hard­
ware READY signal. An external device uses the READY signal to indicate its

· 9.4 Memory Interface 241

CLKOUT

M"~~
1'----" I 1'\......J 1 . 1 '\......J 1 I'---/ I . 1'----"1

: *:: * : :: *'----1­
-	 : ~ Rood H Road ~ i . ~ ~rire"'7 »)1-1---+_

- II I' \'. 1 I I /1 1
RIW 	 1 I I I . 1 1 I . I

I I I' 1 1 1 " I . I
1.-4 I 'I!J I I I & i

PS_ 1 I I I I I I '\ !
I I I I I I I I

- I I I I '-l I I I Y I
DS 	 I I I I 1\ I I I !L. !

I 1 1 1 1 I' I I I 1

MSTRB~: I V i 'l i)' II
I I I I I II I I I

Figure 9.4 Memory interface signals for a read-read-write sequence of operations

(Courtesy of Texas Instruments Inc.)

readiness for the bus transaction. The processor checks the READY signal
during each bus cycle and completes the bus cycle only when the signal be­
comes logic 1.­

The primary goal of a DSP is to make external memory access as fast as
possible. The interface hardware introduces. signal delay and thus slows the
memory accessing. One solution is to design the interface without any device.
Such an example is shown in Figure 9.5. There is no address decoding to
generate chip-select signals. This means that the entire addressing space is
used by just one 8K x 16 SRAM device. For instance, the memory not only
responds to the address range 0000-lFFFh, it also' responds to all the ranges
generated by all possible combinations of the unused address bits A13-A19.
The P'S and DS signals are not combined with the R/W signal to generate the
WE signal-only PJW is connected to WE. This means that the SRAM is in­
distinguishable as a program or data RAM..

One subtle point to remember is tha~ only the program· memory can be
pa~ed in TMS320C54xxprocessors. The DS pin will never go low above the
OFFFFh address. Paging in program memory is controlled by the XPC register.
It allows paging of seven extra address lines in program space. For example, if

242 Chapter 9 Interfacing Memory and Parallel 1/0 Peripherals to Programmable DSP pevices

TMS320C5416 SRAM

AO-A12
1~

'"' AO-A12/

DO-015

MSTRB

16:;,­
~ 00-015

CS

/

."
R/W

MPIMC

OE

Vee

GND

Figure 9.5 An example of a no-decode external memory interface

A17 of the memory device with storage of 256K x 16 RAM is connected to PS,
only 192K words can be accessed. This is because 64K words of data memory
(corresponding to PS high) will be lost, since data memory cannot be paged
beyond 64K words;program memory can be paged for the full 128K words.

A disadvantage of external memory is that it may be slower than the pro­
cessor and may not be able to keep pace with the processor. However, it can
be accessed using wait states to slow the processor for transactions with the
slow memory.

A way to access the program memory with zero wait state is to run the
code from the internal memory. For this, t;he OVLY bit in the PMS'f register
has to be set. This, however, causes the. internal data memory (SRAM or
DARAM) to overlap the program memory region, thus reducing the available
memory space.

I> Example :9.1 Assuming that the SRAM in Figure 9.5 is to be used to hold a program, how
many address ranges', exist for the TMS320C5416 processor to access this
memory?

Solution The address lines A13-A22 for the C5416 can take any binary value from
0000000000 to 1111111111. Any Qfthese values combined.with· the specific
value of AO-A12 generates the address for the same specific location. Since
there are 10 bits that are doti't cares, there exist 210 or 1024 valid addresses for
each location. For instance, the first location in the memory can be acce~~ed
using address OOOOOh, or address 12000h, or address 24000h, etc. Thus, 1024
address ranges exist for the memory in Figure 9.5.

9.4 Memory Interfac:e 243

9.4.3 Memory Design Examples

We now consider some simple examples to illustrate interfacing external
memory devices with the TMS320CS4xx signal processors.

I> Example 9.2 Design an interface to connect a 64K X 16 flash memory to a TMS320CS4xx
device. The processor address bus is AO-AIS.

RP

WP

VPP

DO-DIS DO-DlS
28F400B

AO-AIS
TMS320CS4xx

DSP

DS
 CE

MSTRB
WE

RiW

MPIMc
Vee OE
XF

Figure 9,6 An el<ample of a flash memory interface for the TMS320C54xx DSP

(Courtesy. of Texas Instruments Inc.}

Solution 	 Figure 9.6 shows an interface between the TMS320C54xx device and the
64Kx 16 flash memory [4], The 16 address lines (AO-AI5) are used to ad­
dress the 64K flash memory. Writing into flash memory for programming re­
quires wait states, while reading from it does not. Under program control, XF
is driven low in the read mlt)de and high in the write mode. In this example,
external memory does not use the READY signal to interface with the DSJ>.
Wait states may be introduced by appropriately loading the SWWSRregister.
The R/W signal is used along with MSTRB to provide the write-enable signal
to the memory for programming purposes. For reading the memory, MSTRB
is used along with the XF signal to enable the output of the chip.

244 Chapter 9 Interfacing Memory and Parallel 1/0 Peripherals to Programmable DSP Devices

[> Example 9.3 	 Design a data memory system 'with address rangeOOO800h"':OOOFFFh for a
CS416 processor. Use 21< x 8 SRAM memory chips.

DO-DIS ~DO-DIS

I SRAM
SRAM

D8-DIS1\.1\­ DO-D7
DO-D7 x: DO-D7

~
AO-AJO AO-AI0~ ,I AO-AlO AO-AlO AO-AlO

11
DS ,.... - -

MSTRB I ."\.J WE ,-WE

RJW

I~ oE 8 OE
-

CS CS
TMS32OCS4l6 .,.. () (

MPIMC

All
1 Decode '""' 1·
I . logieI .

"

Vee

A22

Figure 9.7 Schematic of a 2K x 16 SRAM memory system for Example 9.3

Solution 	 Figure 9.7 shows the memory interfaCe. The width of the data bus for memory
chips is 8 bits, but the width of the data bus for the processor is 16 bits. Hence,
DO-D7.of the processor is connected to DO-D7 of the first memory chip and
D8-DIS to DO-D7 ofthe second memory chip to create the 16-bit data bus.
Output enable and write enable for the memory chips are generated by com­
bining. the DS, MSTRB, and RlW signals of the TMS320CS416 processor.
Address lines All...;A22are used in the decode logic to generate chip-select
signals for the memory devices. These must all be logic 0 to generate the chip
select for th.~ two devices so that the memory responds to the desired address
range.

"-'--~'" •..._-_. _.

http:DO-D7.of

9S Parallel 1/0 Inferface245

. [> Example 9.4 Interface an 8K x 16 program ROM to the CS416 DSP in the address range
. ~ 7FEOOOh-7FFFFFh.· '.

Vee

. 1\ ' .
AO-A12 AO"-'A12 AO..:..A12 .

v

.'

II 16c bit data bus
DO-DI5 l\r DO-DIS

TMS320C5416 ROM
I

MSTRB ,
PS

d. ."­ OE
RIW 7'-" . .. , .,

MPIMC
-
CS
~

'.1\
l-.

r

. A22 -
Decoder l?$ic

Figure 9.8 Schematic of an 8K x 16 ROM memory interface circuit for Example 9.4

Solution 	 Da~aflow takes place in only one direc~iou' whil~interfacing a ROM to a pro­
cessor. Hence, genenltingonly the output-enable signal is required for the
memory device. Address lines A13-A22 a~e used to generate the chip-select
control signal. Figure 9.8' shows the meIUory interface.

: .,' r;".. 	 .

9.5 Parallel.I/Olnteriace

Parallel 1/0 ports are used for interfacing external deviCes, such as AID and
D/A converters, to the DSP processor. Accessing I/O ports requires the use of
PORTRand PORTW instructions. The'PORTR (port read) instruction is used

:246 Chapter 9 Interfacing Memory and Parallel 110 Peripherals to Programmable DSP Devices

Add='=* ::: * : : : *: : :*=

I I

(
L-l II 1 I I 1 J I 1

Data

I 1 r----r I I' I' I ' I' I 11 Ir

.,... I I 1 I, \ I I I j,l I I I
RIW 	 I 1 I 1 I I I I I I I

I ,I 1 I I I I I I I I I I
_--{ I I I I I 1 I I, I 1 1 Y­
IS 1 I' I I I I I I I I I Jf

I I I I· I I I I I I I I I
- HI 1'1 I I I II In

IOSTRB I I I, I '\ I I I '\ I I

II I I I I I I I I I . I I

CLKOUT
1'--' I 1'------' I I'--' I 1'--'I I'--' I I'------'I I

Figure 9.9 I/O interface signals for a read-write-read sequence of operations

(Courtesy of Texa,s Instruments Inc.)

to read a peripheral connected to an input port. The data so read is placed in
the specified data memory location. Similarly, the mstruction PORTW (port
write) is used to ,send the contents of the specified data memorvlocation to an
output port.

The timing diagram in Figure 9.9 shows the signals that are involved in an
I/O transaction. This timing diagram is similar to a memory timing diagram
except that a few different cqntrol signals are involved. The processor uses the
IS signal to indicate an I/O ,operation. At least two dockcydes are required
for performing the I/O read and write operations. During these operations, the
IOSTRB signal remains low. This signal can be used to. control the output
enables of the external devices used to implement the I/O ports. Similar to
a memory interface circuit, wait states can be inserted to interface slow
peripherals.

We talk about three types of parallel 110. operations ,with a processor. These
are unconditional I/O, programmedllO, and interrupt 110. Unconditional I/O
is the simplest of the three types. This technique is us~ with devices that do
not Jtave any handshake signals. Programmed 110 and interrupt I/O are more
sophisticated approaches, as these involve special signals and capabilities. In
the next two sections, we discuss details ?fthe programmed and interrupt 110.

9.6 Programmed I/O 247

9.6 Programmed 1/0

TMS320C54xx

In this method, the CPU,keeps polling the external device until it is ready for
transmitting or receiving data. Software polling is used in programmed I/O to
ascertain the readiness of the e1tternal device for a data transfer to or from the
processor. C54x:x devices have dedicated pins for this purpose. Control signals
are sent and received via, these pins by software. In addition, C54x:x has two
registers, named GPIOCR and GPIOSCR. GPIOCR is a general-purpose I/O
register that is used to program the signals for I/O interfacing. GPIOSCR is a
status register used to read the status of the handshake signals. Although these
dedicated pins vary from one device to another, every version .of the C54x:x
family has at least two dedicated pins for performing the I/O operations •.
These signals, as shown in Table 9.1, are BIO and XF. BIO is an input to the
processor and XF is the output.

Using software, BIO can be used to monitor the status of an external
peripheraL The XF signal is' used' to control the peripheral. This mode of
communication using BIO and XF signals is asynchronous and is helpful in
making the processor communicate with devices that are slower than the
processor itself. Data length can be 8 bits or 16 bits. On detecting a low
the processor reads the peripheral data using the PORTR instruction. In turn,
it informs the peripheral via XF about the completion of the transaction,
allowing the processor to initiate the next transfer.

Figure 9.10 shows an example of an interface between an AID converter

AJD converter

AO-A15
·tOR3

RDIS
FJW

Analog signal
DO-DI5DO-DI5
,.

SOCXF

BIO

SOC-Start Of Conversion

EOC-End Of Conversion

Figure 9.10 An AID converter interface in the programmed 1/0 mode

248 Chapter 9 Interfacing Memory and Parallel I/O Peripherals to Programmable DSP Devices

, Set XF'=1, wirit, set XF == 0
, (Start ADC) .

No

Yes (ADC is done)

Read, sample from 'ADC, store, ,
, process, and save ,processed sample

I

Wait for sampling interval

Figure 9.11 	 Flow chariof the diagram for software polling for the programmed 110 interface
of Figure 9.10

and the TMS320C54xx processor in the programmed I/O mode. Notice that
XF is used to start the AID conversion and BIO is used to determine its com­
pletion before the data is read.
, The ftpw chart of the algorithm to implement the:! software polling used by

the processor to communicate with the AID converter is shown in, Figure 9.11.
The critical consideration in the implementation of this scheme is to control
the time between any two consecutive XF or SOC pulses. This time is the
sampling interval and must remain constant for all samples.

9.7 Interrupts and 1/0

An interrupt is the signal that' a nsp prOcessor receives requesting it to exe­
cute a specific interrupt subroutine called a service routine. If certain con­
ditions'are satisfied, the processor suspends its current program and branches

9.7 Interrupts and I/O 249

to execute the interrupt service routine. It resumes its previous activity after
completing the service routine. Interrupt signals can be external or internal to
the processor. Typically, these are requests for data exchange between the
processor and a peripheral, such as a convertet or another processor.

. An interrupt request initiates a special processing by the processor. The
request may be in the form of an electrkal signal applied to the processor
or may be by execution of an interrupt instruction. An interrupt instruction
initiates what is called a software interrupt. The electrical interrupt signal
initiates a hardware interrupt.

The table in Figure A;lO in Appendix A, called an interrupt vector table,
lists all the interrupts that TMS320C5416 is capable of handling. As can be
seen from the table, interrupt numbers are assigned· to on-chip peripherals
and to interrupt request signals. Each interrupt is assigned a priority and a
memory location in the table. Priority is used to service the interrupt with
higher priority when two requests are received simultaneously. The interrupt
locations are used to branch to the service routines.

An example of a software interrupt is the instruction SINT18. In the
TMS320C5416, this corresponds to software interrupt #18. The program
counter branches to the software interrupt #18 at address location och. After
executing the subroutine, it gets back to the suspended program. Hardware
interrupt requests come from devices both external and internal to the pro­
cessor. For instance, timer interrupt is an internal hardware interrupt; whereas
INT2 is an external hardware interrupt.

Interrupts are also c1assifiedas maskable and nonmaskable. Maskable in­
terrupts are the ones that can be masked by software; and as a result, the
CS4xx DSPjgnores the. requests for these interrupts and continues with its
current task.. However ·nonmaskable interrupts cannot be masked and the
processor has to service these requests; In the case of the TMS320C54xx pro­
cessors, the hardware interrupts RS and NMI are nonmaskable interrupts.

9.7.1 Handling of Interrupts

A flow chart of the interrupt handling by the C54xx processors is shown in
Figure 9.12. Interrupt handling is done in three phases: receiving the interrupt
request, acknowledging the interrupt request, and executing the interrupt ser­
vice routine.

Servicing an interrupt depends on the pending interrupt status indicated by
the bits of the memory-mapped register IFR (interrupt flag register), masked/
unmasked status as indicated by the corresponding bit in the memory­
mapped register IMR (interrupt mask register), and the global enable INTM
bit in the status register STI. The memory-mapped register IFR has bits cor­
responding to various interrupts. Whenever an interrupt request is made, the
corresponding bit in IFR is set until the CPU recognizes the interrupt. IFR
. shows the pending external and internal interrupts. IMR is a register that is .

250 Chapter 9 Interfacing Memory and Parallel I/O Peripherals to Programmable DSP Devices

Interrupt service routine run

Return instruction restores PC

Figure 9.12 A flow chart of interrupt handling by the processor

(Courtesy of Texas Instruments Inc.)

used for masking external and internal interrupts. An interrupt is unmasked
by making 1 the corresponding bit in the IMR. The INTM bit in STl enables
or disables all interrupts globally~ If INTM is 0, the, processor does not recog­
nize any maskable interrupt. ­

TMS32OC54xx

9.7 Interrupts and 110 ~$1

As the processor receives the 'int~~rupt. request, the corresportcl.ing·bh in
IFR is set high. An interrupt request is acknowledged depending upon certain
conditions. First! if the interrupt is nonmaskable. it is acknowledged immedi­
ately. Maskable interrupts are first checked for priority. and then the INTM bit
in the STI is checked to see if all the interrupts are globally enabled. The cor­
responding bit in IMRis then checked to see if it is masked or not. If the
INTM is 0 and theIMR mask bit is 1. the processor sends acknowledgment by
nieansof the lACK signal.

To service the intetrupt, the program counter's ctirr~rit contents are pushed
into the stack. This provides the mechanism for the execution to return to the
interrupted program. The INTM bit is set to 1 to disable interrupts during the
service routine. The instruction execution control transfers to the interrupt
request location in the intefrupt vector table. In the interrupt vector tabie,
we write it branch instruction to transfer. the execution control to the corre­
sponding interrupt service routine (ISR). After completion of the execution of
the ISR; the saved contents of the PC are popped from the stack and 1001d~d
back onto the PC. In this way, the CPU then starts executing the suspended
program. Also, the return instruction in the semceroutine re-enables the
mterrupts by clearing the INTM bit. .

TLC1550

T:; r-=r;: I:ART
CLKOUT I ...1eLKIN

DO-D9

IOS1RB' • "

.-----11 RD

es
DO-D9

ADC

DO-D7
WR

Analog In

DAC
OUTl "< • I

Address ~I10Addressl. Ies ,/
AO-Al5 'r---vl Decoder IOW07H TLC7524

OUT2 ,,'£'''---,--;

~FB

Figure 9.13 Circuit for interfacing TlC 1550 (ADC) and TLC7524, (DAC) to the TMS320C54;xx

252 Chapter 9 Interfacing Memory and Parallel I/O Peripherals to Programmable DSPDevices

!> Example 9.5 Interface the TMS320C54xx to a IO-bit ADC (TLCI550) and an 8..:bit DAC
(TLC7524): The sampled signal read froIn theADC is to be written to the DAC
after adjusting its size. The start of the conversion is to be initiated by the
TOUT signal ofthe timer~

Solution The ADCand the DAC <;an be connected to the DSP as shown in Figure 9.13.
, '

The rate Of generation of TOUT is the sampling frequency for the ADC. Con­
version is initiated by TOUT, and as s()on as it is completed, INT goes low and
the DSP receives the interrupt request on INTI. DSP suspends its current
program and services the interrupt by initiclting the execution of the ISR for
INTI. The interrupt service rou,tine involves the reading of the sampled data
from the port for theADC data,and writing it to the portJor the DAC. Before
writing the data to the output port,it is shifted to the (ight by 2 bits, because
the output from the ADC is a lO-bitwo:r;d, whereas the DAC can receive only
8-bit .words.

Enter to service
Start ,the Ihtell1lpt

Disable Interrupts

Process the sample

Save processed sample

'Return from
Interrupt

(b)(a)

Figure 9.14 	 Flow charts, for the main program (a) and the interrupt service routine (b)
for Example 9.5

~-- .._--­

9.7Interrupt~ and I/O 253

***************~;*****,********,****,*****,,,,*******************'11****************************

*
* PROGRAM FOR EXAMPLE 9.S (File: ex9pS.:asm)
*
* DESCRIPTION: 	 This CS4xx program reads an tnput signal applied to theADC and outputs
* 	 it to the DAC. The ADC is,read and the data is written to the DAC in
* the interrupt service routine for INTI.
*
* AUTHOR: 	 Avtar Singh, SJSU
*
*****************************,*****************************r-li,*****************'******,*****

.ref _c_intOO

.mmregs memory mapped reg definitions
: .:

buffer: .bss sample, 1 data buffer

. text
c intOO:

stin #OxOSOO, sri i nit SP to OxOSOO
ssbx nUM " ; disable all interrupts
call init_DSP init DSP processor
call init timer i nit timer

,stm #OxFFFF. IFR clear any pending interrupt
orm 10002h, IMR unmask INTI interrupt
rsbx INTM' enable'all interrupts

wait main: 	 ;You may insert code'here to be executed during interrupt wait
b wait_main " ; wait for ,an INTl interrupt'

;~--------------------~-~-~---------~--------~-------------------------------------~~-~
Processor Intialization Routine

-------.--.------------------------------­
PMST VAL .set 00A0h Interrupt vect at 80h,

MP/(MC*) = 0, OVLY = 1
BSCR VAL .setOOOOh 64K mem bank, no extra cycles

between consecutive reads
SWWSR VAL .set 2000h ; I/O wait states = 2 clocks

.text
init DSP:

ld 10, DP 'nata page 0
stm 10, CLKMD
stm #0, CLKMD
stm IOx4007, CLKMD Processor speed Sxcrgst.Freq.

Figure 9.15 Program.for Example 9.5 	 (continued)

254 Chapter 9 It).terfacing Memory and Parallel I/O Peripherals tOProgrammallle DSP Devices

stro #PMST_VAL. PMST Init Processor Mode Status Reg
stm #BSCR_VAL. BSCR Set Bank Switching Wait States
stm #SWWSR~VAL. SWWSR Set S/W Wait State Reg
ssbx OVM Saturate on overflow
ssbx SXM Select sign extension mode
ret .Return
nop

nop

;~---.-----------~---------------------------------.------------~~-~~--------------~--~
.; Timer Initialization Routine
; Timer out (TOUT) frequency = CPU Clock/(PRO+l) = sampling freq
; .. __ __ .. ______ - __ __ _ .. __ - ___ _"'!" __ .. _ "'!' ______ _.l. _ __ .. ___;....... _ ___ .. _ .. __ __
_~ _

PRO value .set 9999 '. PRO value for 8 KHz TOUT
TCR_value .set 0000 TCR value to start timer

.text
;nit_timer:

stm PRO_value. PRO init PRO register
stm TCR_value. TCR start the timer
ret return
nop
nop

, ' ," - . ~ -'._-- -------------------~-------~-----
; Interrupt Service Routine
• This reads the 10-bit AOC sample. converts it to an 8-bit sample an~

; writes it to the 8-bit OAC. .

;--------------------~--------r~-------"'!"-------~-~-------------"'!"-----~--~-----------~--
AOC_Oata_In .set 05h AOC data-in I/O address

OAC~Oata_Out .set 07h ; OAC data-out I/O address

.text
INTl_ISR:

portr AOC_Oata_In. sample read the AOC data

id sample. -2. A convert 10-bitdata to-8 tit

st.,l A. sample save as 8-bit data

Place for any OSPalgorithm

portw sample. OAC_Oata_Out ;. write data toOAC
ret ;. return'
nop
nop

Figure 9.15 Continued

i

9.8' Direct Memory Access (DMA). 255

----------_............... -- ... --- ' .. _--_ ... ----_... --- ... --_ ... ---_ --------_ ---'---_ ... --_ ... -_ ... _... --... -_

Interrupt Vector Table

----------~---~---
• sect " • vectors '!,

RESET: B ntOO Reset vector
NOP
NOP

NMI: RET Nonmaskable Interrupt vector
NOP

,NOP,

NOP
.space 4*15*16 Space for unused vectors,

INT1: B INTl ISR INn Vector
NOP
NOP·
.space 4*12*16 Space for unused vectors

.end
r "

Figure 9~15' " Continued

Figure 9.14(a) and 9.14(b) show the flow charts ot the main program and
the interrupt service routine, respectively. Figure 9.15 shows the program for
the application. Notice in the program that we need to initialize the processor
and the timer-. The timer is initialized for generating the TOUT signal at the
sampling frequency. We also must set up the, interrupt vector table to servi~e
the INTI request, As shown in the program, the service routine uses a mem­
ory location "san;lple"to save the sample value before sending it to the DAC.

9.8 Direct Mern~ry Access (DIVI~)

Direct memory access (DMA) is the method of data transfer between regions
in the memory space, or between memory and a peripheral, without any in­
tervention by the CPU; Transfer of data can he to and,from internal memory,
iJ1ternal peripherals, or external devices. DMA works in the bacltgrotind of the
CPU operation. ADMA controller, which may be a part ,ofthe DSP device,
manages the DMA operation. In this way, the' DMA speeds t:J.pthe overall
processing as the two activities; signaItransfel(and the processing in the CPU,
are carried out simultaneously. .

TMS320C54Xx: devices have up to six' independent programmable DMA
channels for direct data transf~r.Each channel connects a source location
and a destination location, Therefore, six different source locations can be

256 ,Chapter 9 Interf~!=ing Memory and Parallel 110 Peripherals to Programmable DSP Devices

connected to thecorrespondirig six destination locations. However; at a given
time during the DMA operation, only one of the six channels can be used for
signal transfer. Each· channel has to be enabled before it qU1 be used and each
is assigned a priority. A high-priority DMA channel is serviced before a low­
priority channel if they both request service at the same thne. When multiple
channels are enabled and have the same priority level, then the enabled
channels are serviced in a circular pattern. As transfer of data involves read
and write operations, it is necessary to specify the source and destination
address locations for each channel separately. Transfer is in the form of blocks
of data where each block consists of frames. Each frame consists of data ele­
ments, which can be 16 or 32 bits each. The sizes of the. block, ftame, and
elements are programmed for each channel. DMA transfer for a channel can
be programmed to be triggered by some specific event,' such as the transmit
interrupt.

The total number ofCPU dock cycles required to complete a DMA transfer
depends on the source and destination locations, external interface conditions
such as wait states and bank-switching cycle etc., and the number of active
DMA channels. A single data element transfer between'two internal memory
locations takes four CPU d,ock cycles, two cycles. for read and two for write.
In cases where external access is required, data transfer depends on the ;con.­
ditions of the external interface.

9.8. r DMA Oper~tion Configuration

Prior to transfer of data, the DMA registers have JO be configured suitably.
Configtiration involves'spedfyingdetans such as which channel is to be used
for transfer, mode of transfer, sourc~ and destination addresses, assignment
ofprloritiesto different channels, and the.Sizesoftheblock, frame, and data
element. A number ·of registers need to be programmed with configuration
information. These registers along with their addresses are shown in the table
of Figure A.9 in Appendix A. '. _ , _ .

The most important registers tobe configured ~re the DMA channel pri­
ority and enable control register (DMPREC) and the channel context registers.
The 16~bitPMPREC controls the enabling of the DMA channels and channel
priorities. Six bits of this register are used to ~ssign channel priorities and
another six to enable each-of the channels; , .

Each DMA.channelhas a 'setoffive channel context registers to c.onfigure
the, operation of that .channel .• These are the channel source address register
(DM8SEC), the channel destination address register (DMDST), the channel
element count register (DMCTR), the channel sync select and frame count
register (DMSFC), and the channel transfer code control register (DMMCR).

The DMSRC and DMDSTof each channel hold the source and the des­
tination addresses, respectively, for that channel. The DMCTR holds the
number of data elements to be transferred in a frame. The DMSFC determines

9.8 Direct Memory Access (DMA) 257

which synchronization events will be used to trigger the DMA transfers, the
word size (16 bit or 32 bit) for the transfer, and the frame count. The DMMCR
is, a 16-bit register that controls the transfer mode and is used to ipecify the
sou.rce and destination spaces, such as program memory,data}llemory, or 1/0
spa.ce. The user s~oUld consult the Reference Set to determine the contents to
be programmed into the DMFC, DMMCR, and DMPREC registers [2].

9.8.2 Register Subaddressing

",Register subaddressing is the technique used for configuring the DMA reg­
isters. As shown Figure 9.16, the stack of subaddressed registers is the set of
DMA registers. To configure 'a DMA register, its code for configuration is
loaded onto one of the two subbank ac;cess registers (DMSDI or. DMSDN).
'Each DMA register has a unique subaddress. 'rhe'subaddress of the DMA
registerto'be configured is loaded into the·subbank address register (DMSA).
This directs the multiplexer to connect the subbaxik access registers (DMSDI
of DMSDN) to the desired physical location, as shown in the figure. DMSDI is
used when an automatic increment ofthe subaddless.is required after each
access. Therefore, DMSDI can' be used to configure the entire set of registers.
DMSDN is used if a single, register access is desired. In this manner, just
two memory-mapped registers, DMSPI and DMSDN, enable the user to have

, al=cess to all DMAregisters, However, addressing becomes a two-step process,
one to setup the DMSA a,nd the othe,r totead or write to eitherDMSDN .or .
DMSDI.

/'"

SUBBANK {
ACCESS •
REGISTERS

I ,DMSDI I '" ...
"

'r-+-

'" ...

I DMSDN : '" '"

l '
I DMSA I
SUBBANK
ADDRESS'
REGISTER'

.......--
'-"""

...

,

:::;:::::::
Subaddressed
registers

figure 9.16 Register subiilddressing technique fo'rconriguring DMA operation

(Courtesy of Texas Instruments Inc.)

http:subaddless.is

258 Chapter 9 Interfacing Memory and Parallel I/O Peripherals to Programmable DSP Devices

[> Exampi'e 9.6 ' 	Write code to show how the. DMA channel 2 soUrce address register can be
initialized with the value lilih. '

Solution 	 Since a single register is to ,be modified, subbaIik register DMSDN can be used.
The TMS320C54xx code to achieve this IS as follows: .

OMSA .set 55h ; subbank ~ddress register address
OMSON .set 57h ; subbank , .

access . register address -.
OMSRC2 .set OAh f;' ~ubaddress

STM OMSRC2, OMSA ; OMSA = address of OMSRC2
STM #l1llh, OMSON "~write llUh to DMSRC2

I> Example .9.7 Write TMS320C54xx code tosho~ how the DMA channel 5 context registers
can be ·initialized. Choosearbitr.aryvalues to be written to the registers .

• ,< ". ." • .

Solution Since. this isa case ofconfigqripg a set of registe,rs, a subbaIik access register
withautojncremept CQMSPI) is llsedin this example. The code to achieve
this is as follows. Note that only.first subaddress in the sequential addresses of
the context registers is needed. ,; .

OMSA
OMSOI
OMSRC5
OMOST5
OMCTR5
OMSFC5
OMMCR5

.set

. set

.set

.set

.set

.set

.set

55h
56h.
19h
IAh
IBh
ICh
lDh

subbank address register address
subbank access register address
subaddress Of OM$RC5

STM
STM
STM
STM
STM
STM

OMSRC5. OMSA
#2000h. OMSOI
#3000h, OMSOI
#OOIOh, .DMSDI
#0002h, DMSDI
#00001), DMSDI

; OMSA = first sub address
; write 2000hto OMSRC5
; write 3000h to DMOST5
; write 10h toDMCTR5
; wri tE!' 2h to DMSFC5
: write Oh to DMMeR5

I> Example 9.S. 	 Write a TMS320C54xx code to transfer a block of data from the program
memory to the data memory. Following are the specifications:

Source address: 26000h in program space (extended memory page 2)

Destination address: 07000h in data space

Transfer size: 1000hsingle (16-bit) words
:

Channel use: DMA channel #0

References 259

Solution - The following code assumes that DMA registers have been defined with ap­
propriate directives.

STM DMSRCP. DMSA ; _set source program page
STM #2h, DMSDN
STM DMSRCO, DMSA ; set source program address to 6000h
STM #6000h, DMSDI DMSA points to DMDSTO
STM 	 #7000h, DMSDI ; set- destina~ion address to 7000h

DMSApoints to DMCTRO
STM #(lOOOh-l), DMSDI set for lOOOh transfers

DMSA poi nts to DMSFCO
STM 1I00000h, DMSDI configure DMSFCO

DMSA points to .DMMCRO
STM 1I00l05h, DMSDI configureDMMCRO

DMSA points to DMSRCO
STM 	 1I00l01h, DMPREC ; configure DMPREC

9.9 Summary

In this chapte~, we looked at the signals for parallel interfacing of memory
and peripherals and studied various interfacing circuits for memory and data
converters. _Under memory interfacing, we considered -various memory op­
tions such as SRAM, ROM, and flash. We also studied various types of I/O
interfacing methods, including programmed I/O, interrupt I/O, and direct
memory access.

References

1. 	 ..TMS320CS4xx DSP Reference Set, Volume 1, Texas Instruments Inc., March
2001.

2. 	 TMS320CS4xx DSP .ReferenceSet, VolumeS, Texas Instrument~ _Inc., June
1999.

3. 	 Texas Instruments Inc., Application Report: Understanding C54x Memory
Maps and Examining an Optimum -C5000 Memory Interface, SPRA607,
November 1999.

4. 	 Texas Instruments Inc., Application Report: Connecting TMS320CS4x DSP with
Flash Memory, SPRA585,August 1999.

260 	 Chapter 9 Interfacing Memory and Parallel I/O Peripherals to Programmable DSP Devices

Assignments

1. 	 What is the range of addresses that can.be decoded if A19 is pulled low in a
processor with 20 address lines?

2. 	 Up to what limit can the program memory be. extended in a processor with 20
address lines? How must the extended-memory be organized for addressing
by a C54xx processor?

3. 	 How many address lines are required to access' all locations of an 16K x 16
SRAM?

4. 	 If TMS32GC54xx is reading a memory word operand from address FFFOOh in
an SRAM, specify the logic levels of the following signals while the read oper­
ation is being performed: AO-A19, R/W, DS, PS, IS, MSTRB, and IOSTRB.

5. 	 Design a circuit to interface a 4K x 16 and a 2K x 16 memory chip to realizE
program memory space for the TMS320C54xxprocessor in the address ranges:
03FFFFh-03FOooh and 05F800h-05FFFFh, respectively.

6. 	 Design a circuit to interface 64K words of .the program memory space from
OFFFFFh to OFooooh for the TMS320C5416 processor using 16K x 16 memory
chips.

7. 	 Write an assembly language program for the system in Figure 9.10 using the,
programmed 110 approach as shown in the Figure 9.11.

8. 	 Describe methods to implement the signal-processing subroutine block in
Figure 9.11 so that a uniform sampling interval can be realized.

9. 	 What are the various classifications of interrupts for the TMS320C5416 pro­
cessor?

10. 	 How does the interrupt handling in the TMS320C54xx DSP differ for a soft­
ware and a hardware interrupt!

11. 	 Redraw the circuit of Figure 9.13for a 16-bit ADC and a 16-bit DAC. Use INt~
for the signal sample transfer.

12. 	 Write a program for the circuit of Problem 9.11. Let the sampling rate be,
'll4096th of the processor dock. The DAC output (at the same sampling rate)
is to be generated by averaging the immediate four input samples as received'
from the ADC.

,13. 	 How does DMA help in increasing the processing speed of a DSP processor?

14. 	 For TMS320C54xx DSP operating at a clock frequency of 100 MHz, how many
16-bit data elements can be transferred between two internal memory: loca­
tions per second in the DMA mode? .

15. 	 Write a TMS320C54xx code to initialize the DMA channelS destination reg­
, ister 	to #5555h without using auto increment. Rewrite the code using auto­

increment for the saine operation.

Assignments 261

16. 	 Write a TMS320C54xx code to transfer a block of data frolD the program
memory to the data memory. Following are the specifications:

Source address: 6000h in program space

Destination address: 8000h in data space

Transfer siZe: 800h single (16-bit) words

Channel use:· DMA channel #1

Chapter 10
Interfacing Serial Converters to a
Programmable DSP Device,

1O. 1 Introduction

In the preVious chapter, we studied the parallel peripheral interface of pro­
grammable DSP devices. In a DSP system, in addition to the parallel interface,
there is provision to interface serial peripherals. In the serial interfacing mode,
data transfer takes place bit by bit. The serial data transfer may be synchro­
nous or asynchronous.' Synchronous serial transfer allows faster data com­
munication but requires a clock signal as the timing reference.

In this chapter, we study the synchronous serial interface as provided in the
TMS320C5416 DSP. This device provides three muitichannel buffered serial
ports (McBSP). We also study how to·interface the DSP to an audio CODEC
PCM3002 that provides a serial analog-to-digital converter (ADC) and a serial
digital-to-analog converter (DAC). This is the device-that is used on the C5416
DSK board. Specifically, the following topics are ,conSidered: '

SYI4.chronous serial interface

A multichannel buffered serial port (McBSP)

McBSP programming

A CODEC interface circuit

CODEC programming

A CODEC-DSP interface example

10.2 Synchronous Serial Interface

The synchronous serial interface of the C54xx DSP [1] allows it to communi­
cate with the serial peripherals. Suchan interface is shown in Figure 10.1 for a
device called an analog input/output CODEC. The CODEC consists of AID

262

10.2 Synchronous Serial Interface 263

C54xx CODEC

..DX .. PIN

DR DOUT

FSX FS*
IFSR

CLKX SCLK
I

CLKR

Figure 10.1 Synchronous serial interface between the C54xx and a CODE.,C device

and D/A converters. The signals used in the interface are sh~wn in Figure 10.1.
On the DSP device theDX data line transmits the serial data to the CODEC,
and the DR receives it from the CODEC. The receive data is timed with refer­
ence to the clock signal CLKR, and the transmit data with respect to the clock
signal CLKX. The. start ofthe respective data (the first bit) is synchronized to
the frame sync signals FSR and FSX. Similar to the DSPdevice, the corre­
sponding signal pins are provided on the CQDEC device.

Figure 10.2ta) is the timing diagram for the receive operation for the inter­
face. Data reception starts with the FSR pulse. A bit is received.for each clock
pulse of the CLKR. After receiving all bits,. 8 in this case, the processor gen­
erates a RRDY signal to indicate. that the word of data is ready in the data
receive register of the serial port. The status signalRRDY can be read by the
processor to determine if ~ word of data has been received. .

Similar to receive timing is the transmit timing shown in Figure lO.2(b).
. Here the transmission starts with FSX and the completion.is indicated by
XRDY changing from'logic 0 to logic 1: The XRDY indicates. that the pre­
viously placed data word has been transmitted and the port is ready to trans- ..
mit the next word, if so desired.

http:completion.is

264 Chapter 10 Interfacing Serial Converters to a Programmable DSP Device

I
CLKR

I
. RRDY I I'

RBRl to DRRl copy(A) Read from DRRl(A) RBRI to DRRl copy(B) Read from DRRl(B)

(a)

Figure 10.2(a) Receive operation timing for the SSI

(Courtesy of Texas Instruments Inc.)

DXRl to XSRl copy(B) Write to DXRl(C) DXRl to DXRl copy(C) Write to DXRl

(b)

Figure 10.2(b) Transmit operation timing for the SSI

(Courtesy of Texas Instruments Inc.)

10.3 A Multichannel Buffered Serial Port (McBsP)
,

McBSP is a full-duplex synchronous serial port. Three such ports are provided
on the TMS320C5416 DSP. McBSP can be used to interface synchronous serial
peripherals such as a CODEC. The block diagram of Figu.re 10.3 shows the
structure of this port. We will briefly discuss the McBSP here. For detail~, the
reader is advised to read the manual referenced at the end of this chapter [2].

The incoming data enters the port through the DR line into the receive
shift register, RSR, where it is assembled into a word that is transferred to re­

Clock and
frame-sync
generation
and control

Multichannel
selection

SPCR

RCR

SRGR

PCR

MCR

RCER

XCER

""----"~--~ ~~. -------­

10.3 A Multichannel Buffered Serial Port (McBSP) 265

XINT. "" Interrupts to CPU RINT~

}" Synchronization~~~
REVTA ---t--+ events to DMA

XEVTA -++

Figure 10.3 Block diagram of the McBSP of C54xx

(Courtesy of Texas Instruments Inc.)

ceive buffer register, RBR. From the buffer register it is transferred to the data
receive register, DRR. The DSP processor reads the data from the memory­
mapped register DRR using an internal peripheral data bus. The port informs
the processor about the data in DRR using receive interrupt request, RINT, or
using the DMA signals. The DRR status is recorded in the serial port control
register 1, as the RRDY bit, so that the processor can determine when the data
is ready for transfer. The DSP can send the data to the outside world using the
memory-mapped data transmit register, DXR. The data written to DXR is
transferred to the transmit shift register, XSR, for shifting out 1 bit at a time.
The port informs the processor about the data in DXR using transmit inter­
rupt request,XINT, orusing the DMA signals. The DXR status is recorded in

"the serial port control register 2, as the XRDY bit, so that the processor can
determine when the data has been transmitted.

nR~

DX"~

CLKX
CLKR

FSX
FSR

CLKS

16-bit
peripheral
bus

266 Chapter 10 Intertacing Serial Converters to a Programmable DSP Device

There are six memory-mapped registers associated with each port. These
registers with their addresses ~re shown in the table of peripheral 'memory­
mapped regis~ers in Appendix A. Each register is of 16-bit length. There are
two receive registers to enable re~eived data lengths up to 32 bits. Similarly,
there are two transmit registers for each port. There are two more registers­
SPSA for address and SPSD for data-associated with each port. It is by using
these two registers that we can access subbank control registers for program­
ming the serial port. The control registers are shown in the table for McBSB
control registers and subaddresses in Appendix. A. For instance, to write data
to receive control register 2 (RCR22) of McBSP2 whose subaddress is OXO003h,
we write OxOO03h to register SPSA2 at memory address Ox0034h and the data
to memory-mapped register SPSD2 at address Ox003sh. A similar sequence
must be used while reading a subbank register.

10.4 McBSP Programming

In order to configure the McBSP, om; needs to write appropriate data to the
control registers. The functions of the bits of these registers are described in
the manual (see chapter reference [2]), which should be consulted to pr9gram
the port. A sample program is shown in Figure lOA. This program configures
the McBSP2 to work with serial 20-bit input data and serial 20-bit output data
and will be used in the example at the end of this chapter; -'

From the· manual and Appendix A, we can see that the control register
SPCR12 enables or disables the receiver. Similarly, SPCR22 serves to enable or
disable the transmitter function. The control register RCR12 selects the.20-bit
data mode for the receiver, and RCR22 specifies that FSR will be used to start
receiving the data bits. Similarly, the control registers XCR12 and XCR22 se­
lect the corresponding functions for the transmitter. Finally, the PCR2 defin~s
clocks and frame sync pulses to be external and active high. This registeI also·
specifies other functions of the pins of the serial port,. as indicated in the pro­
gram of Figure lOA.

1 0.5 A CODEC Interface Circuit

The PCM3002 [4]is a device that can be directly connected to the synchronous

serial port of the nsp. It provides l6/20~bit oversampling sigma-delta AID

. and D/A converters~ The maximum sampling rate that can be implemented

with this device is 48 KHz.. Figure 105(a) shows the building blocks of the

CODEC device. The detailed block diagram of Figure 10.S(b) shows. the inter­

nal .architecture of the }>CM3002. As you can see from the block diagram, the

device provides stereo ADC and DAG with single-ended voltage input and

output for the 'left and right channels. The CODEe can be programmed for

10.5 A CODEC Interface Circuit 267

**
*
* initMcBSP2.asm
*
* This module initializes .the serial port McBSP2 on the C5416 OSK.
*
* Author: Avtar Singh,·SJSU
*
**

. i ric1ude "regs.asm"

.def initMcBSP2

* Define the default values for the registers of McBSP2.

Serial Port Control Register 1 (0010 0000 0010 0000)

Bitl5 = 0: Oigltal loopback disabled
Bit14*13 = 01: Right-justify, sign extend
Bit12~11 = 00: Clock stop disabled
Bit10-S = 00: Reserved

.Bit7'= 0: OX enabler off
Bit6 = q: A-bis mode disabled
BitS-4 = 10: RINT driven by frame sync
Bit3 = 0: No sync error
Bit2 = 0: ·RBRs not in overrun condltion
Bit!. = 0: Receiver not ready
BitO = 0: Receiver in disabled and in reset state

VAL_SPCRI .set 2020h

Serial Port Control Register 2 (0000 00000000 0000)

BitlS-10: = OOh: Reserved
Bit9 = 0: Free running mode disabled
BitS = 0: Soft mode ~isabled
Bit7 =0: Frame sync not generated
Bit6 = 0: Oisablesample rate generator
BitS-4 = 00: XINT .driven by XROY
Bit3 = 0: No sync erl'or

.' 	 Bit2 = 0: XSRs empty
Bitl = 0: Transmitter not ready
BitO = 0: Transmitter in disabled and in reset state

Figure 10.4 A program to initialize the McBSP2 . 	 (continued)

268 Chapter 10 Interfacing Serial Converters to a Programmable DSP Device

VAL_SPCR2 .set OOOOh

Receive Control Register 1 (0000 0000 0110 0000)

; ,Si U5 = 0: Reserved
; Si tl4-8 = 0000000: . 1 word per frall1E!

Sit7-5 = 011: 20 ·bit receive word
; S;t4;..0= 00000: Reserved

VAL RCR1 .• set 0060h

Receive Control Register 2 (0000 0000 0110 0001)

Bit15 = 0: Single phase frame
BitI4-8= OOh: 1 word per frame
Bit7-5-= 011: 20 bit receive word
Bit4-3 = 00: No companding

• Bit2 = 0: Receive frame sync pulses not ignored
• BiU-O =01: I-bit data delay

VAL RCR2 .set 0061h

; Transmit Control Register 1 (0000 0000 0110 0000)

; BiU5 = 0: Reserved
; Bit14-8 =OOh: 1 word per frame
i Bit7-5 = 011: 20 bit transmit. word
• Bit4-0 = Oh: Reserved

VAL_XCR1 .set 0060h

; Transmit Control Register 2 (0000 0000 0110 0000)

BiU5 = 0: Single phase frame
Bit14-8 = OOh: 1 word per frame
Bit7-5 =011: 20 bittrailsmit word
·Bit4-3 = 00: No companding
Bit2 =0: Transmit frame Sync.pulses not ignored
BiU-O = 00:. O-bit data delay

VAL_XCR2 .set 0060h

Pin Control Register (0000 0000 0000 1100)

Figure 10.4 Continued

10.5 A CODEC Interface Circuit 269

Bitl5-14 = 00: Reserved
Bit13 = 0: DX, FSX, and ClKX are serial port pins
Bit12 = 0: DR, FSR, ClKR, and ClKS are serial port pins
Bit11 = 0: External transmit frame sync
Bit10 =0: External receive frame sync
Bit9 = 0: External transmit clock
Bit8 0: External receive clock
Bit7 = 0: Reserved
6it6 0: ClKS status
Bit5 '" 0: DX status
Bit4 - 0: DR status
Bit3 = 1: FSX active high
Bit2 = 1: FSR active high
Bitl = 0: Transmit data sampled on rising edge of CLKX
BitO 0: Receive data sampled on rising edge of ClKR

VAL PCR .set OOOCh

* This procedure initializes the McBSP2 for use with the PCM3002 codec
* on the C5416 DSK.

• text

i nitMcBSP2:
stm ISPCR1, MCBSP2_SPSA . : Disable McBSP2 RX
ldm MCBSP(SPSD, A
and 10FFFEh, A
stlm A, MCBSP2_SPSD

stm #SPCR2 ,MCBSP2_SPSA ; Disable McBSP2 TX
ldm MCBSP2_SPSD, A
and #OFFFEh, A
stlm A, MCBSP2_SPSD

stm #SPCR1, MCBSP2_SPSA ; Set SPCR1
stm #VAl_SPCR1, MCBSP2_SPSD

stm #SPCR2, MCBSP2_SPSA ; Set SPCR2
stm IVAl_SPCR2, MCBSP2_SPSD

stm #RCR1, MCBSP2_SPSA : Set RCRI
stm #VAl_RCRl, MCBSP2_SPSD

Figure 10.4 Continued

270 Chapter 10 Interfacing Serial Converters to a Programmable DSP Device

stm
stm

IRCR2, MCBSP2_SPSA
IVAL_RCR2, MCBSP2_SPSD

: Set RCR2

stm
. s.tm

IXCR1, MCBSP,_SPSA
IVAL_XCR1, MCBSP2_SPSD ,

: Set XCRl

stm
stm

IXCR2, MCBSP2_SPSA
IVAL_XCR2, MCBSP2_S~SD.

; Set XCR2

stm
stm

IPCR, MCBSP2_SPSA
IVAL_PCR, MCBSP2_SPSD

; Set -PCR

ret

Figure 10.4

Lchin v

Rchin

LchOut

RchOut

Continued

digital de-emphasis. digital attenuation, soft mute. digital loop-back, and the
power~doWn mode for the ADC and the DAC. '

An analog signal is applied to the combination of a delta~sigma modulator
and a decimation filter to convert it to Ii. corresponding digital signal. The
input signal is salnpled at a 64X oversampling rate, eliminating the need for
a sample-and-hold circuit and also simplifying the need for an antialiasing
filter. A. decimation filter is used to reduce th~ digital data· rate t!) the sampling
rate before generating ~e output bit~tream. A bighpass filter removes the',dc
components of the signal.

The delta-sigma modulator in conjunction with an interpolation filter
forms the DAC, which converts the serial digital signal to the correspon9ing
analog signal. The interpolation filter is used to increase the sampling tate :to

--=.o!' Qigiml'Out

Modulator

Delta-Sigma

Serial Interface Digitalin
and

Mode Control Multilevel Serial Mode Control Delta-Sigma
Modulator , System Clock

(a)

Figure 10.5(a) Block diagram for the PCM3002CobEC

(Courtesy of Burr-Brown Corporation)

----------- - - -- - - - -- ------------

10.5 A CODEC Interface Circuit 271

VINL

VREFL

VeoM

VREFR

VINR

VOUTL

VOUTR

,. -- - - - -.- - - - -- - - - -- ,
I I

I'
 I

I
 (+) IAnalog Decimation • . Delta-Sigma r----=--'­ I-:-. Front-End - and It-ModulatorI I

I
 Circuit Highpass Filter ~ I

I
 I

I
 I ~ +­--I-: ­
I Serial Data ADCReference Interface

,- ­r==
I r--­
I
I -Analog Decimation f----4­, Delta-Sigma - P

Front-End andI ­~ I-~Modulatorf-~I Circuit Highpass Filter ,
I

J

I
 .J

- - - -- ------ - - - -- - -- II
I IAnalog Multilevel Intetpolation II l+-

Lowpass Delta-Sigmaf-I- ­ Filtert- ­f-t-­
II ModeFilter Modulator 8X Oversamp1ini II Control ~ DAC II Interface

, t--­ II ~,
I Analog Multilevel Interpolation

i+­
I f4­

I----- Delta-SigmaLowpass FilterI ­
I ...I Filter Modulator 8X Oversampling ,

I ______ J Reset and
Power Down

,- - - - - -- ------ - - - -- - - - -- J:=
t

Zero Detect(l) Power Supply I I I Clock J ..I I

LRCIN

BCKIN

DIN

DOUT

MC<WDEMO<2)

MD(l)/DEMI(2)

ML(I)

20BI'Ji2)

PDDA(2)
RS~I)IPDAD(2)

AGND2 Voc2 AONDI Vee I DOND VDD SYSCLK ZPLO(l)

NOTES: (1) MC, MD, ML, RST, and ZFLO are for PCM3002 only.
(2) DEMO, DEM!, 20BIT, PDAD, and PDDA are for PCM3003 only.

(b)

Figure 10.5{b) Details of the PCM3002 CODEC

(Courtesy of Burr.....Brown Corporation)

the one needed by the modulator. The converted signal is filtered with an
analog lowpass filter to generate the analog output.

AS shown in the Figure.IO.5(b). there are two distinct parts of the CODEC
device: one tQ handle the serial data ttansfers. and the other for its initializa­
tion and to set it to work in the desired mode. The two blocks. the serial data
interface and the mode controlinterface. handle these two functions.

A block diagram of how th:e PCM3002 CO DEC device is used in the C5416
DSK board is shown in Figure 10.6. The CPLD on the DSK provides the system

272 Chapter 10 Interfacing Serial Converters to a Programmable DSP Device

IIPl

12.288 MHz ~
OsdUator

TMS320VCS416 ft PCM3002
. "'1 Mux DIN

McBSP2 DOUTData Interface.... L ,....
... LRCIN

DSPBus ~ '::
BCLKIN...

,"
I

.,
V

CPLD
.... SYSCLK...

/ Control/ ...
ML,MC,MD Interface

Figure 10.6 Block diagram showing the PCM3002 interface to the TMS320VC5416 in the DSK

(Courtesy of Spectrum Digital Inc.)

dock and the other timing signals for the mode control interface. It also con­
'trois the choice of using the McBSP2 port on the DSP for connection either to

the host PC (HPI) or to the PCM3002. The CPLD has User-accessible registers
that can be loaded to define ~ various parameters of the CODEC. data and
control interfaces [3].

The system dock for generating various timing signals for the CODEC is its
SVSCLK. This clock must be 256/s, or 384fs, or 512/s, where /s is the sampling
frequency. The CODEC detects the system clock and uses it to generate the
internal clo<::k at 256/s for the digital filters and delta-sigma modulators. In
the C5416 DSK board, the SYSCLK is supplied by the CPLD-generated dock
CODEC_SYSCLK, which is generated from the 12.288 MHz CODEC_CLK.

The data interface of the CODEC and the DSP is by way of DIN for data
input, DOUT for data output, BCION for data bit dock, and LRCIN for frame
sync signal for the left and: right channels. The data bit dock and the frame
sync signals are generated by the CPLD from the CODEC_CLK and applied to
the CODEC and the DSP. The timing for the data\input and output is shown
in Figure 10.7 for the four possible data formats. The frequency of the LRCIN
signal is the ADC/DAC sampling frequency. The bits are trusferred using the
bit dock BCLKIN. In the CPLD, the BCKINand LRCIN are generated from
the 12.228-MHz oscillator dock caIled the CODEC_CLK,which is aJlso'the
default CODEC_SYSCLK, applied to the CODEC device. The corresponding

10.5. A CODEC Interface Circuit 273

FORMAT 0: PCM2002/3003

DAC: 16-Bit, MSB-First, Right-JuStified
I I I

LRCIN L-ch IR-ch-J I
BCKIN ==IJt========] I1111 tr======rnIIIIIt=========lJ 11111 [=====rrmnrt=

DIN ==JRJ========== 1112131 --=======-'1411511(========= 1112131 =========]141151161: '\ ",: '\ ,:
, "MSB LSB' MSB LSB '

ADC: 16-Bit, MSB-First, Left-Justified
I I I

LRCIN L-ch R-ch-J L- I
BCKIN====11111111_=====~=======.==-1mmr=====~==========1I
DOUT ====~=========]14115~61=====~==--! 1{2131-========- 114115~61 =========fD

, MSB LSB ' MSB LSB '

FORMAT 1: PCM2002/3003

DAC: 20-Bit, MSB-First, Right-JuStified
I I I

qtCIN -J " L-ch 1 R-ch I
BCKIN --ll~------JJIIJJIr:-~-------~'-rrrr~------rTTT1lllr-----------'-rrrrrr~--__ "L_____ ".. ___________ .lLUUUL _____LLLl.l..l.lJ _____ ~_~ ___ JJ.LLuul __

DIN ==~====== 1112131::============]181191201_====] 112131::============]181191201_=
I '\ ,: . '\ ,:

MSB LSB' MSB LSB

ADC: 20-Bit, MSB-First, Left-Justified
I I I

LRCIN -J L-ch . 1 .R-ch I
BCKIN ====11111111 ========J1IJlTJI======:t 1111111 __ === __ ==JIIIIlIT=======lI

18
DOUT ====~============= 19,°1 ======~TII============= 1

18\l9Ijol::=====tTI ,1 1

, MSB LSB' MSB LSB'

Figure 10.7 Data transmission formats for the PCM3002 CODEC (continued) "

(Courtesy of Burr-BroWn Corporation)

default bit clock BCLKIN frequency is" 3.0122 MHz (or one-fourth of the
CODJ;:C_SYSCLK), and the sampling frequency is 48 KHz. The default fre­
quencies can be changed by dividing the CODEC_CLK by 2, 4, 6, or 8. This
provides the capability to change the sampling rate toone of five rates, the
smallest being 6 KHz and the largest 48 KHz.

274, Chapter 10· Interfacing Serial Converters to a Programmable nsp Device

FORMAT 2: PCM3002 Only

DAC; 20-Bit, MSB-First, Left-Justified
I 	 I' ,

LRCIN -J .L-ch ,I R-ch . I
BCKIN ----1JJIIm::---------llllIJI[-------t1"1""'T"""TT1-C----------rrrrrTTr-------J.]-____ . 	 __________ . _____ .:. __ lJD..LI..L _________ ..J..LULLW ________ l _

DIN ==== 1112131 ============= I1S1191201 ====== 111213 [============ !1s!t9120C=====iTI:, 	 ,,:, ,:
,MSB LSB' MSB LSB'

ADC: 20-Bit, MSB-First, Left-Justified
1 1 	 1

LRCIN.-J ." lrch 	 I. . R-ch I
BCKIN ----1IIIJJJJ[---------~------~--------~-------hr____ . 	 _________.- . ___.____ . _~ _______ .. , ____ .:___LL

.OOUT ====tmTIl=============]18119~01 ====== 1112131 ============]1sI19~OI======t!J~':\ 	 ,.:
,MSB 	 . LSB ' MSB . LSD '

FORMAT 3: PCM3002 Only

DAC: 20-Bit, MSB-First, Ps 	 . . .'
LRcnc-L i 	 L<h ·1 i R~ ~
BCKIN ==blJJJJJ.1T-==========llllIJI[=== =.]lITIILLC== ========1ITITII.[,===-:

DIN ===-1112IiC============= ilsI1912@_.===== 1112131 ==============]lsI19120[=====::, ,:, 	 ,:
,MSB LSB' MSB LSB'

ADC: 20-Bit, MSB-First, FS
IRaN-i j .. ~ jiM ~
BCKIN==billlll·' t_=========JJIJIJJI====]~==========~===- :.. 	 .~ " 'I

I· 	 "1OOUT ==== 123=============== I1sI19~OC==== I 123 ===============USI19~OI==='===:
1- - I . 	 I ~ "MSB . LSB 'MSB 	 LSB I

Figure 10.7· Continued

. I> Example 10.1 	 Determine the timing parameters fora 16-bit data communication in a D.SK
configured for a clock divisor of 6: the oscillator clock (CODEC_CLK) isat
12.288 MHz.

Solution CPLD input clock (CODEG_<;:LK) = 1:2.288 MHz

CPLD.output clock for the PCM3002 (CODEC_SYSCLK) = 12.288 MHz/6 =
2.044 MHz

http:lJJJJJ.1T

10.6 CODEC Programming 275

Sampling frequencY'ls =·2.044 MHz/256.= S KHz .

. Sampling interval = 1/SK = 125 msec

Bit clock frequency (BCLKIN) 2.044 MHz/4 = 511 KHz

Bit dock period = 1I511K = 1.96 I!sec

Time to communicate It). bits of data 16 x 1.961!= 3131 !!Sec

Thus, in each 125 msec of time, the data is communicated just for 2 x 31.;H
I!sec for both channels. 	 '

10.6 CODEC Programming

To configure the CODEC we send control data using .the mode control inter­
face signals as shown in the timing diagram of Figure 10.S. The mode bits
represented by the signal MD are . sent 'using the mode dock signal MC. The
mode load signal ML 'defines the start and end of latching the bits into the
CODEC device. In the DSK these signals are generated in the CPLD frOJll
the oscillatortlock. The 16-bit mode control data that is transferred comes
from the CPLD and is placed into one of the four registers of the CODEC
device to program it.

The four program registers of the PCM3002 are ,shown in Figure 1O.9(a).
The description. of the various bits of these registers is shown in Figure
10.9(b). For a detailed description the reader is advised to consult the data

~, 	 sheetfor the CODEC device (see reference 4 at the end of this chapter). In the
program regisiersthe two bits indicated as AIAO specify the register to which
the data in other bits refer. For instance, for register 0 these bits are 00. Reg­
ister 0 cail be loaded tocontrol the attenuation to be applied to the DAC for
the left channel. Similarly, register 1 can be loaded with the attenuation data
for the DAC' of the right channel. The number loaded in the S bits of either of

. these two registers applies the attenuation to the two channels according to
the equation

ml 	 r
Me

MD JBl5~3fBI2IBllIB1()[B9[B8T137F~6JB51 13r[mrm[B1] 130 I

Figure 10.8 Modecontrol interface signal timing for the PCM3002 CODEC

(Courtesy of Burr-Brdwn Corporation)

276 Chapter 10 Interfacing Serial Converters to a Programmable DSP Device

B15 B14 B13 B12 Bll BIO 89 B8 B7 86 85. B4 B3 B2 BI BO
REGISTER 0 I «;~ I re~ I res I res I res , Al I AO I LDL I AL7 I AL6 I AL5 I AU I AL3 I AL2' ALl I ALO I
REGISTER I I res I res res, res I res I Al AO I LDR' AR7 I AR6 I AR51 AR41 AR3 I ill I ARI I ARO I
REGISTER 2 I res I res I res I res I res I Al AO IPDADIBYPslpDDAj ATC I IZD lOUT InEMIIDEMq MDT I

REGISTER3 I res I res I res I res I res. I Al AO I res I res I res I LOP I res JFMTlIFMTOI LRP I res I

Figurf,! 10.9(a) Program registers for the PCM3002 CODEC

(Courtesy of Burr-Brown Corporation)

REGISTER BIT
NAME NAME DESCRIPTION

Register 0

Register 1

Register 2

Register 3

A (1:0)

res
LDL
AL (7:0)

A (1:0)
res
LDR
AR (7:0) .

A (1 :0)
res
PDAD
PDDA
BYPS
ATC
IZD
OUT
DEM (1.:0)
MUT

A (1:0)
res
LOP
FMT (1:0)
LRP

Register Address "00"

Reserved, should be set to "0"

DAC Attenuation Data Load Control for Lch

Attenuation Data for Lch

Register Address "01"

Reserved, should be set to "0"

DAC Attenuation Data Load Control for Rch

DAC Attenuation for Rch

Register Address "10"

Reserved, should be set to "0"

ADC Power~Down Control

DAC Power-Down COl1trol

ADC High-Pass Filter Operation Control

DAC Attenuation Data'Mode Control

DAC Infinite Zero Detection Circuit Control

DAC Output Enable Control

DAC De-emphasis Control

Lch and Rch Soft Mute Control

Register Address "11"

Reserved, should be set to "0"

ADCIDAC Analog Loop-Back Control

ADC/DACAudio Data Format Selection

ADC/DAC Polarity of LR-dock Selection

Figure 10.9(b) Definition of the bits,ofthe program registers of the PCM3002 CODEC

(Courtesy of Burr-Brown Corporation)

- -- -

10.7 A CODEC-DSPlnterface Example 277

Attenuation = 20 log(ATTI255)

·----.-~--.. .. -.-•...-.-. --_.

where ATT is the value represented by the 8 attenuation bits in register 0 'or
register 1.

Either the LDL bit in register 0 or the LDR in register 1 can use the atten­
uation data to control the two channels.

The bits in register 2 are meant to select the power down mode for the
ADC and DAC, the ADC highpass filter bypass control, DAC attenuation
channel control, DAC infinite zero detection circuit control, DAC output en­
able control, DAC deemphasis control, and the DAC soft mute control. To
enable or select a mode, the corresponding bit or bits are made 1. For the
deemphasis control, the two bits used. are as follows: 00 selects deemphasis
44.1 KHz, 01 deselects deemphasis, 10 selects 48 KHz deemphasis, and 11 se­

, lects 32 KHz deemphasis. .
Register 3 provides ADC/DAC loopback control, audio data format selec­

tion, and polarity selection for the LRCIN signal. A 1 in the LOP bit enables
the loopback. A 1 in the LRP bit selects the left channel when LRCIN is low
and the right channel when it is high. The data format is selected by the two
bits FMT1 and FMTO. The 00 on these two bits selects the format 0 for the
data as received frpm the ADC or applied to the DAC. These data formats are
shoWn in Figure 10.7 and provide four different ways to communicate data.

The CPLD that· provides data for the four program registers and other
controls on the DSK board has eight registers accessible from the DSP. These
registers are shown in Figure 10.10. These registers are each 8 bits wide and

. are locatediil the I/O space of the C5416. For instance, the registers at I/O
addresses 2 and 3 hold the CODEC programming data. For details of the bits
of these registers, the reader should consult the DSK manual [3], which is' also
available in the DEBUG environment of the CCS. The most significant bit in
the miscellaneous register at the I/O address 6 must be checked each time any
new data is written to the CPLD registers for programming the CODEC.

The sampling frequency can be changed by loading the divisor, for the
CODEC dock, to the CODEC-CLK register at the I/O address 7. The sequence
of steps that need to be followed is: stop the dock. load the divisor, start the
dock, and select the divisor. The bits· of the CODEC-CLK regist~r need to be
loaded appropriately to accomplish these steps. The other CPLD registers are
there' for configuring the memories and for communicating with the user
switches and the LEDs of the DSK. . . .

,10.7 A CODEC-DSP Interface Example

In this section, we write. a simple application that involves configuring
McBSP2and the PCM3002 on the DSK board. The configured system is used

1/0
Add Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

'0

I

I 1

USER­
REG

DC_REG

USR_
SW3
R

DC
, DET

R

'USR_
SW2
R

DC_
• ID_CTl'

,I ~/W

USR­
SW1
R

DC_
STAT1
R

USR_
SWO
R

DC­
STATO
R

! USR­
lED3,
R/W
o (Off)

DC_
RST
R/W
o (No Reset)

USR_
lED2
R/W
o (Off)

0

USR­
LED1
R/W
o (Off)

DC­
CNTl1
RlW
o (Low)

USR_
lEDO
R/W
o(Off)

! DC
• CNTLO

I R/Wo (low)

2 CODEC_L CODEC_l_CMD [7 .•0]
R/W
0

3 CODEC_H CODEC_H_CMD [15 .. 8]
R/W'
0

4· VERSION CPLD_VER [3~.0]
R

0 BOARD..:VER [2 .. 0]
R

5 DM­
CNTL

DM­
SEL
R/W
o (internal)

MEM
TYPE_DS
R/W
o(FLASH)

MEM
TYPE_PS
R/W
o (FLASH)

DM_
PG4
R/W
o(Page 0)

DM­
PG3
R/W
o (Page 0)

DM_
'PG2
R/W
o(Page 0)

DM-
PGl
R/W
o (Page 0)

·I:)M-
PGO

'R/W
o(Page 0)

6 MISC CODEC_
RDY
R
o (Ready)

0 0 0 0 DC_
WIDE
R/W
0(18 bits)

DC32-,
DDD
R/W
o(Even)

BSP2_
SEl
R/W
o(CODEC)

7 CODEC_
clk

0 0 0 0 DIV_
SEl
R/W

CLK_
STOP
R/W

ClK_
DIV1
R/W

ClK_
DIVO
RIW

Figure 10.10 CPlD register definitions in the DSK5416

(Courtesy of Spectrum Digital Inc.)

· 10.7 A CODEC-DSP Interfal::t Example 279

Start here
following reset.

+

Initialize stack pointer.

Disable all interrupts.

~

Initialize the processor.

(iniC5416)

~

,

Initialize the serial port.
(iniCMcBSP)

~

Initialize the AlC.
(iniCPCM3002)

~

Enable serial port transmitter.

Enable serial port receiver.

+

Clear any pending interrupt.

Unmask serial port receive interrupt.

Enable all interrupts.

+

Wait here for a

serial interrupt to
occur

Figure 10.11(a) Main program flow chart for the signalloopback program

to implement a signalloopback by reading a signal applied to the ADC and
writing it to the DAC. The application can be easily extended to include any
kind of processing on the signal read from the ADC before sending it to the.
DAC. The Bow chart of the main program is shown in Figure 1O.11{a).

The main' program starts by initializing the stack pointer and disabling
the interrupts. Establishing the stack allows using subroutines. The disabled

280 Chapter 10 Interfacing Serial Converters-to aProgrammable DSP Device

Figure 10.11(b)

Enter

--­ ..
Read sample from McBSP2

Data Receive Registers

~
Process the sample

+
Write processed sample

to McBSP2DXR
Data Transmit Registers

+
Enable interrupts and return

Receive service routine flow chart

interrupt system ensures that during initialization interrupts will be ignored.
This is followed by three subroutines that initialize the processor, the serial
port, and the PCM3002. After the initializations are done, the serial port trans­
mitter and the receiver are enabled. Next, any pending interrupt is cleared and
the receive interrupt is unmasked before enabling the interrupts. At the end,
the processor waits for the receive interrupt to occur.

When a receive interrupt occurs, the corresponding service routine is exe­
cuted. In the service routine, the DRR registers are read into the accumulator.
The word so read is written back to the DXR after formatting it for the DAC.
The return from the service routine, with interrupts enabled, makes the pro­
gram wait for the next interrupt, which occurs after the ADC provides the next
sample to the port. It is in this routine that any signal processing on the
received signal can be implemented. The receive interrupt service routine flow
chart is shown in Figure 1O.11(b). .

The entire program, shown in Figure lO.ll(c), consists of the main module
signalLBmain.asm; interrupt vector module C5416vec.asm; initialization mod­
ules initC5416.asm, initMcBSP2.asm, andinitPCM3002.asm; and the module
regs.asm that defines various constants used in the program. Notice that some
of the definitions in the regs.asm module are specific to the DSK-implemented
r~isters, such as DSP_CPLD_CODEC_L. These registers are described in the
DSK manual [3] and in the Help facility of the DSK software Code Composer
Studio (CCS).

10;7 A CODEC-DSP Interface EXample 2~1

**.

*
* signalLBmain.asm
*
* This progr!im reads an input signal from the ADC and writes it to the DAC· on the
* DSK5416 board. This mairl module includes the entry-point fQr the program.
*
* Author: Avtar Singh. SJSU
*
**

ude "regs.asm"
.ref initC5416
.ref initMc~SP2

.• ref in itPCM3002
.def c intOO
.def brint2 isr
.ref sampleJeceive
.ref sample_transmit

VAL SP .set Ox0500 	 initial stack address

.data

sample_upper_word •wor<! o received sampl e .
sample_lower_word .word o

. text

* The entry-point for the program

c 	intOO:
stili iVAL SP. SP Define the stack

, ­
ssbx INTM 	 Disable all interrupts

call inHC5416 Init the DSP processor
call initMcBSP2 Init the McBSP2 port
call i ni'tPCM3002 Init the DSK CODEC

stm #SPCRI. MCBSP2_SPSA Enable McBSP2receiver
orm #OQOlh. MCBSP2_SPSD

stm #SPCR2. MCBSP2_SPSA Enable McBSP2transmitter
onn #OOOlh •. MCBSP2_SPSD

. Figure 10.11(c) A signalloopback implementation program for the DSK5416

282 Chapter 10 Interfacing Serial Converters to a Programmable DSP Device

stm
orm

flOFFFFh, IFR
fl040h. IMR

.; Clear pending interrupts
Unmask McBSP2 RX int

rsbx INTM ~ Enable all interrupts

wait main: idl e
b

1
wait maln

Wait for an RX interrupt

nop
nop
nop

* Interrupt service routine for McBSP2 Receiver

brint2 isr:
call
nop
call
rete"

sampleJeceive

e transmit

Receive the sample
Process the sample
Transmit the sample

* This procedure receives a 20-bit value from the ADC
* Return with A (LSBs) = 20 bit received sample

sampleJeceive:
ARS

ldm MCBSP2_DRR2, B Ret ri eve upper 16 bi ts .
stm flsample_upper_word, ARS
stl B; *ARS+ Save upper bits locally

ldm MCBSP2_DRRl, A Retrieve lower 16 bits
and flOFFFFh, A
stl A. *ARS Save lower bits locally

sftl B. 15
or B, 1, A Construct the sample in A

popm ARS

ret

* This procedu're sends a 20-bit value in A (LSBs) to the DAC.

Figure 1D.11(c) Continued

10.7 ACODEC-DSP Interface Example 283

sample_transmit:
stlm A, MCBSP2 DXRl Transmit lQwer 16 bits
sfta A. -16
stlm A, MCBSP2_DXR2 Transmit upper bits

,ret

.end
**
*
* initC5416.asm
*
* This module initializes t~e processor • ..,
* Author: Avtar Singh, SJSU
*,
**

•inclu,de "regs.asm"

.def initC5416

* Define values for the DSP registers.

ProcessoJ1 Mode Status Register (0000 0000 1110 1000)

IPTR'= 000000001: Vector table resides at address 0080h
MPfMC* = 1: Enabl e mi croproc.essor mode
OVLY = 1: On-chip RAM addressable in data space, but not in

program space
AVIS =0: Address visibility mode
DROM = 1: On-chip ROM not mapped into data space
CLKOUT '1',0: CLQCKOUT off
SMUL = 0: Saturati,on ,onmultiplic~tion
SST =0: Saturation on store

-VAL]MST , .set OOE13h

Software Wait State Register (0111 111lIlli 1111)

XPA = 0: Extended program address control bit
I/O = 111: Base wait states for I/O accesses
Data = 111: Base wait states for upper external data access
Data = 111: Base wait states for lower external data access
Program = 111: Base wait states for upper extern prog access
Program = 111: Base wait states for lower extern prog access

Figure 10.11(c) Continued

284 Chapter 10' Interfacing Serial Converters to a Programmable DSP DeVice

VAL SWWSR .set 7FFFh

.text

initC5416:
ld #0, DP ; Data page = 0
stm #4007, CLKMD DSP clock = 5xPLL

stm #VAL_PMST, PMST Init PMST
stm #VAL_SWWSR. SWWSR ; Init SWWSR

ssbx SXM Enable sign extension

ret
w***

*
* initMcBSP2.asm

*

* This module initializes the serial port McBSP2 on the C54t6 DSK.

*

* Author: Avtar Singh. SJSU

*

~***********************

.; ncl ude "regs.asm"

.def initMcBSP2

* Oef; ne the defaul t values for the regiSters of McBSP2.

Ser:;al Port Control Reg;ster 1 (0010 0000 0010 0000)

Bit15 =' 0: 'Digital loopback disabled
Bit14-13 =01: 'Right-justifY f sign extend

=00: Clock stop disabled
BitlO-8 =00: Reserved
Bit7 = 0: OX enabler off
Bit6 = 0: A-bis mode disabled
Bit5-4 = 10: RINT driven by frame sync
Bit3 = 0: No sync error
Bit2 = 0: RBRs not in overrun condition
Bi t1 = 0: Recei ver not ready
BitO = 0: Receiver in disabled and in reset state

Figure 10.11(c) Continued

,

10.7 A CODEC-DSP Interface Example. 285

VAL SPCR1

VAL SPCR2

VAL_RCR1

VAL RCR2

.set 2020h

Serial Port Control Register 2 (000000000000"0000)

Bit15-10: = OOh: Reserved
Bit9 =0: Free running mode disabled
Bit8 = 0: Soft mode disabled
Bit7 =0: Frame sync not generated"
Bit6 = 0: Disable sample rate generator
Bit5-4 =00: XINT driven by XRDY
Bit3 = 0: No sync error
Bit2 =0: XSRs empty
Bitl = 0: Transmitter not ready
BitO = 0: Transmitter in disabled and in reset state

.set OOOOh

Receive Control Register 1 (0000 0000 0110 0000)

Bit15 = 0: Reserved
• Bitl4-8 	 0000000: 1 word per frame

Bit7-5 = 011: 20 bit receive worq
Bit4-0 ? 00000: Reserved

.set 0060h

Receive Control Register 2 (0000 0000 0110 0001)

Bit15 = 0: Single phas'e frame
Bit14-8 = OOh: 1 word per frame
Bit7-5 = 011: 20 bit receive word
Bit4-3 = 00: No companding
Bit2 = 0: Receive frame sync pulses not ignored
Bit1-0 = 01: I-bit data delay .

.set 0061h

• Transmit Control Register 1 (0000 0000 U110 0000)

Bit15 = 0: Reserved
Bi t14-8 OOh: 1 word, per frame
Bit7-5 = 011: 20 bit transmit word
Bit4-0 Oh: Reserved

figure 10.11(c) Continued

286 Chapter 10 Interfacing Serial C~nverters to' a Programmable DSP Device

VAL XCRl .set 0060h

Transmit Control Register 2 (0000 0000 0110 0000)

; Bitl5 = 0: Single phase frame
; Bitl4~8 = OOh: 1 word per frame
; Bit7-5 all: 20 bittrahsmit word

, ; Bit4-3 = 00: No' companding
Bit2 = 0: Transmit frame sync pulses 'not ignored
Bit1-0 = 00: a-bit data delay

VAL XCR2 .set 0060h

Pi n Control ,Regi ster (.0000 0000 0000 nOO)

Bit15-l4 =00: Reserved
Bitl3 =0: OX. FSX. and ClKX are seial port pins
Bitl2 = 0: DR, FSR, ClKR. and elKS are serial port pins
Bitll = 0: External transmit frame sync
BitiO = 0: External receive frame sync
Bit9 = 0: External transmit clock
,BitS = 0: Exter:nal receive clock
Bit7 = 0: Reserved
Bit6 = 0: ClKS status
Bit5 = 0: OX status
Bit4 = 0: DR status
Bit3 = 1: FSX active high
BH2 = 1: FSR active high
Bit! = 0: Transmit data sampled on rising edge of ClKX
BitO = 0: Receive data sampled on rising edge of ClKR

VAL PCR .set OOOCh

* This procedure initializes the McBSP2 for use with the PCM3002 codec on theC54I6 OSK •

•text

initMcBSP2:
stm HSPCRl, MCBSP2_SPSA Disable McBSP2 RX
ldm 'MCBSP2_SPSO. A
and HOFFFEh.' A
stlm A. MC~SP2_SPSO

Figure ,10.11(c) Continued

1O.7rA CODEC-DSP Interface Example 287

stm #SPCR2, MCBSP2_SPSA ; Disable McBSP2 TX
1dm MCBSP2_SPSD, A
and #OFFFEh, A
stlm A, MCBSP2_SPSD

stm #SPCRl, MCBSP2_SPSA Set SPCRl
stm #VAL_SPCRl, MCBSP2~SPSD

stm .. #SPCR2, MCBSP2_SPSA Set SPCR2
stm #VAL_SPCR2, MCBSP2-,-SPSD

stm #RCRl. MCBSP2_SPSA Set RCRI
stm #VAL_RCRl, MCBSP2_SPSD

stm #RCR2, MCBSP2_SPSA. Set RCR2
.stm #VAL_RCR2, MCBSP2~SPSD

stm #XCRl, MCBSP2_SPSA SetXCRl
stm #VAL_XCRl, MCBSP2_SPSD

stm #XCR2, MCBSP2_SPSA Set XCR2
stm #VAL_XCR2,MCBSP2_SPSD

stm #PCR, MCBSP2_SPSA Set PCR
stm #VAL_PCR, MCBSP2_SPSD

ret
**

*
* initPCM3002.asm
*
* This module initializes thePCM3002 codee on the C5416 DSK.
*
* Author: Avtar Singh, SJSU
*
**

.helude . "regs.asmu

.def initPCM3002

.def sampling_rAte_set

* Define values for the codec clock register {in the CPLD} and the control registers of
* the PCM3002 cqdec.

Figure 10.11Ic) Continued

288 Chapter 10 Interfacing Serial Converters to a·Programmable DSP Device

~ Codec clock Register (0000 1010)

Bi t7·04 = 0000: Reserved
Bit3 = 1: Clock divisor selected

0: No divisor, 48 KHz sampling rate
Bit2 = 0: Clock enabled
B,t1-0 = 00: Clock .divisor for 24 KHz· sampling rate

01: Clock divisor for 12 KHz sampling rate
10: Clock divisor for 8 KHz sampling rate
11: Clock divi.sor for 6 KHz sampling rate

VAL CLK REG .set 12h

; Register 0 (0000 0001 1111 1111)
Bit15~ll .= 00000: Reserved
Bit10-9 = 00: Register address 0
Bit8 = 1: Enable DAC attenuation data LDL
Bit7-0 =11111111: 0 dB left channel attenuatt6n

VAL REGO .set 01ffh

; Register 1(0000001111111111)

; Bitl5-11 = 00000: Reserved
; Bit10-9 = 01: Register address 1
; Bit8 = 1: Enable DAC attenuation data LOR
; Bit7-0 = 11111111: 0 dB right channel attenuation

VAL_REG 1 .set 03ffh

• Reg; ster 2 (0000 0100 1000 0010)

Bit15-11 = 00000: Reserved
Bi tlO-9. = 10: Regi steraddress 2

. I

Bit8 =0: Disable ADC power-down control (PDAD)
Bit7 ::: 1: Bypass hi gh-pass fi lter
Bit5 = 0: Individual channel attenuation control
Bit4 =0: Infinite zero detection disabled
Bit3 =0: DAC outputs enabled
Bit2-1 = 01: De-emphasis off
BitO =0: Mute disabled

Figure 10.11(c) Continued

10.7 A CODEC-DSP Interface Example 289

VAL REG2 .set 0482h

; Register 3 (0000 0110 0000 1000)

; Bit15-U = 00000: ,~eserved
BitlO-9 = 11: Register address 3
BitS-6 = 000: Reserved
BitS =0: Loop-back disabled
Bit4 = 0: Reserved
Bit3-2 = 10: Format 2
Bitl = 0: Left is H, Right is L
BitO = 0: Reserved

VAL REG3 .set 060Sh

.text

* This procedure initializes the PCM3002 codec on the C5416 DSK via the CPLD.
* The procedure uses location 60h as scratch pad

initPCM3002:
portr DSK_CPLD_MISC, 60h Select codec
andm #OFFFEh, 60h
portw 60h,'DSK_CPLD_MISC

call sampling_rate_set Set Sampling rate

ld #VAL_REGO, A Program codec regO
call CPLD write

ld #VAL_REG1, A Program codec re.g1
call CPLD write

ld #VAL_REG2, A Program codec reg2
can CPLD write

ld #VAL_REG3. A Program codec reg3
call CPLD_write

ret

Figure
~

10.11(c) Continued

- - -

290 Chapter 10·' Interfacmg Serial Converters to a Programmable DSP Device

* This procedure sets the clock for the PCM3002 codec.
* The following sequence is specified:
*
* 1. Set the ClK STOP bit to 1.
* 2. Set the ClK-DIYl and Cll< DIYO bits to the sampling rate value. keeping the ClK STOP
* . bit as 1.
* 3. Reset the ClK_STOP bit toO.
* 4. Set the DIV_SEl bit to. 1.

*
* -Enter with A = #VAl_ClK_REG to specify the sampling rate.

*
* The procedure uses location 60h as scratch pad

sampling_rate_set:
portr DSK_CPlD_COOEC_ClK. 60h Stop the clock
orm 104h, 60h
portw 60h, DSK_CPlD_CODEC~ClK

ld IVAl_ClK_REG.Ai ; Get Sample'rate value
bc NoDivisor, AEQ ; Check if highest rate

and 103h, A ; Select the divisor bits
or H04h. A . ; Keep the clock stopped
5tl A, 60h ; Set the clock divisor
portw 60h, DSK_CPlD_CODEC_ClK

andm HOFBh, 60h Resume the clock
portw 60h, DSK.:.CPlD_COOEC_ClK .

orm HOSh, 60h Select the divisor
. portw 60h, DSK_CPlD_CODEC_ClK

b sampling_rate_done

NoDivisor:

st HOOh, 60h Resume the clock

portw 60h, DSK_CPlD_CODEC_ClK

sampling_rate_done:

ret

Figure 10.11(c) Continued

http:IVAl_ClK_REG.Ai

10.7 A CODEC-DSP Interface Example 291"

* This procedure transmits a 16-bit control word to the PCM3002 via the CPLD.
* The procedure uses location 60h as scratch pad

*

* Argument A: 16-bit control word

CPLD write:

stl A, 60h Write low control byte

portw 60h, DSK_CPLD_CODEC_L

stl A, -8, 60h write high control byte
portw 60h, DSK_CPLD_CODEC_H

. CODEC WAIT:
. ­

portr DSK_CPLD_MISC, 60h
andm #80h, 60h Get the CODEC RDY bit
ld 60h, A
bc CODEC_WAIT, ANEQ ~ wait till all bits sent

:-et
**
~

* C5416vec.asm

*

* This module contains the interrupt vector table for the signal loopback program.

*

* Author: Avtar Singh, SJSU

*

**

te Nonmas kab 1 e I nterrupt vector

Figure 10.11(c) Continued

292 Chapter 10 Interfacing Serial Converters to a Programmable DSP Device

14*4*16 	 Space for unused s/w interrupts.space

.space 6*4*16 	 Space for unused h/w interrupts

BRINT2: 	 b brint2 isr Receive ,Interrupt Vector
nop
,nQP

Transmit Interrupt VectorBXINT2: 	 rete
nop.

nop

nop

.space 16*4*2
**

*
* regs.asm
*
* Thi s modul e defi nes constants for the TMS320C54xx DSP ,and the C5416 DSK Board.

*
* Adapted from regs1.h availab;e in TI literature

*
* Author: 	 Avtal" Singh. SJSU
*
**

.mmregs

*
* McBSPO Registers

*

MCBSPO DRR2 .set 0020h McBSPO Data Rx Reg2

MCBSPO DRR1 .set 0021h McBSPO Data Rx Regl

MCBSPO DXR2 .set 0022h McBSPO Data Tx Reg2

MCBSPO DXR1 .set 0023h McBSPO Data Tx Regl

MCBSPO SPSA .set P038h McBSPO Sub Bank Addr Reg

MCBSPO SPSD .set 0039h McBSPO Sub, Bank Data Reg

*
* McBSPl Registers

*

MCBSPl DRR2 .set 0040h McBSPl Data Rx Reg2

MCBSPl DRR! .set 004lh McBSPl Data Rx Reg!

MCBSPl DXR2 .set 0042h McBSPl Data Tx Reg2

Figure 10.11(c) Continued

10.7 A CODEC-DSP Interface Example 293

MCBSPl DXRl
MCBSPl,-SPSA
MCBSPl SPSD

.set
• set.
.set

0043h
0048h
0049h

; MeBSPl Data Tx Regl
; MeBSPl Sub Bank Addr Reg
; MeBSPl Sub Bank Data Reg

*
* MeBSP2 Registers
*
MCBSP2_DRR2 .set 0030h ; McBSP2 Data Rx Reg2
MCBSP2:..DRRl .set 003lh ; McBSP2 Data Rx Regl
MCBSP2 DXR2 .set 0032h ; McBSP2 Data Tx Reg2
MCBSP2 DXRl .set 0033h ; MeBSP2 Data Tx Regl
MCBSP2 SPSA .set 0034h ; MeBSP2 Sub Bank Addr Reg
MCBSP2_SPSD .set 0035h ; MeBSP2,Sub Bank Data Reg

*
* MeBSPO, McBSPl and MeBSP2 Subbank Addressed Registers
*
SPCRl .set OOOOh Ser Port Ctrl Regl
SPCR2 .set OOOlh Ser Port Ctrl Reg2
RCRl .set 0OO2h Rx Ctrl Regl
RCR2 .set 0OO3h Rx Ctrl Reg2
XCR1 ' .set 0OO4h ; Tx Ctrl Regl
XCR2 .set 0OO5h ; Tx Ctrl Reg2
SRGRI .set 0OO6h Sample Rate' Gen Regl
SRGR2 .set 0OO7h Sample Rate Gen Reg2
MCRl .set 0OO8h Multichan Reg!
MCR2 .set 0OO9h Multichan Reg2
RCERA .set OOOAh Rx Chan Enable Reg Part A
RCERB .set OOOBh Rx Chan Enable Reg Part B

,XC ERA .set OOOCh Tx Chan Enable ,Reg Part A
XCERB .set OOODn Tx Chan Enable Reg Part B
PCR .set OOOEh Pin Ctrl Reg

*
* CPLD Regi-sfers (DSK54l6)
*
DSK_CPU}_USER_REG .set OOOOh User LEOs' and Switches Reg
DSK_CPLD_DC)~EG .set OOOlh / ; Daughter Card Register
OS K_CPLO_CODEC_L .set 0OO2h CODEC_L_CMD Register
DSK_CPLD_CODEC_H .set 0OO3h CODEC_H~CMD Register
DSK_CPLD_VERSION .set 0OO4h Version Register
OSK_CPLD_DM_CNTL .set 0OO5h Memory'Control Register
DSK_CPLD_MISC .set Miscellaneous Register
DSK_CPLD_CODEC_CLK .set 0OO7h CODEC Clock Register

Figure 10.11(c) Continued

294 Chapter 10 Interfacing .Serial Converters to a Programmable DSP Device

/**

*
* Slgnalloopback program command file (signalLB.cmd)
*
*********~**/

MEMORY
{

PAGE 0: ,DARAMV: origin =0080h, length =0080h
PAGE 0: DARAMP: origin = 1000h, length = 1000h
PAGE 1: DARAMD: origin = 4000h, length = OBOOOh

SECTIONS·
(

.text > DARAMP PAGE 0

. vectors > DARAMV pAGE 0

.data > DARAMD PAGE 1

FiguretO.11(d) The command file, for the loopback program

To build the program for the DSK, the command file shown.ip Figure
IO.l1(d) can be used.

To test the program functionality, a signal can be applied to the micro­
phone input on the DSK. A speaker connected to the analog output should
receive the signal when the program is loaded to the board and run. A PC can
provide this test. setup if its speaker output is applied to the microphone input
of the DSK (using an appropriate cable) and the speaker output of the DSK is
connected to another speaker or the one disconnected from the PC. Any audio
file played on the PC with the DSK program running can. be heard on the
speakers. The program can also be tested with an input signal from a signal
generator. There are also programs available that can be run to generate a test
signal on the PC. One such program can pe downloaded from the site in the
reference at end of this chapter [5].

10.8 Summary ,

In this chapter, we looked at the serial peripheral interfacing using the multi­
channel buffered serial port (McBSP). We also considered a specific serial·
peripheral, PCM3002, that provides 16-bit synchronous serial ADC and DAC.
The chapter ends with an eKample of the DSK to illustrate the interface. and
the associated program.

http:shown.ip

Assignments 295

References

1. 	 TMS320C54xx DSP Reference Set, Volume 1, Texas Instruments Inc., March
2001.

2. 	 TMS320C54xx DSP Enhanced Peripheral Reference Set,Voiume 5, Texas In- .
struments Inc., SPRU302, June 1999.

3. 	 TMS320VC5416 DSK Technical Reference, Spectrum Digital Inc., 506005-0001
Rev. A, March 2002.

4. 	 Burr-Brown Corporation, PCM3002/3003 Data Sheet, January 2000.

5. 	 NCH Tone Generator Software, www.nch.com

Assignments

10.1 	 'Frame sync is generated by dividing the 8.192-MHz dock by 256 for the serial
communication. Determine the sampling rate and the time a 16-bit sample
takes when tran~mitted on the data line.

10.2 	 What is the address for the PCR register of McBSP2? Write an instruction
sequence to write to it data defined by PCR_VAL.

10.3 	 Write an instruction sequence to reset and disable the transmitter and re­
ceiver for the McBSP2.

10.4 	 Which registers and which bits need to be changed to implement an 8-bit
trllflsmission and reception for the McBSP2?

10.5 	 A PCM3002 is programmed for the 12-KHz sampling rate. Determine the
divisor N that should be written to the CPLD of the DSK and the various clock
frequenCies for the setup.

10.6 	 Determine the timing parameters for a 20-bit data communication at 8 KHz.

10.7 	 Which bits and register are used to program the analog input gain? Determine
the bit. setting to obtain a O-dB gain.

10.8 	 Which bits and register of the PCM3002 are used to program tile application
of a 48-KHz deemphasis to the DAC output of the PCM3002? Determin~ the
bit setting.

10.9 	 What are the maximum and the minimum sampling rates that can be im­
plemented for the PCM3002 on the 5416 DSK? Determine the bits, their value,
and the register that needs to be programmed to achieve the maximum and
minimum sample rate settings:

10.10 	 Modify ~e program in 'Figure 1O.11(c) to change the sampling rate to 12 KHz.

10.11 	 Modify the program in Figure 1O.11(c) to output the absolute value of the
signal sampled at the input.

http:www.nch.com

296 Chapter 10 Interfacing Serial Converters to a Programmable DSP Device

10.12 	 Modify the program in Figure 10.11(c) to incorporate the FIR filter imple­
mented in Chapter 7, Section 7.3.

10.13 	 Determine, using CCS·debug capability, the processing time per sample for the
filter implemented in Problem 12. Assume that the DSP is running at 80 MHz.·
Based on this measurement and the consideration for the CODEC device,
what is the maximum sampling frequency that can be implemented? Also
determine the highest signal frequency that can be handled for processing.

10.14 	 Implement the FFT program of Chapter 8 so as to process a real-time signal to
compute its spectrum and di~play it on an oscilloscope .. Compute the spec­
trum each time a new sample is received. Determine the maXimum sampling
rate that can be used in the implementation on the DSK.

10.15 	 Repeat Problem 14 for computing the spectrum, each time, after receiving the
block of samples used in FFT calculations.

Chapter 11
Applications of Programmable
DSP Devices

11 . 1 Introduction

As commercial programmable DSPs are becoming more and more powerful
in terms of their speed and functionality and are available at lower and
lower costs, there is an explosion of applications in which these devices are
increasingly used. These applications span a wide spectrum of areas, such
as automotive, control, communication; entertaiDment, instrumentation, and
medicine. Typical applications include toys, medical instruments, speech syn­
thesis and recognition systems, audio equalizers, echo cancellers, l\nd robotic
controllers. These applications exploit such capabilities of the programmable
DSP devices as high speed and throughput, facility to carry out complex
computations with precision, ease. of programming, and ability to interface
with host processors and external peripherals. In this chapter, we look into a
few representative applications and study their requirements to s~ how these
are met by systems implemented using DSPs. Following are the representative
applications considered in this chapter:

An EGG processing system

A speech processing system

An image processing system

A position control system

A power measurement system

11 .2A DSP System

Digital signal processors are computational devices that process digital rep­
resentation of input signals and produce digital representation of signals as

297

298 Chapter 11 Applications of Programmabie DSP Devices

Analog

Signal in IAntialiasing
--.. Filter

Sarnple-and­
hold Circuit

D
S
P

Reconstruction
Filter

Analog
Signal out

. , Processor

Figure 11.1 The block diagram of a DSP system

outputs. The difference between these devices and the general-purpose pro­
cessors ijes in the fact that DSPs process data representing real-world signals;
whereas the general-purpose processors deal with applications requiring large
volumes of stored data. Since real-world signals are mostly analog, they have
to be converted into digital signals before being processed by the DSP and,
likewise, DSP output needs to be converted back to analog for use in the real
world. Figure 1l.1 shows the block diagram depicting the processing blocks of
a typical DSP system. We have discussed this system in previous chapters. It
consists of the DSP processor between the analog front end and the analog
back end. The analog front end consists ofan antialiasing filter, a sample-and­
hold circuit, and an analog-to-digltal converter feeding into the DSP. The back
end consists of a digital-to-analog converter to convert the digital output to its
analog value, followed by a reconstruction filter.

The block diagram of Figure 11.1 applies to almost all DSP systems. All or
just soDie of the blocks shown.in the figure may realize a particular system.
Implementations. may differ in details such as the signal frequency spectrum,
the sampling.rate, memory requirements, and the computational complexity.
In the application examples that follow, we look ~t the nature and computa­
tional'complexity of the algorithm to be implemented with a view to under­
standing how the processing power 'and other features of the programmable
DSPs are utilized in each case. Description and design of the analog front and
back ends as well as the analog-to-digital and the digital-to-analog converters
are beyond the scope of this book.

11.3 DSP-Based Biotelemetry Receiver

Biotelemetry is a 'process by which physiological information or signals are
transferred from one remote location to another, typically using radio fre­
quency links. The importance of biotelemetry becomes obvious when we
consider monitoring life in remote or inaccessible locations such as an astro­
nautin space or a baby in mother's womb. The biomedical signals at the
source are encoded, modulated, and then transmitted. At the receiver end, the
signals are demodulated, decoded, displayed, and analyzed to extract diag­
nostic information for evaluation.

http:shown.in

11.3 DSP-Based Biotelemetry Receiver 299

y I
AnalogLI Demodulator Signal

Processing

Digital Signal
Processing

(DSP)

Digital

Interface

Multiple­ ECG
Channel HR

DIA Converter

Figure 11.2 A DSP-based biotelemetry receiver system

The block diagram shown in Figure 11.2 shows a scheme that can be used
to iJp.plement a biotelemetry receiver [1]. The DSP device receives the de­
modulated signal as obtained from the demodulator and analog processing
circuits. The device can be programmed to decode the received' signal by
inverting the 'process of encoding used in the trans11!.itter and thus generate
the corresponding biomedical signals. The decoded signals can be presented
to a D/ A converter to generate analog signals .

.11.3.1 Pulse Position Modulation (PPM)

PPM is a scheme that can be used to encode a single signal or multiple signals.
The position of a pulse encodes the sample value of a signal. A PPM signal
that encodes two signals in addition to providing a fixed sampling rate is
shown in Figure 11.3. The PPM signal requires a sync signal (two pulses) to

-"----tool I-t2.

~

t3~1 Sync

...~ Pulses

Parameter Function Duration (j.1sec)-an Example

tl Encodes signal 1 1000
t2 Encodes signal 2 800
t3 Compensation interval 1700
Each pulse interval.(tp) 100
Sync interval 3 x 100
Total: tl + t2 + t3 + Stp . Sampling interval 4000

Figure 11.3 A PPM for encoding two biomedical signals

· 300 Chapter 11 Applications of Programmable DSP Devices

mark the beginning of a cycle for encoding two or more signals. As shown in·
the figure, tl encodes one signal, and t2 encodes the other. The time interval
t3 is simply needed to keep' the sampling interval constant to provide a fixed
sampling rate. In the example shown, the fixed sampling rate is 2.5 KHz. The
example encoding can be modified to encode three signals by incorporating
another time interval for the third signal or by superimposing the third signal
in either of the intervals tl or t2. The superimposed signals should be distin­
guishable in the frequency domain so that it can be separated in the receiver.
For instance, the system can be used to encode ECG, temperature, and pres­
sure signals. Temperature being the lowest frequency signal, it is combined
with the highest frequency ECG signal and encoded <l;s interval t2.

11.3.2 Decoding Scheme for the PPM Receiver

The schematic diagram in Figure 11.4 shows how a DSP device can be used to
decode a PPM signal to recover the encoded biomedical signals. The decoding
requires me.asurements of time intervals in a PPM signal. The DSP device
timer can be used for time measurement. To blitiate the measurement pro­
cess, the pulses in the PPM signal can be used to generate interrupt signals for
the DSP device, whic!). then are used to start or terminate the timer. This
approach avoids using an AID converter to handle the PPM signal, but it
requires that the DSP device be fast enough so as not to miss a pulse or
introduce time measurement error.

nsp Timer nsp Timer

~1'2~ ...

t· .

Figure 11.4 A DSP-based decoding scheme for a PPM signal

11.3 DSP-Based Biotelemetry Receiver 301

PPM_In_p_ut-..·1 PPM
... Signal

Interface

TMS32OC5402

Interrupt
Request

DAC
Interface

Dual .
DAC

TLC7226

ECG
HR

Figure 11.5 A DSP-based biotelemetry receiver implementation

11 .3.3 Biotelemetry Receiver Implementation

The block diagram in Figure 11.5 ~hows the system used for implementation.
The PPM signal is proc-essed in the analog domain before it is applied to the
interrupt system of the signal processor. The DSP device is interfaced to
appropriate digital-to-analog converters so that signals can. be generated for
analog display monitoring devices. The signal processor in the system is the
TMS320C5402. An EPROM device can provide storage for the operating sys- .
tern as well as the decoding software. In order for the DSP to generate the two
recovered biomedical signals, a dual-channel parallel digital-to-analog con­
verter can be used.

Two types of software programs are stored in the EPROM. One is the soft­
ware for decoding PPM signals to generate the encoded biomedical signals.
The other software allows providing debugging capability using a PC con­
nected to a parallel port similar to a DSK. In fact, a DSK can be used to debug
the software before building the receiver.

11.3.4 ECG Signal Processing for Heart Rate Determination

The most important information contained in an ECG signal is the associated
heart rate. Determining the heart rate involves determining the time interval
between QRS complexes. Therefore, we need a reliable algorithm to detect the
QRS complexes so that the QRS interval can be determined to compute the
heart rate.

A nonlinear transformation is used to enhance the QRS complex so that it
can be detected reliably with a threshold detector. The transformation in our
implementation uses absolute values of the first and second derivatives of the
signal as follows:

y1(n) = Ix(n) x(n 1)1
y2(!1) = Ix(n - 2) 2x(n 1) + x(n)1

y3(n) = y1(n) + y2(n)

302 Chapter 11 Applications of Programmable DSP Devices

where x(n) refers to the ECG signal sample, yl(n) is the absolute value of the
first derivative, y2(n) is the absolute value of the second derivative, and y3(n)
is the combined absolute first and second derivatives.

The transformed signal is filtered to remove high-frequency noise compo­
nents. To accomplish this, we use a simple I1R filter as follows

y4(n) = lX(y3(n) - y4(n -1)) + y4(n - 1)

where IX, a number less than 1, is the IIR filter coefficient. Its value is chosen
based on the smoothing effect that should be used to discard high frequencies.
The y4(n) in the difference equation denotes the filtered transformed signal.

A QRS complex is detected using a threshold detector. Processing typical
ECG signals by the above algorithm and determining the mean of half of the
peak amplitudes of tha filtered signals determines the threshold for the detec­
tor. This estimated threshold value is then used to detect the QRS complexes
in a given ECG waveform.

The time interval between two complexes is the QRS interval. Finally, the
heart rate (HR) in beats per minute (BPM) is computed using the formula

HR = (Sampling rate x 60)/QRS interval

The sampling rat~ is determined from the time duration of a PPM cycle or
depends upon the modulation technique. To produce a heart rate value accu­
rate on an average, the computed heart rate can also be filtered using an
appropriate filter. Figure 11.6 shows the ECG arid HR waveforms generated
by the system.

11.4 A Speech Processing System

Depending on the objective of speech processing, the techniques of processing
differ. For instance, if the objective is to understand speech characteristics,
analysis-type algorithms are used. To improve the speech quality, filtering
algorithms are employed. Here, we consider a technique called pitch period
estimation. Pitch period estimation (or, equivalently, fundamental frequency
estimation) is one· of the most important problems in speech processing. Pitch
detectors are used in vocoders, speech identification and verification systems,
and in aids to the handicapped. Because of its importance, many solutions
have been proposed to this problem. Here, we present pitch estimation using
the autocorrelation technique implemented on the DSP. Before describing the
algorithm for pitch detection, we introduce the concept of how speech is gen­
erated and classified.

Transmitted ECG Signal

::~~V 100 200 400 fjOO 800 1000 1200 1400 1600 1800 2000

I 1---' , '

:;~IIIIIII :11'11111 i1111111:111111 j III Pli ji~ 1111:1111111 iI II. I 1 I! IIIIII~
o 200 400 600 800 1000 1200 1400 1600· 1800 2000

Decoded ECG Signal

::.

~. ..

00 . 200 400 600 800 1000·· 1200 1400· 1600 1800 2000

Transformed and Filtered ECG Signal

:~. ' .

W . .
o

··0 200 400 600 800 1000 1200 1400

Heart Rate

~~ ~ ~~' ~:~: -=:-:

. 0 10 20 30 40 50

.

. . .

1600 1800 2000
~.

~
(I)
(I)

g..
'"0 ==

.

1

-
>

... o
260 70 '" S'

f
Ct!l

figure 11.6 .ECG signal and heart rate generated by the DSP telemetry receiver from the PPM signal

IN o
IN

• p

---1~t

304 Chapter 11 Applications of Programmable DSP Devices

MUSCLE FORCE 	 NASAL TRACT NOSTRIL
I

I

LUNGS 	 TRACHEA VOCAL

BRONCHI CORDS

VOCAL TRACT MOUTH

Figure 11.7 	 A schematic diagram of the human vocal apparatus

11,.4.1 A Digital Model for Production of Speech Signal

A schematic diagram of the human vocal apparatus is shown in Figure 11.7.
The vocal tract is an acoustic tube that is terminated at one end by the vocal
chords and at the other end by the lips. An ancillary tube, the. nasal tract, can
be connected or disconnected by the movement of the velum. The shape of
the vocal tract is determined by the position of the lips, jaws, the tongue, and
the velum~ Sounds can be generated in different ways. Voiced sounds are
produced by exciting the vocal tract with quasi-periodic pulses of air pressure

. caused by vibration of the vocal chords. Unvoiced or the fricative sounds are
produced by forming a constriction somewhere in the vocal tract and forc­
ing air through. the constriction, thereby creating. turbulence that produces a
source of noise to excite the vocal tract [2]. The vocal tract can be charac­
terized by its natural frequencies (or formants), which correspond to reso­
nance in the sound transmission characteristics of the vocal tract.

11.4.2 Autocorrelation

In the voiced intervals, the speech signal is characterized by a sequence of
peaks that occur periodically at the fundamental frequency of the speech sig­
nal. In contrast, during unvoiced intervals the peaks are relatively smaller and
do not occur in-any discernible patterfl. Autocorrelation is a common method
of obtaining the pitch of the speech signal. Periodicity in the autocorrelation
function indicates the periodicity of the speech signal.

Speech is not a stationary signal but the properties of the speech signal
remain fixed over relatively long time intervals. However, the major limita­
tion of the autocorrelation representation is that it retains too much of the

11.4 A Speech Processing System 305

information in the speech signal. Techniques known as spectrum flattening
techniques are applied to the speech signal before performing the autocorre­
lation so as to filter out extraneous details. The block diagram of a clipping
autocorrelation pitch detector is shown in Figure U.8.

Autocorrelation Computation

The computation of the autocortelation function for a three-level center­
clipped signal is particularly simple [3]. If we denote the output of the three­
level center clipper as y(n), then the product terms y(n +m)y(n +m +k) in
the autocorrelation function [4]

N-k-l

Rn(K) = L y(n +m)y(n + m + k)
m=O

can have only three different values; that is,

y(n + m) y(n + m + k) = 0 if y(n +m) = 0 or y(n + m + k) = 0,.

= +1 if y(n + m) = y(n + m + k), and

= -1 if y(n + m) '" y(n + m + k)

The three-level clipping scheme is shown in Figure 11.9. The algorithm for
pitch period estimation is summarized below:

The speech signal is filtered with a 900 Hz lowpass analog filter and sam­
pled at the rate of 10 KHz.. .

Filtered signal segments, each oflength 30 msec (300 samples), are selected
at lO-msec intervals. Thus, the segments overlap by 20 msec.

;rile average of absolute magnitudes is computed with a 100~sample rect­
angular window. The peak signal level in each frame is compared to a thres­
hold determined by measuring the peak signal level for 50 msec of background
noise, as shown in the block "compute silence level threshold" in the block
diagram. If the peak signal level is above the thresliold, signifying that the
segment is speech, not noise, then the algorithm proceeds as follows; other­
wise the segment is classified as silence and no further action is taken.

The dipping level is determined as a fixed percentage (e.g., 68%) of the
minimum of the maximum absolute values in the first and last 100 samples of
the speech segment.

Using this dipping level, the speech signal is processed by a thtee-Ievel
center clipper, and the correlation function is computed over a range span­
ning the expected range of pitch periods.

The largest peak of the autocorrelation function is located and the peak
value is compared to a fixed threshold (e.g., 30% of Rn(O». If the peak falls

Set clipping

level

CL =k - MIN(IPKl, IPK2)

. Find absolute peak
level over first 10

msec-ipkl

Find absolute peak
level over last
1Qmsec-ipk2

Center clipper, infinite
pilak clipper

Voiced
Period =IPOS

Auttlcorrelation Find pOsition, value of Compare peak value

computation
 autocorrelation peak with lllu threshold

-:J
Unvoiced

Compute energy
of section

Compute. silence
level threshold

Compare peak signal with ~~~~~~~_~~_~~~~~~~~~~
silence threshold

Silence

w o
CI"I

External
Initiation

Figure 11.S The block diagram of a clipping autocorrelation pitch detector

11.5 Aln Image Processing System 307

. C'[x]

[PIC~-----------------

CL
I XCi

L

----------------~-1

Figure 11.9 Three-level center-clipped signal

below threshold, the segment is classified as unvoiced, and if it is above the
threshold,. the pitch period is defined as the location of the largest peak.

11.4.3 Implementation on the TMS320C54xx Processor

Speech samples were recorded using voice recorder software in Windows 98.
. The signal was sampled at 16 KHz in 16-bit.mono format. The autocorrelation

module is .the most computation-intensive section for pitch detection. For this
reason DSP was used to compute a 400-point autocorrelQ.tion for a 480-sample
segment. For the sampling frequency of 16 KHz, 30 msec of speech corre­
sponds to 480 samples, and it takes about 17200 dock cycles or 0.17 msec for
theTMS320CS402 running at 100· MHz. Timing can be improved by using a
lower sampling rate and thereby reducing the section size. Reduction of
window size for computation of autocorrelation or using adaptive methods
for d~ermining the frame size will further reduce the computations involved.
Figure 11.10. shows the autocorrelation output of a voiced speech signal and

. Figure 11.11 that of an unvoiced speech signal. The complete implementa­
tion of the block diagram shown in Figure 11.8 is left as an exercise for the
implementor. . .

11.5 An Image Processing System

Images represent huge amounts of data. Image processing applications such
as high-definition television, video conferencing, computer communication,
and so fO$ require large storage and high-speed channels for handling the
huge volumes of data. In order to reduce the storage and communication
channel bandwidth requirements to manageable levels, data compression

308· Chapter 11 Applications of Programmable DSP Devices

I50r---~--~--~r---'---~---'----T---7'---'--~

100

50

o

-50

-IOOI~--~----~--~----~----L----L----~--~----~
o 50 100 ISO 200 250 300 350 400 450 500

.Figure 11.10 Typic~1 autocorrelation for a voiced speech segment

te~niques are imperative. Data compression on the order of 20 to 50 is
feasible depen~ing on the actual picture contents and techniques adopted for
compression.

JPEG, which stands for Joint Photographic Experts Group, the name of the
committee that wrote the standard, is a still-image compression standard.
JPEG is used to compress either full-color or gray-scale images of natural or
real-world scenes. It works well on pictures such as photographs and natural­
istic artwork, not so well on lettering, simple cartoons, and line di:awings.
JPEG is "lossy," meaning that the decompressed image is not exactly the same
as the original. JPEG is designed to exploit· known llinitations of the human
eye, notably the fact that small color changes are perceived less accurately
than small changes in brightness. Thus,]PEG. is intended for compressing
images that will be looked at by humans. The usefulness of JPEG. is that the
degree of lossiness can be adjusted by varying the compression parameters.
This ~eans that the image maker can trade off file size against image quality.
JPEG achieves image compression by methodically throWing away visually in­
significant image information. This information includes the high-frequency
components of the image, which are less important.to image content than the

http:important.to

11.5 An Image Processing System 309

180 I I

160

140

120

100

80

60

40

20

50 100 200 250 300 350 400 450 500

Figure 11.11 Typical autocorrelation output for an uiwoiced speech segment

low~frequency components. When an image is compressed using JPEG. the
discarded high-frequency component cannot be retrieved. Another important
aspect ofJPEG is that decoders can trade off decoding speed against image
quality. by using approximations to the required calcQ.lations.

11.5.1 JPEG Algorithm Overview

The original image is divided into 8 x 8 blocks. Each 8 x 8 block is trans­
formed by the forward discrete cosine transform (DCT). which extracts the
various frequency components and their relative amplitudes of the two~
dimensional image signal represented by the 8 x 8 block into a set of 64
values, referred to as DCT coefficients [5]. Each of the 64 coefficients is then
quantized using a quantizing table. which allocates more bits for (;oefficients
corresponding to more dominant frequency components and fewer or zero
bits for insignificant frequency components. The resulting 64 values (includ­
ing zero values) are, further coded by a process, known as entropy encod­
ing. wherein based on the statistical probability of occurrence of these long
sequences. shorter codes are allotted to long~running sequences of Os and Is.

I

310 Chapter 11 Applications of Programmable DSPDevices

8X 8 block

:________________ _______________________ ~_________ Com~~LmmjL

I
I
IJ

Original Image
HUFFMAN·QUANT.

tABLE TABLE

Figu..e 11.12 The block diagram ofthe JPEG encoder

--------,
I

1 , I ..
IDCTll--..DeQUANT.r ,"'" I: ..I

_______..JI
I

-----r-----
HUFFMAN
DECODE

...

------1-----
,

I •
DEQUANT.HUFFMAN

TABLEDECODE

TABLE

Figure 11.13 The block diagram of the JPEG decoder

This way, the two-dimensional image data is converted to a bitstream ofmuch
smaller size compared to the priginal image data retaining most of the image
features· while discarding the insignificant information not eaSily discernible
by the human eye. Figur£! 11.12 shows the block diagram of a JPEG encoder.
The JPEG decoding process is the reverse of encoding and it is shown in
Figure 11.13 [6].

11.5.2 JPEG Encoding

As mentioned above,. the first step in· JPEG encoding is computing the forward
DCT of the 8 x 8 image block. We obtain the 64 OCT coefficients after apply­
ing the forward DCT on the two-dimensional image matrix. One of these
values is referred as the dc coefficient and the other 63 as the ac coefficients.
The fOI'Mlrd DCT is computed from the equation

1 -7 7
Iv,u =4cucv LL.t;..x cos (2x+l)un cos (21+ 1)V1t

. x=O y=O 16 16

u.s An Image Processing System 311

The second step is quantization. Each of the 64 coefficients is quantized using
one of 64 corresponding values from a quantization table.· After quantization,
the dc coefficient and the ac coefficients are prepared for entropy coding,
which is also known as Huffman coding. The previous dc coefficient is sub­
tJacted from the current dc coefficient, and the difference is encoded. The 63
quantized ac coefficients undergo no such differential encoding, but are con­
verted into a one-dimensional zig-zag sequenceoeforebeing coded. Since
many coefficients are zero, runs of zeros are identified and coded efficiently.

11.5.3 JPEG Decoding

In the reverse processes of Huffman decoding, dequantization and the inverse
OCT are used to recover the original image data. The·Huffman decoding table
is used to recover the compressed data from the bitstream format to 64 16-bit
data. The values in the dequaniization table are the inverse of the values in the
quantization table. The inverse OCT equation is

1 1 11"x 4LI>ucll/v,u cos (2x+ l)u1r cos (2y+l)vn
u=o y=o 16· 16

After IDCT, decoding of the 8 x 8 image block is completed. ThE' last proce­
dure is to combine the 8 x 8 blocks to create the image. "

11.5.4 Encoding· and Decoding of JPEG Using the TMS320C54xx

For implementing the OCT of an 8 x 8 block, the FDCT algorithm by Lee [7]
is used. The signal flow graph for computing the 8-point OCT using Lee's OCT
algorithm is shown in Figure 11.14. The IDCT is obtained using the same flow
graph by reversing the direction of the arrows and inputs given from the
opposite side .

.The;natrix used for quantization and dequantization is shown in Figure
lLl5. Notice the large quantization steps at the high-frequency en4 of the
matrix compared to the smaller values at the low-frequency end.

For the implementation described here, the Huffman-coding and -decoding
algorithms were progra:mmed in C and interfaced to the DSP codes for DCTI
quantization and IDCT/dequantization, respectively. After merging, the entire
program was run in the TMS320C5402 processor. Encoding an image ofa
256 x 256 size requires approximately 150,000,000 instruction cycles, or 150
msec in the TMS320VC5402, with an instruction cycle of 10 ns. The time taken
for decoding is about the same. Figure 11.16 shows a sample image before and
after being processed by the JPEG encoder and decoder. The two images look
very much alike.

312 Chapter 11 Applications of Programmable DSP Devices

Data sequence Transform sequence

x(i) 1 X(i)
~ 0o
,I

'2

1

2 ~ 2
I
2-. 3
I

'2
4 -. 4

5 5

6 6
1
2-. 7

-q. 7

_ Figure 11.14 Signal flow graph for an 8-point DCl algorithm

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 9,5 98 112 100 103 99

Figure 11.15 Matrix used for quantization and dequantization

11 .6 A Position Control System for a Hard Disk Drive

One important application for digital signal processors is the positioning of
a read/write head on a hard disk The DSP provides the computational capa­
bility, while a microcontroller handles the driver's functions for positioning
of the head. Today, the single-chip solution using a DSP offers low cost, im­
proved reliability, and low power consumption for hard disk controllers.

Details of the control system are shown in Figure 11.l7. The parameter to
be controlled is the drive mput of a servomotor that determines the position
of the read/write, head on the disk Thccontroller issues the appropriate

. commands to the servomotor via the DAC. The servomotor, in turn, moves

11.6 A Position Control System for a Hard Disk Drive 313

(a) (b)

Figure 11.16 A sample image before and 2rtter JPEG pr.ocessing: (a) raw image and (b) the image
after JPEG compression and decompres.$ion

Input Output+

I ADe k 1= 1'-l1li__---l

Figure11.17 The block diagram of a hard drive servo control system

the read/write head from the current position to the desired track on the disk.
The design objective is to keep the position error minimized at ,all times. The
DSP controller incorporates the algorithm to minimize the position error and
use the position erroito control the motor,

With the constant increase in disk storage capacity, there is a steady in­
crease in the number of tracks' and a decrease in their widths, The demand
for accurate head position and tracking requires a more frequent sampling
of the head position than would have been otherwise needed, Another reason
for increasing the sampling rate ,is the decrease in the time constant of the
process to be controlled. Therefore, the disk controller must be capable of high

http:Figure11.17

314 Chapter 11 Applications of Programmable DSP Devices

x(n) I Copy of the
---J>adaptive reference , .. ,

inverse model

Reference model sen)
R(z)

Adaptive
reference

inverse model

yen)

Servo plant output

Figure 11.18 An adaptive scheme for head positioning in a servo control system in the presence
of noise

sampling rates in addition to a math-intensive algorithm for the digital con­
trol of the servomotor.

Figure 11.18 shows an adaptive scheme for head positionin,g in the presence
of environmental variations [8]. According to this scheme, the servo-plant
output, c(n), must follow a reference (desired) model output, s(n). A digital
controller, D(z) and the servo plant, G(z), comprise the reference model, R(z),

. while a servomotor, G(s), and the DAC comprise the servo plant, Gp(z). The
adaptive reference inverse model is an inverse model of the servo plant,
which, when combined with the servo plant and the reference model, gives an
output, yen), that follows the reference model output sen). The adaptive ref­
erence inverse model is computed offline. Once an adaptive reference inverse
model is obtained, it ,is incorporated into the control system. The servo plant
is driven by the output obtained from a copy of the adaptive reference inverse
model, which is updated after each seek operation. This ensures that the servo
plant follows the same profile as the reference model at all times.

The reference model transfer function as given in reference r81 is

R(z) C(z)IE(z) ~ 0.01524z + 0.0147
- 1.6847z + 0.7147

This reference model may now be used to derive the adaptive reference in­
verse model of the servo plant. Figure 11.19 illustrates the adaptive reference

. inverse modeling technique. This particular model incorporates a 40-tap trans­
versal filter whose coefficients are updated according to the least-mean-square
algorithm . .The compromise between the accuracy and computational com­
plexity dictates the choice of the number of taps in· the transversal filter. The
following equations describe this model:

11.6 A Position Control System for a Hard Disk Drive 315

x(n)
Reference

model

• sen)

c(n) .
I .. I A~aptlv~ reference

Inverse model
yen) -..(L

e(n)

+

Figure 11.19 Adaptive inverse modeling scheme

Servo plant output:

c(n) 0.0048x(n - 1) + 0.0046x(n) + 1.9c(n - 1) 0.9094c(n - 2)

Reference model output:

sen) 0.01S24x(n - 1) + 0.0147x(n 2) + 1.68476s(n ~ 1) 0.7147s(n - 2)

Adaptive reference inverse model output:

yen) = I:: w(i)c(n i + 1); i = 1 to 40

Error: e(n) = sen) - yen)

Weight vector update:

w;= Wi + fl.ec(n - i + I), 1,40 .

The weight vectors, Wi> which represent the adaptive reference inverse
model, are obtained by performing 500 iterations of the adaptive loop. The
parameter fl., which determines the rate of convergence for obtaining the·
weight vector, is chosen empirically, in this case, to be 0.05. The input to
the system is assumed to be ,a step. Once the adaptive reference of the inverse
model is obtained, it can be applied to the control system of Figure lLl8. Due

. to the adaptive reference inverse· model, any variations in the internal vari­
ables of the servo plant result in corresponding-changes in the coefficients of
the adaptive reference inverse model. Hence, the servo output follows the ref­
erence at all times.

316 Chapter 11 Applications of Programmable DSP Devices

522

418

313

209

104

0

~104

-209

313

-418

522
0 28.0 56.0 84.0 112 140 168 196 224 252 279

Figure 11.20 The control signal c(n) as obtained from the implementation of the control system on
the TMS320C5402 processor

The initial 40 coefficients of the transversal filter were obtained from a
MATLAB program and were then used in the final assembly language code of
the DSP. Once an input impulse is given to a DSP, the output settles down in
about 201300 instruction cycles, which is 0.2 msec for the TMS32QC54~2, f6r
which each instruction cycle .takes 10 nsec. Figure 11.20 shows the graph for
c(n) obtained from the actual implementation of the control system on the
TMS320{;5402. processox;.

11 .7 DSP-Based Power Meter

Measurement of power is an important task in evaluating performance of a
system- or a household appliance. Power has· been conventionally measured
using older electromagnetic-mechanical systems: This project is about design­
inga power measuring system using modem DSP technology. The result of
this approach can be a device that provides better performance. at lower cost.
The project details are available elsewhere in a report [9J.

11.7 DSP-Based Power Meter 317

User Interface Unit

LCD

rL
Data Acquisition Unit

On-Board

0 Computer

AID
Converter

Bus Interface
Logic ~

DSP Kit

DSP Unit

Figure 11.21 Block diagram of a DSP-based power meter

11 .7.1 .Power Measurement System

Figure 11.21 shows a block diagram that can -be implemente9 to measure
power. The block diagram shows three functional units: the data acquisition
unit, the DSP unit, and the user interface unit. The data acquisition unit gets
the electrical signals representing power, the DSP unit processes the signals to
compute power, and the user interface presents the results to the user for
viewing graphically.

318 Chapter 11 Applications of Programmable DSP Devices

FSXI
CLKRI

FSRI
TMS320C5402 DRI

-T

c;::

CONV
XCLK
OSCI
SYNC

. SOUTA
CLKIN
CLKOUT

,

DSP102

Figure 11.22 ADC interface to the DSP using McBSPs

Data Acquisition Unit

Data acquisition consists of acquiring the voltage signal using a voltage trans­
former and the current signal using a current transformer. The voltage trans­
former is used to transform the voltage signal to a value that can be handled
by an AID converte~: Similarly, the current transformer produces voltage
proportional to the current in the circuit. This voltage is fed to a second AID
converter. The AID converters produce digital data at the selected sampling
rate. The number of AID bits specifies'the resolution for the digital signal. The
dual-channel ADC device (DSP102 from TI), with the maximum sampling rate
of 200 KHz, 16-bit resolution, and serial interface, was used in this design.

DSPUnit

For power computations, the Texas Instruments DSK5402 DSP board was
used. The de:velopment software package, CCS, running on PC, was used to
develop and download software for the DSP. The DSP's on-chip multichannel
buffered serial ports (McBSPO and McBSPl, provide the mechanism to collect
data from the two AID converters on the data acquisition unit Figure 11.22
shows the interface between th~ AID converters and the DSP.

Programming the McBSP registers can configure the clock and sampling
frequencies. The sampling frequency was programmed for 12.2 KHz. The DSP
is programmed to generate the AID convert pulse. The AID supplies two data
samples as a 32-bit number after asserting the sync signal on the FSR of the
serial port. The receiver has two 16-bit registers, DRRlland DRR21, that re­
ceive the data every conversion cycle. From here, it is the DMA that transfers
the signal.data to the DSP memory. Two DMA channels are used for the two
signals. The DMA is also used to transfer the data from the DSP to the user
interface unit using another DMA channel and the transmitter register DJCRIO

11.7' DSP-Based Power Meter 319

MCBSPI
~ o MCBSPO ~

16-Bit Peripheral Data Bus

DMAC4DMAC2 DMAC5

1- .~ARAM
L::

Figure 11.23 DSP's DMA system for interfacing to ADCs andto the user interface unit

on the McBSPO serial port. Figure l1.23 shows the details of the DMA interface
for receiving the AID data using McBSPl and transmitting the computed sig­
nal data using the McBSPO.

User Interface Unit

The user interface displays the signals received from the DSP. For this
purpose, in this project a complete embedded computer system was used. In
this way, the DSP can dedicate itself to analyzing the data, and the computer

I

320 Chapter 11 Applications of Programmable DSP Devices

,

CLKRO

FSRO
TMS320C5402 DRO

CLKXO

FSXO

DXO

ADDR DATA r­
"11 11

­

ADDR DATA

X_CNTLO 1-1-----'

CPLD

I ADSP_CLKR

DSP]SR [SA_SA

DSP_OR ~ h
DSP_CLKX

ISA SO
DSP_FSX XC4005XL­ V
DSP_OX

lSA_SMEMRDC
DSP_CNTL

lSA_SMEMWTC

ISA_DRO

ISA_DAK

ISA_INT ..

,

ISA
Controller

MRDC

MWTC

Figure 11.24 DSP-to-computer interiace logic

provides capability to display signals on a LCD display. This requires provi­
sion of two-way communication between theDSP and the computer. The in­
terface was designed using Xilinx XC4005XL-PC84 FPGA. An EEPROM is used'
to configure the FPGA upon power-up.

The bus interface logic shown in Figure 11.24 has two main responsibilities.
First, it controls the DSP and second, it supplies the DSP data to the com­
puter. For the computer to control the DSP, the interface converts parallel
data and delivers it serially to the DSP. For the DSP to send data to the com­
puter, the opposite mechanism, that is, serial-to-parallel conversion, is used in
addition to coordinating the DMA transfer to the computer.

The embedd'ed computer uses a graphic controller to, drive the LCD. The
LCD provides a resolution of 640 x 480. To implement the interface, a few
computer resources such as interrupt and memory locations are dedicated to
the interface.

11 .7.2 Software for the Power Meter

The software for the device consists of the system. software and the application
software. The system software consists of routines that manage the hardware,
both for the DSP and the computer.

The DSP system software consists of modules, written in C, that manage
the ADC and operate the computer interface logic. This software is stored in

11.7 DSP-Based Power Meter 321

Figure 11.25 Waveforms and computed quantities as displayed on LCD screen

the flash memory of the DSK. A user interface device driver that runs on the
computer provides read/write operations to the DSP and starts the DSP.

The application software ruiming on the DSP uses the current and voltage
signal data to compute the quantities in the following equations:

p(k) = Y(k)i(k), k = k, k + 1, ...)k + N

Vrms = Vl/N~ y2(k)

1/N ~ 2
= i (k)V

Pavg = lIN L p(k)
N

An example of these computed signals and quantities as displayed on the LCD
screen is shown in Figure 11.25. The waveforms and the text are displayed
using the user interface software running on the computer.

·322 Chapter 11 Applications of Programmable DSP Devices

1.1.8 Summary

In this chapter, we have seen that the programmable DSP can be used for a
variety of applications. Although these applications vary in the nature of the
signals to be processed and their computational complexities, the architecture
and other features of the DSP are suitable for implementing these and many
other applications. As examples, we ~tudied the use of the DSP for five repre­
sentative applications.

References

1. 	 Singh, A., Hines, J., and' Somps, C. "A digital Signal Processor Based Hand
Held Multichannel, Multiple-Subject Biotelemetry System," NASA Ames Uni­
versity Consortium Report, NCC2-5112, 1996. .

''2." 	 Rabiner,1. R., and Schafer,R. W. "Digital Representation of Speech Signals,"
Proc. IEEE, Vol. 63, pp. 662-677, April 1975.

3. 	 Rabiner, L. R. "On the Use of Autocorrelation for Pitch Detection," IEEE
Trans. Acoust., Speech, and Signal Processing, Vol. ASSP-25, No.1, February
1977.

4. 	 Rabiner, L R., and Schafer, R. W. Digital Processing ofSpeech Signals, Ptenti<;e
Hall Inc., 1978.

5. 	 Rao, K. R., and Yip, P. Discrete Cosine Transform: Algorithms, Advantages,
Applications, Academic Press, 1969.

6. 	 Shl, Y. Q., and Sun, H. Image and Video Compression for Multimedia En­
gineering: Fundamentals, Algorithms, and Standards, CRC Press, 2000.

7. 	 Lee, B. G. "A new algorithm to calculate the Discrete Cosine Transform," IEEE
Trans. Acoust. Speech, and Signal Processing, Vol. ASSP-32, pp. 1243-1245,
December 1984.

8. 	 Nekoogar,F., an4 Moriarty, G. Digital Control using Digital Signal Processing,
Prentice Hall Information and System Sciences Series, 1999.

9. 	 Muico, U., and Larios, H. DSP-Based Power Measurement Device, EE198
Senior Project Report, San Jose State University, Fall 2001.

Appendix A

Architectural Details of TMS320VC5416
'Digital Signal Processor

15 7 6 5 4 3 2 '0

CLK
IPTR MP/MC' OVLY 'AVIS DROM

OFF
SMUL' SST

,-­

,

I

R/W"1FF MP/MC RlWoO R/W-O' R/W..O ' R/W-O R/W..O R/W-O
Pin

LEGEND: R =Read, W =Write

BIT
RESET

NO. NAME VALUE FUNCTION

15-7 IPTR 1FFh 15-7 IPTR 1FFh Interrupt vector pointer. The 9-bit IPTR field points
to the 128-word program page where the interrupt vectors reside.
The interrupt vectors can be remapped to RAM for boot-loaded
operations. At reset, these bits are all set to 1; the reset vector
always resides at address FF80h in program memory space: The
RESET instruction does not affect this field.

6 MP/MC MP/MC Microprocessor/microcomputer mode. MP/MC enables/disables
pin the on-chip ROM to be addressable in program memory space .

.;. MP/MC ='0: The on-chip ROM is enabled and addressable.
_ MP/MC =1: The on-chip ROM is not available. MP/MC iS,set to
the value corresponding to the logic level on the MP/MC pin
when sampled at reset. This pin is not sampled again until the
next reset. The RESET instruction does not affect this bit. This bit
can also be set or cleared by software.

Figure A.1 Processor Mode $tatus(PMST) Register (continued)

(Courtesy of Texas Instruments Inc.)'

323

324 Appendix A Architectural Details of TMS320VC5416 Digital-Signal Processor

5 OVLY 0 RAM overlay. OVLY enables on-chip dual-accessdata RAM block~
to be mapped into program space. The values for the OVLY bit
are: _ OVLY =0: The on-chip RAM is addressable in data space but
not in program space. _ OVLY = 1: Theon-chip RAM is mapped
into program space and data space. Data page 0 (addresses Oh to
7Fh), however, is not mapped into program space. '

4 AVIS 0 Address visibility mode. AVIS enables/disables the internal
program address to be visible at the address pins. AVIS =0: The
external address lines do not change with the internal program
address. Control and data lines are not affected and the address
bus is driven with the last address on the bus. AVIS =1: This

- I

mode allows the ,internal program address to appear at the pins
of the 5416 so that the internal program address can be traced.
Also,' it allows the interrupt vector to be decoded in conjunction
with lACK when the interrupt vectors reside on on-chip memory.

3 DROM 0 DROM enables on-chip DARAM4-7 to be. mapped into data space.
The DROM bit values are: _ DRDM =0: The on-chip DARAM4-7 is
not mapped into data space. _ DROM =1: The on-chip QARAM4­
7 is mapped into data space.

2 CLKOFF 0 CLOCKOUT off. When the CLKOFF bit is 1, the output of CLKOUT
is disabled and remains at a high level.

SMUL N/A . Saturation on multiplication. WhenSMUL = 1, saturation of a
multiplication result occurs before performing the accumulation
in a MAC of MAS instruction. The SMUL bit applies only when
OVM =1 and FRCT = 1.

0 SST N/A Saturation on store. When SST = 1, saturation of the data from
the accumulator is enabled before storing in memory. The
saturation is performed after the shift operation.

Figure A.1 Continued

Appendix A Architectural Details of TMS320VC5416 Digital Signal Processor 325

15 14 12 11 9 8 6 5 3 2 o

XPA I/O I Data Data· r Program Program

R/W-O R/W-111 R/W·111 R/W·111 R/W·111 R/W-111

LEGEND: R =Read, W = Write, 0/111 =Value after reset

BIT
RESET

. NO. NAME VALUE FUNCTION

15 XPA

14-12110

11-9 Data

8-6 	 Data

5-3 Program

2-0 Program·

O· 	 Extended program address control bit.XPA is used in conjunction
with the program space fields (bit~ 0 through 5) to select the
address range for program space wait states.

111 	 1/0 space. The field value (0-7) corresponds to the base number
of wait states for 1/0 space accesses witl'1in addresses OOOO-FFFFh.
The SWSM bit of the SWCR defines a multiplication factor of 1 or
2 for the base number of wait states.

111 	 Upper (:lata space. The field value (0-7) corresponds to the base
number of wait states for external data space accesses within
addresses 8000-FFFFh. The SWSM bit of the SWCR defines a
multiplication factor of 1 or 2 for the base.numberof wait states.

111 	 Lower data space. The field value (0-7) corresponds to the base
number of wait states for external data space accesses within
addresses O:i00-7FFFh. The SWSM bit of the SWCR defines a
multiplication factor of 1 or 2 for the base number of.wait states.

111 	 Upper program space. The field value (0-7) corresponds to the
base number of wait states for external program space accesses
within the following .addresses:

• 	 XPA =0: xx8000 - xxFFFFh
• 	 XPA =1: 400000h - 7FFFFFh. The SWSM bit of the SWCR

defines a multiplication factor of 1 or 2 for the base
number of wait states.

111 	 Program space. The field value (0-7) corresponds to the base
number of wait states for external program space accesses within
the following addresses:

• 	 XPA =0: xxOOOO - xx7FFFh
• 	 XPA = 1: 000000 - 3FFFFFh. The SWSM bit of the SWCR

defines a multiplication factor of 1 or 2 for the base
number of wait states.

Figure A.2 Software Wait-Signal Register

(Courtesy of Texas Instruments Inc.)

326 Appendix A Architectural Details of TMS320VC5416 Digltal Signal Processor

15 1 o

Reserved Swyr;]
R/W-O R/W-O

LEGEND: R = Read, W :::: Write

PIN
RESET

NO. NAME VALUE FUNCTION

15-1 Reserved 0 These bits are reserved and are unaffected by
writes.

o SWSM 0 Software wait-state multiplier. Used to multiply
the number of wait states defined in the
SWWSFl by a factor of 1 or 2.

• SWSM =0: wait-state base values are
unchanged (multiplied by 1).

• SWSM = 1: wait-state base values are
multiplied by 2 for a maximum of 14 wait
states

Figure A.3 Software Wait-State Control Register (SWCR)

(Courtesy of Texas Instruments Ind

Appendix: A Architectural Details of, TMS3'20VC5416 Digital Signal Processor 327

15 14, 13 12 11 3 2 1 0

CONSEt· DIVFCT ' IACKOf:F Reserved 'HBH BH Res
 _ I
n n

R/W-1 R/W-11 R/W-1 R R/W-O R/W-O R

R= Read, W = Write

RESET
BIiI" NAME VALUE FUNCTION

15 CONSEC· Consecutive bank-switching. Specifies the .bank-switching mode.
CONSEC* =0: Bank-switching on 32K bank boundaries,only.

This bit is cleared if fast access is desired for
continuous memory reads (i.e., no starting and
trailing cycles between read Gycles).

, CONSEC* = 1: Consecutive bank switches on external memory
reads. Each read cycle consists of 3 cycles: starting
cycle. read cycle. and trailing cycle.

13-14 DIVFCT 11 ,CLKOUT output divide factor. The CLKOUT output is driven by
an on-chip source having a frequency equal to 1/(DIVFCT + 1) of
the DSP clock.
DIVFCT ::: 00: CLKOUT is not divided.
DIVFCT ~ 01: CLKOUT is divided by 2 from the DSP clock.
DIVFCT = 10: CLKOUT is divided by 3 from the DSP clock.
DIVFCT::: 11: CLKOUT is divided by 4 from the DSP clock

. (default value following reset).

12 IACKOFF IACK* signal output off. Controls the output of the flACK
signal. IACKOFF is set to 1 at reset.
IACKOFF =0: The IACK* signal output off function is disabled.
IACKOFF = 1: The IACK* signal output off function is enabled.

11-3 Rsvd Reserved

2 HBH. o HPI bus holder. Controls the·HPI bus holder. HBH is cleared to 0
at reset.
HBH= 0: The bus holder is disabled except when HPI16 = 1.
HBH = 1: The bus holder is enabled. When not driven. the HPI

data bus. HD[7:0] is held in the previous logic level.

Figure A.4 Bank-Switching Control Register (BSCR) (continued)

(Courtesy of Texas Instruments Inc.)

328 Appendix A, Architectural Details 'of TMS320VC5416 Digital Sign,al Processot

BH o 	 Bus holder. Controls the bus holder. BH is cleareato 0 at reset.
BH =0: The bus holder is disabled.
BH = 1: The bus holder is enabled. When not driven, ,the data

bus, D[15:0] is held.in the previous logic level.

o Rsvd 	 Reserved

l1igure A.4 Continued

CLKMD RESET

CLKMD1 CLKMD2 CLKIYID3 VALUE CLOCK MODE

0 0 0 OOOOh 112 (PLL disabled)
0 0 1 9007h PLL x 10
0 1 0 4007h PLL x 5
1 0 q 1007h PLL x 2

1 0 F007h· PLL x 1
'OOOOh 112 (PLL disabled)

0 1 FOOOI\ 114 (PlL'disabled)
0 1 1 Reserved (Bypass mode)

tThe external CLKMD1-CLKMD3 pins are' sampled to determine the desired
clock generation mode while RS is low. Fo.llowing reset, the dock generation
mode can be reconfigured by writing to the internal dock mode regiSl:er in
software.

----------~------~------------------------------------
Figure A.S. Clock Mode Settings at Reset

(Courtesy of Texas Instruments Inc.)

. Appendix A ArchitecturaI Details of TMS320VC5416 Digital Signal Processor 329

ADDRESS

NAME DEC HEX DESCRIf:rrION

IMR .0 0 Interrupt mask register
. IFR 1 Interrupt flag register

2-5 .2-5 Reserved for testing
5TO 6 6 Status register 0
ST1 7 7 Status register 1
AL 8 8 Accumulator A low word (15-0)
AH 9 9 Accumulato~ A high word (31-16) .
AG 10 A, Accumulator A guard bits (39-32)
BL· 11 B Accumulator B low word (15-0)
BH 12 C Accumulator B high word (31-16)
BG 13 .D Accumulator B guard bits (39-32) .
TREG" 14 E Temporary register
TRN 15 F Transition register
ARO 16" 10 Auxiliary register 0
AR1 17 11 Auxiliary register 1
AR2 ' 1.8 12 Auxiliary register 2
AR3 19 13 Auxiliary register ~
AR4 20 . 14 Auxiliary register 4
AR5 21 15' Auxiliary register 5
AR6· 22 16 Auxiliary register 6
AR7 23 17 Auxiliary register 7
SP 24 . 18 Stack pointer register
BK 25 19 Circular buffer size register
BRC 26 1A Block repeat counter
RSA 27 1B Block repeat start address
REA, 28 lC Block repeat end address
PMST -29 10 Processor mode status (PMST) register
XPC 30 1E ExtendedJ)rogram page register

31 1F Reserved

FigureA.6 Memory-Mapped Registers

(Courtesy of Texas Instruments Inc.)

330 Appendix A· Architectural Details of TMS320VC5416 Digital Signal Processor

ADDRESS

NAME DEC HEX DESCRIPTION

DRR20 32 lO McBSP 0 Data Receive Register 2
DRR10 33 21 McBSP 0 Data Receive Register 1
DXR20 34 22 McBSP 0 Data Transmit Register 2
DXR10 35 23 McBSP 0 Data Transmit Register 1
TIM 36 24 Timer Register
PRD 37 25 Tim~r Period Register
TCRTimer 38 ·26 Control Register

39 27 Reserved
SWWSR 40 28 Software Wait~State Register
BSCR 41 29 Bank-Switching Control Register

42 2A Reserved
SWCR 43 2B Software Wait~State Control Register
HPIC 44 2C HPI Control Register (HMODE =0 only)

45-47 2D-2F Reserved
DRR22 48 30 McBSP 2 Data Receive Register 2
DRR12 49 31 McBSP 2 Data Receive Register 1
DXR22 50 32 McBSP 2 Data Transmit Register 2
DXR12 51 33 McBSP 2 Data Transmit Register 1
SPSA2 52 34 McBSP 2 Sub bank Address Registert

SPSD2 53 35 McBSP 2 Subbank Data Registert
54-55 36-37 Reserved

SPSAO 56 38 McBSPO Subbank Address Registert
SPSDO 57 39 McBSP 0 Subbank Data Registert

58"'-59 3A-3B Reserved
GPIOCR 60 3C General-Purpose 110 Control Register
GPIOSR 61 3D General-Purpose 110 Status Register
CSIDR' 62 3E Device ID Register

63 3F Reserved
DRR21 64 40 McBSP 1 Data Receive Register 2
DRR11 65 41 McBSP 1 Data Receive Register 1
DXR21 66 42 McBSP 1 Data Transmit Register 2
DXR11 67 43 McBSP 1 Data Transmit Reg1Sterf

68-71 44-47 Reserved
SPSA1 72 48 McBSP 1 Subbank Address Registert
SPSD1 73 49 McBSP 1 Subbank Data Registert

74-83 4A-53 Reserved
DMPREC 84 54 DMA Priority and Enable Control Register

Figure A.7 Peripheral Memory-Mapped ReYlsters (continued)
(Courtesy Texas Instruments Inc.)

Appendix. A Architectural Details of TMS320VC5416. Digital Signal Processor 331

DMSlA. DMA
DMSDI
DMSDN
CLKMD

85
86
87
88
g9-95

55
56
57
58
59-5F

Subbahk Address Register*
DMA Subbank Data Register with Autoincrement:l:
DMA Subbank Data Register* .
Clock Mode Register (CLKMD)
Resenied

tSee Table Figure A.8 for a detailed description of the McBSP control registers and their sub­

addresses.

;See Table Figure A.9 for a detailed description of the DMA subbank addressed registers.

Figure A.4 Continued

332 Appendix A Architectural Details ofTMS320VC5416 Digital Signal Processor

McBSPO McBSP1 McBSP2
SUB

NAME ADDRESS. NAME ADDRESS NAME ADDRESS ADDRESS DESCRIPTION

SPCR10 39h SPCR11 49h SPCR12 35h OOh .Se-rial port control
register 1

SPCR20 39h SPCR21 49h SPCR22· 35h 01h Serial port control
register 2

RCR10 39h RCR11 49h RCR12 3Sh .·02h Receive control.

- register 1
RCR20 39h RCR21 49h RCR22 3Sh 03h Receive control .

register 2
XCR10 39h XCR11 49h XCR12 3Sh 04h Transmit control

register 1
XCR20 39h XCR21 49h XCR22 3Sh OSh Transmit control

register 2
SRGR10 39h SRGR11 49h 'SRGR12 3Sh 06h Sample rate

generator register 1
SRGR20 39h SRGR21 . 49h SRGR22 3Sh 07h . Sample rate

generator register 2
MCR10 39h MCR11 49h MCR12 35h OSh . Multichannel

register 1
MCR20 39h MCR2l 49h MCR22 3Sh 09h Multichannel

register 2
RCERAO 39h RCERA1 49h RCERA2 3Sh OAh Receive channel

enable register
partition A

RCERBO 39h RCERB1 49h RCERA2 3Sh OBh Receive channel
enable register
partition B

XCERAO 39h XCERA1 49h XCERA2 3Sh OCh Transmit channel
enable register
partition A

XCERBO 39h XCERBl 49h XC:ERA2 3Sh ODh Transmit channel
enable register
partition B

PCRO 39h peR1 49h PCR2 3Sh OEh Pin control register
RCERCO 39h RCERCl 49h RCERC2 3Sh 010h Additional channel

enable register for
128-channel selection

Figure A.S McBSP Control Registers and Subaddresses .(continued)

(Courtesy of Texas Instruments Inc)

Appendix A Architectural Details of TMS320VC5416 Digital Signal Processor 333

RCERDO 39h RCERDl 49h RCERD2 35h 011h Additional channel
enable re~ister for.
128-channel selection

XCERCO 39h XCERCl 49h XCERC2 35h 01~h Additional channel
enable register for
128-channel selection

XCERDO 39h XCERDl 49h XCERD2 35h 013h Additional channel
enable register for
128-channel selection

RCEREO 39h RCEREl 49h RCERE2 35h 014h Additional channel
enable register ·for
128-channel selection

RCERFO 39h RCERF 49h RCERF2 35h 015h Additional channel
enable register for
128-channel selection

XCEREO 39h XCEREl 49h XCERE2 35h 016h Additional channel
enable register for
128cchannel selection

XCERFO 39h XCERFl 49h XCERF2 35h 017h Additional channel
enable register for
128-channel selection

RCERGO 39h RCERGl 49h RCERG2 35h 018h Additional channel
enable register for .
128-channel selection

RCERHO 39h RCERH 49h RCERH2 35h 019h Additional channel
enable register for
128-channel selection

XCERGO 39h XCERGl 49h XCERG2 35h 01Ah Additional channel
enable. register for
128-channel selection

XCERHO 39h XCERHl 49h XCERH2 35h 01Bh Additional channel
enable register for
128-channel selection

Figure A.S Continued

334 Appendix A Architectural Details ofTMS320VC5416 Digital Signal Processor

SUB
NAME ADDRESS ADDRESS DESCRIPTION

DMSRCO 56h/57h OOh DMA channel 0 source address register
DMDSTO 56h/57h 01h DMA channel 0 destination address register
DMCTRO 56h/5.7h 02h DMA channel 0 element count register
DMSFCO 56h/57h 03h DMA channel 0 sync select and frame count register ..
DMMCRO 56h/57h 04h DMA channel 0 transfer mode control register
DMSRC1 56h/57h 05h DMA channell source address register.
DMDSTl 56h/57h 06h DMA channel 1 destination address register
DMCTR1 56h/57h· 07h DMA channell element count register
DMSFC1 56h157h 08h DMA channel 1 sync select and frame count register
DMMCR1 56h/57h 09h DMA channell transfer mode control reg.ister
DMSRC2 56h/57h OAh DMA channel 2 source address register
DMDST2 56h/57h OBh DMA channel 2 destination address register
DMCTR2 56h/57h OCh DMA channel 2 element count register
DMSFC2 56h/57h ODh DMA channel 2 sync select and frame count register
DMMCR2 56h/57h OEh DMA channel 2 transfer mode control register
DMSRC3 56h/57h OFh DMA channel 3 source address register
DMDST3 56h/57h 10h DMA channel 3 destination address register
DMCTR3 56h/57h 11 h DMA channel 3 element count register
DMSFC3 . 56h/57h 12h DMA channel 3 sync select and frame count register
DMMCR3 56h/57h 13h DMA channel 3 transfer mode control register
DMSRC4 56h/57h 14h DMA channel 4 source address register
DMDST4 56h/57h 15h DMA channel 4 destination address register
DMCTR4 56h/57h 16h DMA channel 4 element count register
DMSFC4 56h/57h 17h DMA channel ~ sync select and frame count register
DMMCR4 56h/57h 18h DMA channel 4 transfer mode control register
DMSRC5 56h/57h 19h DMA channel 5 source address register
DMDST5 56h/57h lAh DMA channel 5 destination address register
DMCTR5 56h157h lBh DMA channel 5 element count register·
DMSFC5 56h/57h lCh DMA channel 5 sync select and frame count register
DMMCR5 56h/57h lDh DMA channel 5 transfer mode control regi.ster
DMSRCP 56h/57h lEh DMA source program page address (common channel)
DMDSTP 56h/57h lFh DMA destination program page address (common

channel)
DMIDXO 56h/57h 20h DMA element index address register 0
DMIDX1 56h/57h 21h DMA element index address register 1
DMFRIO 56h/57h 22h DMA frame index register 0
DMFRll 56h/57h 23h DMA frame index register 1
DMGSAO 56h/57h 24h DMA global source address reload register, channel 0

Figure A.9 DMA Subbank Addressed Registers (continued)

(Courtesy of Texas Instruments Inc.)

http:56h/5.7h

"

Appendix A Architectural Details ofTMS320VC5416 Digital Signal Processor 335

DMGDAO 56h/57h 25h- DMA global destination address reload register,

, channel 0
DMGCRO 56h/57h 26h DMA global count reload register, channel.O
DMGFRO 56h/57h 27h DMA gloDal frame count reload register, channel 0
XSRCDP 56h/57h 28h DMA extended source data page (currently not

. supported)
XDSTDP 56h/57H 29h DMA extended destination data page (currently not

supported)
DMG'SA1 56h/57h 2Ah DMA global source address reload register, channel 1
DMGDA1 56h/57h· 2Bh DMA global destination address reload register,

channel 1
DMGCR1 56h/57h 2Ch DMA global count reload register, channel 1
DMGFR1 56h/57h 2Dh DMA global frame count reload register, channel 1
DMGSA2 56h/57h 2Eh DMA global source address reload register, channel 2
DMGDA2 56h/57h 2Fh DMA global destination address reload register,

channel 2
DMGCR2 56h/57h 30h DMA global count reload· register, channel 2
DMGFR2 56h/57h 31h DMA global frame count reload register, channel 2
DMGSA3 56h/57h 32h DMA global source address reload register, channel 3
DMGDA3 56h/57h 33h DMA global destination address reload register,

channel 3
DMGCR3 5611/57h 34h DMA global count reload register, channel 3
DMGFR3 36hl57h 35h DMA global frame count reload register, channel 3
DMGSA4 56h/57h 36h DMA global source address reload register, channel 4
DMGDA4 56h/57h 37h DMA global destination address reload register,

channel 4
DMGCR4 56hl57h ·38h DMA global count reload register, channel 4
DMGFR4 56h/57h 39h DMA global frame count reload register, channel 4
DMGSA5 56h/57h 3Ah DMA global source address reload register, channel 5
DMGDA5 56h157h 3Bh DMA global destination address reload register,

chann~1 5
DMGCR5 56h/57h 3Ch DMA global count reload register, channel 5
DMGFR5 56hl57h 3Dh bMA global frame count reload register, channel 5

Figure A.9 Continued

15-14 ,13 12 11 10 9 8 7 6 5 4 3 2 o

_-L-----'----1I_R_�N_T.~F;~T[*~;IINT1u8

Figure A.10 Interrupt Vector Table and

Texas Instruments Inc.)

Mask Register/Interrupt Flag (lMR/IFR)

336 Appendix A Architectural Details of TMS320VC5416 Digital Signal Processor·

LOCATION

NAME DECIMA HEX PRIORITY· FUNCTION

RS, SINTf{ 0 00 1 Reset (hardware and software reset)
NMI, SINT 16 4 04 2 Nonmaskable interrupt
SINn7 8 08 Software interrupt #17
SlNn8 12 OC Software interrupt #18
SINn9 16 10 Software interrupt #19
SINT20 20 14 Software interr,upt #20
SINT21 24 18 Software interrupt #21
SINT22 28 lC Software interrupt #22
SINT23 32 20 Software interrupt #23
SiNT24 36 36 Software interrupt #24
SINT25 40 28 Software interrupt #25
SINT26 .44 2C Software interrupt #26
SINT27 48 30 Software interrupt #27
SINT28 52 34 Software interrupt #28
SINT29 56 38 Software interrupt #29
SINHO 60 3C Software interrupt #30­
INTO, SINTO 64 40 3 External user intern,Jpt #0
INT', SINn 68 44 4 External user interrupt #1
INT2, SINT2 72 48 5 External user interrupt #2

SINH 76 4C ·6 Timer interrupt
RINTO, SINT4 80 '50 7 McBSP #0 receive interrupt (default)
XINTO, SINT5 84 54 8 McBSP #0 transmit interrupt (default)
RINT2, SINT6 88 58 9 McBSP #2 r~ceive interrupt (default)
XINT2, SINTl 92 5C 10 McBSP #2 transmit interrupt (default)
INH, SINT8 96 60 11 External user interrupt #3
HINT, SINT9 100 64 12 . HPI interrupt
RINn, SINnO 104 68 13 McBSP #1 receive interrupt (default)
XINn, SINnl 108 6C 14 McBSP #1 transmit interrupt (default)
DMAC4, SINn2 112 70 15 DMA channel 4 (default)
DMAC5, SINn3 116 74 16 DMA channel 5 (default)
Reserved 120-127 78-7F Reserved

A.ppendix A Architectural Details of TMS320VC5416 Digital Signal Processor 337

15,...12 11 10 9-6 '5 4 3-0

Reserved I. Soft Free I' PSC TRB I­ TSS TDDR

Reset
Bit Name Value Function

15-12 Reserved Reserved; always read as O.

11 Soft 0 Used in conjunction with the Free bit to determine the state of
the timer when a breakpoint is encountered in the Hll
debugger. When the Free bit is cleared, the Soft bit selects the
timer mode.
Soft =0 The timer stops immediately.
Soft =1 Thetimer stops when the counter decrements to O.

10 Free 0 Used in conjunction with the Soft bit to determine the state of
the timer when a breakpoint is encountered in the Hll
debugger. When tlie Free bit is cleared. the Soft bit seiects the
timer mode.
Free =0 The Soft bit selects the timer mode.
Free =1 The timer runs free regardless oftheSoft bit.

9-6 PSC Timer prescaler counter. Specifies the .count for the on-chip timer.
When PSC is decremented past 0 or the timer is reset. PSC is
loaded with the contents of TDDR and the TIM is decremented.

5 TRB Timer reload. Resets the on-chip timer. When TRB is set, the TIM
i.s loaded with the value in the PRD and the PSC is loaded with
the value in TDDR. TRB is always read as a. O.

4 TSS 0 Timer stop status. Stops or starts the on-chip timer. At reset, TSS
is cleared and the timer immediately starts timing.
TSS =0 The timer is started.
TSS =1 The timer is stopped.

3-0 . TDDR 0000 Timer divide-down ratio. Specifies the timer divide-down ratio
(period) for the on-chip timer. When PSC is decremented past 0,
PSC is loaded with the contents of TDDR.

Figure A.11 Timer Control Register (TCR)

(Courtesy of Texas Instruments Inc.)

Index

2-D signal processing, 201

AJD conversion errors, 49

absolute file, 158

absolute lister, 158

accumulator, 120

adaptive filter, 198

coefficient of adaptation, 201

error signal, 198

address arithmetic unit, 96

address generation unit, 90

addressing, . 4

bit-reversed, 4

modulo, 4

addressing mode, 81, 83

bit-reversed, 87 .

circular, 85

direct, 82

immediate, 81

indirect. See also indirect addressing mode

register, 82

aliasing, 7

noise, 7

ALU. See arithmetic and logic unit·

overflow management, 75

register file, 76

status flags, 75

amplitude degradation of D/A output, 56

antialiasing filter, 1, 7, .270

API funCtions, 164

architecture, 3, 77

Harvard architecture, 3, 77

Von Neumann architecture, 77

archiver utility, 158

arithmetic and logic unit, 75

assembler, 159

assembly source file, 159

assembly source program, 159

assembly translation assistant, 158

.autocorrelation, 105,304

BCLKIN,273

biomedical signals, 298

. biotelemetry, 298

biotelemetry receiver, 299

implementation, 301

pulse position modulation, 299

PPM receiver, 300

bit reversing, 218

block floating-point format. See number formats

block exponent, 46, 47

block repeat, 137

board ·confidence testing, 158

board drivers, '158

branching, 93

buffered serial port, ~46

butterfly, 216

C compil~l" 157

CCS. See code composer studio

circular buffer, 85, 178

code composer studio, 161

CODEC. See also synchronous serial interface

ATT,277

BCLKIN,~72

CODEC programming, 275

FMTO; 277

FMTl,277

LOP, 271

LRCIN,277

LRP,277

MC,275

MD,275

ML,275

CODEc_eLK, 272

CODEC...;.S:YSCLK,272

339

340 Index

CODEC (continued)

CPLD,271

DlN,272

DOUT,272

LDL,277

LDR,277

LRCIN,272

PCM3002, 266

PCM3002 CODEC, 271

SYSCLK,272

CODEC interface circuit, 266

digital attenuation, 270

deemphasis, 270

digitalloopback, 270

power down mode, 270

soft mute, 270

COFF object files, 157

commercial DSP devices, 107

. ADSP 2100, 108

DSP 56000, 108

TMS3201O, 108

TMS32020, 108

TMS320C:25, 108

TMS320C54xx, 108

compare, select and store unit (CSSU), 114, 117

compensating filter, 57

compil(!r

compiler,

complex exponential sequence, 9

computational accuracy, 42

convolution, 13,23

crosscorrelation, 105

cross-reference lister, 158

D/A conversion errors, 54

data address generation unit (DAGEN), 114

data addressing. See addressing mode

debug options, 162

breakpoints, 163

graphing, 164

probe points, 163

profiling, 164

real-time analysis, 164

single-step, 162

watch window, 163

debugging tool, 158

decimation, 21, 190

decimation factor, 21, 190

decimation filter, 190, 270

decimation in time, 87

device cODfisuration, 158

DP't.SeeFotmer transfonn

DFT pair; ~O

DIF. See dedmation-in-fr~quency

DIF FFT algorithm, 219

digital filters, 14

frequency respoJ:.lse, IS

group delay, 17

group delay response, 30

linear phase, IS

magnitude frequency response, ·16

phase frequency response, 16

digital frequency, 9. 10

digital signaJ. 7

direct memory access, 2SS

directives, 160

.end, 160

.global, 160

.mmregs, 160

)section directives, 160

.data, 160

.text, 160

DIT. See decimation-ill-time

DIT fFT algorithm, 219

DMA. See direct memory access

DMA controller, 155 .

DMCTR. See channel element count register

DMDSt. See channel destination address register

DMMCR. See channel transfer mode control

register
DMPREC. See channel priority and enable control

register
DMSA,257
DMSDI,257
DMSDN,257
DMSFC. See channel sync select and frame count

. register

DMSSEC. See channel source address register

DSK. See DSP system design kit

DSP computational building blocks, 63

DSP computational errors, 52

DSP system design kit, 155

DSP/BIOS kernel, 164

dual data memories, 95

dynamic range, 42

ECG signal processing, 301

BPM,302

HR,302

QRS complex, 302

Index 341

editor, 157

embedded executable functions, 158

emulator, IS.

error, 51. 52

mean, 51, 52

yariance, 51, 52

evaluation module, ISS

EVM. See evaluation module

executable;GOFF Object tile, 158

exponent, 44; 45

exponent encoder (EXP), 114

extension .

.out, 162

extension bits. See guard bits

external interfacing, 102

direct memory access, 102 ~

interrupts, 102

parallel 110, 102

serial 110, 102

timer, 102

external memory access, 239

timing reference, 239

fast Fourier transform, 4, 10, 11,219

decimation-in-frequency, 219

decimation-in-time, 219

overflow, 220

radix-2 algorithm, 11

scale factor, 223

scaling, 220

zero-padding, 219

FFT. See fast Fourier transform

finite impulse response (FIR) tilter. See FIR

tilter

FIR tilter, 14, 178

design, 19

Parks-McClellan FIR tilter, 19, 37

flash memory, 155, 243

Fourier transform

discrete, 10

forward transform, 216

in-place computation, 216

inverse discrete, 10

inverse transform, 216

signal flow graph, 216

frequency-domain sequence, 216

,Gibbs' phenomenon, 19

guard bits, 54, 73, 114

hard disk drive, ~12
read/write head, 312

hardwired control, 103

Harvard architecture. See arCHitecture

heart rate, 301

hex conversion utility, 158

host port interface, 155

host utilities, 158

HPI. See host port interface

IDCT. See inverse DCT
IDE. See integrated development environment
IDFT. See Fourier transform
IFR. See interrupt flag

techniques, 20

IIR filter desilm. 33

direct design, 20

Yulewalk, 21,35

higher-order IIR filter, 181

image processing system, 307

data compression, 308

lossy, 308

immediate, 118

implied 1,45

implied binary point, 43 .

IMR. See interrupt mask register

include tiles, 162

. indirect addressing mode, 82

post_decrement, 84

post...,offset...,add, 84

poscoffset_subtract, 84

pre_decrement, 84

pre_increment, 84

pre_offset...,add, 84

pre:..offset_subtract, 84

infinite Impulse response filters. See IIR filter

instruction cache, 80

instruction 93

instruction syntax, 118

integrated development environment, 161

interpolation, 21

factor, 22, 188

filter, 187, 270

polyphase subfilters, 188

linear interpolation, 188

interrupt, 248, 279

NMI,249 .

251

342 Index

intenilpt (co~tinued)

RS,249

acknowledgement, 251

hardware interrupt, 249

interrupt flag register, 249

interrupt mask register, 249

interrupt vector table, 249

INTM,249

maskable, 249

nonm!lskable, 249

priority, 251

service routine, 248

software ,interrupt, 249

interrupt 110, 246

interrupt service routine, 93, 252

interrupt vector table, 93

joint photographic exp·erts group, 308

dequantization, 311

Huffman decoding, 311

JPEG algorithm, 309

DCT,309

entropy encoding, 309

inverse DCT, 311

quantization, 309

JPEG decoding, 311

JPEG encodiIig,31O .

ac coefficients, 310

dc coefficient, 310

JPEG. See joint photographic experts group

JTAG emulation logic, 1.55

last-in-first-out, 92

library modules, 158

librarY-build utilih', 158

LIFO. See last-in-first-out

linker, 158

loops, 93

MAC. See niultiply and accumulate

MAC unit. See multiply and accumulate unit

machine program, 160

macros, 158

mantissa, 44, 46

MAR. See· modify auxiliary register

MATLAB,23

. matrix multiplication, 206, 207

memory organization, 207

McBSP. See multichannel buffered serial port

mean square error, 198

memory, 77

data memory, 78

dual data memories, 78

dual-access memories, 80

memory access times, 79

off-chip memories, 79

on-chip memory, 79

memory space of TMS320C54xx processors,

129

/L-Iawexpansion table, 129

A-law explmsion table, 129

bootloader, 129

DARAM,129

data"memory space, 129

extended pages, 129

interrupt vector table, 129

mem6ry~mapped peripherals, 129

on-chip DARAM, 129

on-chip RAM, 129

on-chip ROM, 129

processor mode status register, ·129

program memory space, 129

SARAM,129

sine look-up table, 129

speech codec table, 129

microcode, 93

microinstructions, 93

microstore, 93

modify auxiliary register, 123

MSE. See mean squa~e error

multichannel buffered serial port, 155,264

control registers, 266

DMA,265

DRR,265

DXR,265

McBSP programming, 266

RBR,265

RINT,265

RRDY, 265

RSR,264

subaddresses, 266

XINT,265

XSR,265

multiple buses, 96

multiple memories, 96

multiplier, 63

array, 63

Baugh - Wooley, 66

Index 343

Braun multiplier, 64

bus widths, 66

for signed numbers, 64

parallel, 63

speed, 66

multiply and accumulate, 3, 52, 53

multiply and accumulate unit, .71

noise variance, 52

normalization, 45

number formats, 42

accuracy, 47,49

block floating-point format; 46

double-precision fixed~point format, 44

dynamic range, 47, 49

fixed-point format, 43

floating-point format, 44

IEEE-754 format, 45

precision, 45, 46

resolution~ 48,. 49

object formats, 158

Object library, 158

on-chip cache, 80

operand syntax, 123

overflovv, 53, 54, 72, 74

overflovv error~ 54

oversampling sigI!la-delta converters, 266

parallel I/O interface, 245

timing diagram, 246

parallel multiplier, 64 .

parallelism, 96

system level parallelism, 98

PC! configtlration data, 159

PCM3002. See stereo codec

periodic sequence, 10

peripheral memory-mapped registers, 266

SPSA,266

SPSD.266

PID cORtroller, 193

errol,194

error derivative, 194

error integral, 194

pipeline latency, 97

pipeline operation of the TMS320C54:xx, 148

pipelining, 97 ,

system level pipelining, 98

PMST. See processor mode status register

position control system. 312

environmental variations, 314

head positioning, 314

position, 312

position error, 313

reference, 314

reference inverse model, 314

reference model, 314

reference model output, 314

servomotor, 312

servo-plant output, 314

track, 313 .

transversal filter, 316

vveight vectors, 315

povver measurement system, 317

current transformer, 318

data acquisition unit, 318

DSP unit, 318

user interface unit, 319

povver meter, 316

povver spectral density, II, 25, 27

PPM. See pulse position modulation

PRO. See timer period register

probability density function, 50

program address generation unit (PAGEN), 114

program counter, 93

program execution, 91

control unit, 93

hardwired, 93

program sequencel, 93

condition logic, 95

program memory, 78

program prefetch, 148

programmed I/O, 246, 247

BIO, 247

GPIOCR,247

GPIOSCR, 247

handshake, 247

XF,247

project creation vvindovv, 162

project menu, 162

load program, 165

project toolbar, 162

add files to project, 164

build, 165

debug, 162

nevv, 164

rebuild all, 1152

release, 162

344 Index

project view window, 162

pseudocode, 105'

Q-notation, 176

quantization error, 49, 50

real-time data exchange, 164

real-world signals, 298

reconstruction filter, 1, 2, 7

record length, 11

register subaddressing, 257

relocatable COFF object files, 158

resolution, 48, 49

reverse-carry-add, 89

rounding, 177

rounding error, 50, 51

RTOX. See real-time data ex<;hange

sample-and-hold ciJ'cuit, 270

sampled-data signal, 7

sampling, 7

frequency, 7

interval, 8'

oversampling, 270

rate, 7, 300

theorem, 8

saturation logic, 74

serial port, 146

shifter, 68 ­

barrel shifter, 69

signal power, 52

signal spectrum, 232, 233

signal to-noise ratio, 52

.signedfractions,43,44

signed integers, 43, 44

sine function, 56

single-step execution. See debug options

sinusoidal sequence, 10

software, 320

device driver, 321

software development flowchart, 156

speech processing system, 302

autocorrelation, 302

autocorrelation ~omp\ltation, 305

dipping level, 305

fundamental frequency estimation, 302

pitch detectors, 302

pitch period estimation, 302, 305

spectrum fiattening,305

three-Ievei clipping scheme, 305

vocoders, 302

. speech signal, 304

digital model, 304

fiicativesounds,304

nasal tract, 304

natural frequencies, 304

unvoiced speech signal, 307

velum, 304

vocal apparatus, 31)4.

voiced speech signal, 307

stack, SO, 92

stack pointer, 279

status and control bits of timet, 142

status display, 158 ..

status register Sri, 116

stereo codec, 155

subbank access register, 257

OMSDI,257

OMSON,257

5ubbank address register, 257

. subroutines, 93

SWWSR. See software wait state register

synchronous serial interface, 262 •

CLKR,263 ­
CLKX,263

COOEC,263

OR, 263

Ox, 263

. frame sync signal, 263

FSR, 263

FSX, 263

full-duple.r, 264

PCR,266

RCR,266

receive timing, 263

RRDY,263

SPCR,266

subbank control registers, 266

. transmit timing, 263

XRDY,26.3

system function, 14

target libraries, 158

TCR. See timer control register

TOOR,143

TOM. See time-division multiplexed

throutWput, 2, 97

TIM. See timer register

time-division multiplexed, 146.

. time-domain sequence, 216

time-invariant system, 12

linear, 12

timer, 155

timer control register, 142

1'in\er period register, 142

timer register, 142

TINT,143

TOUT,143

TMS320C5402, 311, 316

TMS320C5416

bus interfacing signals, 238

110 space,' 277

memory interface. 244, 245

TMS320C54xx, 108

addressing modes, 117

absolute addressing

dmad, 120

lk, 120

PA,120

pnldd, 120

bit-reversed addressing, 127

~circul8I addressing, 124

direct, 121

dual-operand addressing, 127

JIiemoiy-mapped register, 127

stack,128

muo. See auxiliary register arithmetic units

.ARAUl; See auxiliary register arithmetic units

awciliary regiSter arithmetic units, 112, 123

auxiliary register ARx, 126

BI<. See circular-buffer size register

bus cycle. 241

bus structure. III

central processing unit, 112

circular-buffer size register, 125

CLKOUT,239 1

compiler mode hit, 121

CPL, See cOlJlpller mode bit

CPU registers, 117

data bus pairs; i 12

data-page pointer, 121

direct mem,ory,access

'register suhaddressing, 257

D¥A channels, 255

DNii\ Qpera.tion, 25~

chann'el destination address register, 256

channel element count register, 256

Index 345

channel priority and enable control register,

256

channel soUrce. address register, 256

channel sync select and frame count

register, 256

channel transfer mode control register, 256

configuration, 256

DP. See data-page pointer

dual-access type, 117

. internal memory, 117

interruptS, 146

external, 146

internal, 146

maskable" 146'

nonmaskable, 146

memory interface, 238

memory space organization, 236

paging, 241

memory-mapped register, 117

on-chip peripherals, 142

clock generator, 145

hardware timer, 142

host port interface, 143

serial 1/0 ports, 146

peripheral registers, 117

PMST registers, 117

program bus paiJ;, 112

program control, 131 .

hardware stack, 131

PAGEN,132

program control unit, 131

repeat counters, 131, 132

statu~ registers, 131

programming examples, ·137

single-access type, 117

SP. See stack-pointer

stack pointer, 121

TMS320C54xx instructions, 132

arithmetic, 133

instruction set, 132

load and store, 132

logical, 133

multiply, 134

multiply and accumulate, 134

multiply and subtract, 135

multiply. accumulate, and delay, 136

PORTR,245

PORTW, 245, 246

program-control, 133

346 Index

TMS320C54xx instructions (continued)

RBADA, 121- .

WRITA,121

TMS320VC5416, 155, 237

TMS320VC5416 DSK, 155

transfer function, 14

truncation, 177

truncation error, SO, 51

twiddle factor, 216

unconditional I/O, 246

underflow, 72, 74

universal serial bus, 155

USB. See universal serial bus
user-mode DLL, 159

Viterbi algorithm, 117

wait states, 240

READY, 240

software programmable, 240

software wait state register, 240

Win32 DLL, 158

wraparound, 44,54, 74

error, 74

Yulewalk technique, 57

:tero-order hold, 54, 56

zero-overhead looping, 3

Z-transform, 13 ..

